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The artificial spiking neural network (SNN) is promising and has been brought to

the notice of the theoretical neuroscience and neuromorphic engineering research

communities. In this light, we propose a new type of artificial spiking neuron based

on leaky integrate-and-fire (LIF) behavior. A distinctive feature of the proposed FG-LIF

neuron is the use of a floating-gate (FG) integrator rather than a capacitor-based one.

The relaxation time of the charge on the FG relies mainly on the tunnel barrier profile,

e.g., barrier height and thickness (rather than the area). This opens up the possibility

of large-scale integration of neurons. The circuit simulation results offered biologically

plausible spiking activity (<100Hz) with a capacitor of merely 6 fF, which is hosted in

an FG metal-oxide-semiconductor field-effect transistor. The FG-LIF neuron also has the

advantage of low operation power (<30 pW/spike). Finally, the proposed circuit was

subject to possible types of noise, e.g., thermal noise and burst noise. The simulation

results indicated remarkable distributional features of interspike intervals that are fitted to

Gamma distribution functions, similar to biological neurons in the neocortex.

Keywords: floating-gate integrator, leaky integrate-and-fire neuron, spiking neural network, synaptic transistor,

spatial integration

INTRODUCTION

Ongoing research efforts into spiking neural networks (SNNs) attempt to gain a better
understanding of the brain (Gerstner and Kistler, 2002; Markram, 2006) and/or realize its
“electronic replicas” that partially imitate brain functionalities such as learning andmemory (Mead,
1990; Jeong et al., 2013; Merolla et al., 2014; Qiao et al., 2015). The former generally employs
computational SNNs; a vast number of spiking neurons are simulated on computers in search of
their behaviors relating to neuronal representation at both low and high levels (Markram, 2006). By
contrast, the latter relates physically working hardware SNNs and their components, e.g., spiking
neurons and synapses, in favor of real-time interaction with environments, which is referred to
as neuromorphic engineering (Mead, 1990). When emulating an SNN with a vast number of
neurons, the hardware SNN largely outperforms the computational SNN in terms of runtime,
given the latter’s need for substantial computational resources. The larger the SNN, the greater
the severity of its need for computational resources. The hardware SNN is thus perhaps a good
solution to this practical problem, if the artificial neurons and synapses capture their biological
counterparts with high precision (Indiveri et al., 2011; Azghadi et al., 2014). The components with
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limited precision—only capturing the essence of their biological
counterparts—can be engaged in neuromorphic systems
that are endowed with several brain functionalities such
as spatiotemporal recognition despite the component-wise
disparity in detailed behavior (Eliasmith and Anderson, 2004;
Eliasmith et al., 2012).

Essentially, neurons in a biological network communicate
by spikes. The membrane potential of each neuron rises amid
incident presynaptic spikes that cause excitatory postsynaptic
currents (EPSCs) through the dendrites. That is, the membrane
integrates the EPSCs until the membrane potential reaches
a threshold for spiking. This procedure is referred to as
integrate-and-fire (IF; Burkitt, 2006). This IF procedure lays the
foundations of computational neuron models, e.g., the leaky IF
neuron (LIF; Burkitt, 2006), Hodgkin-Huxley neuron (Hodgkin
and Huxley, 1952), and Izhikevich neuron models (Izhikevich,
2003), and the corresponding hardware models (Mead, 1989;
Indiveri et al., 2011; Lim et al., 2015). Among the models, the
LIF neuron is one of the most widely used models in light of its
simplicity.

In view of real-time interaction with physical environments,
it is desirable that the hardware neuron spikes at a rate similar
to that of the biological neuron (ca. <100Hz) given that each
spike consumes a certain amount of power. The higher the
activity in a given period of time, the more power the neuron
consumes. Toward this end, the interspike interval (ISI) between
neighboring spikes in time reaches a few tens of milliseconds,
which requires a comparable R-C time constant within the
framework of the LIF neuron. To put it precisely, a linear
low-pass filter, i.e., integrator, in the LIF neuron needs to be
endowed with a cutoff frequency below the minimum activity
of the biological neuron. Signal integration can be realized in
different integrators, e.g., Tau-cell (Edwards and Cauwenberghs,
2000), the subthreshold log-domain integrator by Arthur and
Boahen (2004), and a differential pair integrator (Bartolozzi and
Indiveri, 2007), and they are nicely reviewed in a paper written
by Indiveri et al. (2011). For these integrators, a capacitor causes
a delay in the response to an input signal so that the capacitance
significantly alters the time delay, partly akin to an R-C delay in a
simple R-C circuit.

The FG-based metal-oxide-semiconductor field-effect
transistor (MOSFET), FG-MOSFET for short, is one of the
most successfully commercialized nonvolatile memory bits
in flash memory (Jeong et al., 2012). Remarkable progress
in flash memory technology has been made, ranging from
the charge trap flash as a variation of the FG-MOSFET to
vertical NAND memory. The high maturity level of flash
memory technology offers great opportunities for neuromorphic
engineering; in particular, FG-MOSFETs are promisingly utilized
as programmable synapses that work as local memories within
a neuromorphic circuit (Hasler et al., 1994; Gordon et al., 2004;
Tenore et al., 2006; Brink et al., 2013; Ramakrishnan et al., 2013).
To date, diverse FG-MOSFET-based synapse circuits have been
proposed with different precision; the simplest case is the single-
transistor synapse device that can maintain the programmed
synaptic weight for sufficiently long time periods and implement
the spike-timing-dependent plasticity protocol (Hasler et al.,

1994; Ramakrishnan et al., 2013). In addition, FG-MOSFETs are
also employed as the core part of a synapse circuit (Tenore et al.,
2006). Although synapse circuits containing FG-MOSFETs are
diverse, it is common that the FG-MOSFETs are responsible for
the memory of a programmed synaptic weight.

In this study, we propose an LIF neuron circuit based on a
floating-gate (FG) integrator as a replacement for a capacitor
integrator. Compared with FGs in synapse circuits, the role of an
FG in this type of integrator is counterintuitive given that the FG
is deliberately designed to retain the charge on the FG for a few
seconds, at most. This poor charge retention is not acceptable in
the FGs in synaptic circuits. Circuit simulations were conducted
using LTspice IV in support of the proposed circuit. The kinetics
of filling the floating gate with charge (charging) and emptying
it (discharging) resembles the charging and discharging of a
capacitor. However, a significant difference lies in the mechanism
for charging and discharging. Charge transfer into and out of
the FG is mainly determined by area-independent properties
of the tunnel barrier, e.g., barrier height and thickness. Thus,
the characteristic time constant—corresponding to that in a
capacitor-based integrator—can be tweaked irrespective of the
area of the FG, unlike the capacitor-based integrator. As a result,
the circuit has excellent potential for scalability and very low
power consumption.

MATERIALS AND METHODS

Circuit Simulations
The circuit simulations were performed using LTspice IV.
The LIF neuron circuit was designed by adopting 65-
nm complementary metal-oxide-semiconductor (CMOS)
technology that was implemented by using the BSIM 4.6.0
model (a built-in model in LTspice IV; Dunga et al., 2006).
The parameters for all devices in this work can be found in
Table 1. Quantum mechanical elastic tunneling through the
tunnel barrier in a tunnel junction is a key phenomenon in
the FG integrator; we utilized the tunneling equation included
in the BSIM 4.6.0 model (Cao et al., 2000; Lee and Hu, 2001;
Dunga et al., 2006). The tunneling equation is based on the
Fowler-Nordheim tunneling within the framework of the
Wentzel-Kramers-Brillouin approximation. The tunneling
equation in the BSIM 4.6.0 model is semi-empirical with regard
to the use of an auxiliary function that improves the accuracy
of the original Fowler-Nordheim tunneling equation (Ranuárez
et al., 2006).

Noise Implementation
Consecutive random number generation is required for
simulating time-varying noise to be applied to the FGLIF
neuron circuit. White voltage noise, e.g., thermal voltage noise,
was simulated by generating an identical and independently
distributed (i.i.d.) random number whose probability follows a
normal distribution. The probability distribution function (PDF)
is centered at zero with a standard deviation corresponding
to the root-mean-square (RMS) amplitude of voltage noise
(1VRMS). A new random number was repeatedly generated
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TABLE 1 | Size of MOSFETs in use.

Transistor Channel length Channel width Gate oxide

number (nm) (nm) thickness (nm)

FG integrator MT1–MT2 60 120 1.3

M1 60 120 2.5

Amp1 M2–M5 60 240 2.5

Amp2 M6, M8 120 120 2.5

M7, M9 60 120 2.5

Polarity inverter M10 600 120 2.5

M11 60 120 2.5

M12, M13 120 120 2.5

at each time bin (1t) from this PDF. The gate terminals of all
MOSFETs in the neuron circuit were subject to such white noise.

Burst noise and flicker noise as a group of individual
burst noises are nonwhite noise. Burst noise in an n-channel
MOSFET, nMOS for short, is estimated to originate from
repeated localization and delocalization of electrons by traps
at the gate oxide/semiconductor interface (Hung et al., 1990).
Both localization (trapping) and delocalization (detrapping) are
stochastic and renewal processes with regard to the exponentially
decaying PDF with the duration of an empty trap (τ t) and a
filled trap (τdet) (Yonezawa et al., 2013). That is, the interaction
between an electron and a trap is a Poisson process. First we
defined the electron-trapping (detrapping) rate that evaluates the
number of trapping (detrapping) events per unit time as rt =
1/τ t (rdet = 1/τdet). A uniform random number in the range
between 0 and 1 was generated at each time step and compared
with rt · 1t to determine the occurrence of an electron-trapping
event; the electron is trapped at the time step if the random
number is smaller than rt · 1t. The same holds for an electron-
detrapping event except that the random number is compared
with rdet ·1t. The time bin1t was sufficiently small (100µs). For
simplicity, it was assumed that rt = rdet.

The traps were assumed to be neutral if they were empty
and located at the gate oxide/Si interface. Additionally, each trap
was assumed to interact with only one electron. Each filled trap
induces a change in the flat band voltage on average 〈△Vfb〉
by 〈△Vfb〉 = α · tox · N0.6

a /
√
Leff ·Weff, where α, tox, Na, Leff,

and Weff denote an empirical constant, gate oxide thickness,
acceptor density in the channel, and effective channel length
and width, respectively (Fukuda et al., 2007). For all MOSFETs,
α was set to 1.5 × 10−12 (Fukuda et al., 2007) and Na to
1.7 × 1017 cm−3 (default value in the BSIM 4.6.0 model).
1Vfb is generally distributed following an exponential PDF; the
abovementioned 〈△Vfb〉 denotes the expected, i.e., mean, value
given the exponential PDF (Fukuda et al., 2007). In this regard,
each trap was endowed with a particular random 1Vfb value that
was obtained from the exponential distribution. Note that 1Vfb

upon an electron-trapping event is positive given the appearance
of a negative point charge at the gate oxide/Si interface.

Given the stochastic electron-trapping and detrapping
processes, Vfb fluctuates with time following a Poisson process.
The fluctuation in Vfb (1Vfb) consequently alters the drain

current (Id) at a given gate voltage (Vg) with regard to the
consequent change in the threshold voltage Vth (1Vth), and
1Vth = 1Vfb. The transconductance gm is a function of the
difference between Vg and Vth0 + 1Vth, i.e., gm = f {Vg −
(Vth0 + 1Vth)} = f {(Vg − 1Vfb) − Vth0}, where Vth0 denotes
Vth in the absence of a trap. Imposing 1Vfb on Vfb is thus
equivalent to Vg subject to a fluctuation by −1Vfb with a
noise-free Vth, i.e., Vth0. In our circuit simulations, the stochastic
change in Vfb and the resulting change in gm were simulated by
changing Vg by −1Vfb at each time step. The aforementioned
thermal noise was applied to Vg on top of this burst noise.

To simulate flicker noise, a group of n traps was assumed
to simultaneously interact with electrons, and the interaction
of each trap with an electron was independent of the
others. The noise generation algorithm was analogous to
the abovementioned burst noise generation except that the
independent interactions of all n traps with electrons were
simultaneously considered. The occurrence of trapping or
detrapping at each trap at each time step was determined by
comparing rt · 1t or rdet · 1t with an i.i.d. random number. rt
for each trap was randomly chosen as for the abovementioned
single-trap case. This comparison was repeated n times with n
i.i.d. random numbers.

The same method was applied to p-channel MOSFETs, pMOS
for short, regarding the interaction between a trap and a hole
(rather than an electron). The donor density in the channel (Nd)
was 1.7 × 1017 cm−3, which is the default value in the BSIM
4.6.0 model. The main difference from the nMOS case lies in the
charge of a filled trap, which is positive and negative for a pMOS
and nMOS, respectively. Consequently, 1Vfb for a pMOS upon
a hole-trapping event is negative because of the appearance of a
positive point charge at the gate oxide/Si interface, which is the
opposite of the nMOS case. Thus, the equivalent change in Vg is
also the opposite of the nMOS case.

RESULTS

Circuit Configuration
The proposed floating-gate-based leaky integrate-and-fire
(FGLIF) neuron circuit is depicted in Figure 1. The circuit
consists of 12 MOSFETs (M2–M13), a single FG transistor
(M1 + CFG), and a capacitor C1. The FG transistor has separate
terminals MT1 and MT2 (tunnel junctions) for programming
charge in the FG through quantum mechanical tunneling. Such
an FG transistor is often referred to as a synapse transistor
(Diorio et al., 1998; Rahimi et al., 2002). As shown in Figure 1,
the circuit is divided into four subcircuits on functional grounds:
(a) charge integrator, (b) non-inverting common source amplifier
(Amp1), (c) non-inverting common-source amplifier (Amp2)
with positive feedback, and (d) polarity inverter.

To begin, it is worth noting the synapse transistor (Figure 1A)
that plays the key role in the proposed LIF neuron circuit. The
additional terminals on MT1 and MT2 exclusively control the
charge in the FG by means of quantum mechanical tunneling
through the tunnel barriers in MT1 and MT2 given the use
of a relatively thick gate oxide layer (2.5 nm) in FG transistor
M1, which hinders the charge transfer through it. To put
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FIGURE 1 | FGLIF neuron circuit. The circuit consists of four subcircuits: (A) FG integrator, (B) voltage amplifier, (C) voltage amplifier with positive feedback, and (D)

polarity inverter.

it precisely, the FG charge is controlled in a vertical tunnel
junction of electrode-barrier-FG-barrier-electrode, following the
prototypical synapse transistor proposed by Hasler et al. (1994).
In the circuit simulator, the tunnel junctions are implemented
by shorting the source, drain, and body terminals of a MOSFET,
as shown in Figure 1A. Presynaptic currents are incident on the
shorted terminal. All dielectrics in use in the circuit are SiO2

unless otherwise stated.

Integrator Circuit
The integration in the circuit is realized by the FG integrator in
Figure 1A. A charge is injected into the FG upon an incident
presynaptic current on the tunnel junction and temporarily
remains trapped. FG potential VFG evolves in due course,
which consequently changes the channel conductance of M1.
VFG thus parameterizes the integration. The injected charge
simultaneously decays with time amid the presynaptic current
injection, implying leaky integration that lays the foundation of
LIF behavior in the FGLIF neuron. The retention time of an
FG charge is mainly determined by the tunnel barrier thickness
dtun_ox and area, and the capacitance of CFG. The thick gate
oxide of M1 barely intervenes in the charge ejection on the
timescale of our interest. In contrast to an FG transistor as a
nonvolatile memory element, our approach aims at the active use
of charge-ejection dynamics; therefore, a charge retention time of
approximately several seconds is desired. Accordingly, the circuit
design and programming voltage are in need of tweaks. Several
device parameters of the FG integrator in this work are listed
in Table 1. The parameters in Table 2 were used for the circuit
simulations unless otherwise stated.

The synapse transistor has an advantage of employing
multiple input tunnel junctions, enabling spatial integration
(Polsky et al., 2004) that denotes the simultaneous integration of
synaptic currents through different synapses. Figure 2A displays
an FG integrator with n identical input terminals (MT11–MT1n).
For n = 10, a time-varying VFG in response to an incident spike
on a single terminal at 0 s was simulated with the other nine

TABLE 2 | Circuit parameters used for the circuit simulations.

Vdd+ (V) Vdd− (V) Vg1 (V) Vg2 (V) CFG (fF) C1 (fF)

0.5 −0.5 0.7 0.65 6 0.15

terminals being grounded. For comparison, the same simulation
was conducted for n = 1. The input spike amplitude (Vin) and
width (tsp) were 0.5V and 10µs, respectively. Figure 2B relates
the simulation results that uncover a decaying VFG with different
time constants, i.e., relaxation times, which depend on n and
dtun_ox. The relaxation time is defined as the requisite time for
VFG to reach 1/e of VFG at 0 s. The higher the number of input
terminals, the shorter the relaxation time since each terminal
works as a charge leakage path. Notably, a time constant of ca.
2.7 s for n = 1 is significantly reduced to 0.3 s for n = 10, as
seen in Figure 2B. A workaround solution to such a reduction
is to make use of thicker tunnel barriers, which offers a larger
relaxation time (Figure 2B). The use of a thicker tunnel barrier
trades off VFG at 0 s for a larger relaxation time in light of the
difficulty in charge injection upon spike arrival. Thus, one should
carefully choose the tunnel barrier thickness that reconciles the
charge relaxation (ejection) kinetics with the charge injection
kinetics.

Amplifiers
MOSFETs M2–M5 in Figure 1B form a signal amplifier (Amp1)
of two inverting common-source stages with pMOS loads. The
input into Amp1 (Vamp_in) is controlled by a voltage drop across
the channel of M1, which is determined by VFG. That is, VFG

determines the output of Amp1. The output is subsequently
relayed to the next amplifier (Amp2) in Figure 1C. The voltage-
transfer characteristic (VTC) of each stage in Amp1 is controlled
by constant gate voltages (Vg1 and Vg2); they are important in
designing the output spike width and spiking threshold. We
will set aside this issue until Section Adjustment of Circuit
Parameters.
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FIGURE 2 | FG integrator realizing spatial integration. (A) FG integrator circuit. (B) Different relaxation behaviors of VFG—parameterizing integration—of the FG

integrator for different n (1 and 10) and dtun_ox values (1.3 and 1.5 nm). For all cases, the FG integrator was subject to an incident spike (Vin = 0.5V, tsp = 10µs) on a

single tunnel junction at 0 s while the others were grounded.

The signal exiting from Amp1 (Vamp_out) enters Amp2, which
directly elicits a spike at output terminal Vout when Vamp_out

exceeds the transition region in the VTC of Amp2. The transition
region is determined by two identical inverters (M6–M7 andM8–
M9). The midpoint voltage, where Vout = Vamp_out, is taken as a
threshold voltage of Amp2 for spiking. Capacitor C1 realizes a
positive capacitive feedback to the input to Amp2, allowing the
output to remain high until the reset of the FG integrator. The
reset occurs in rapid succession following the onset of spiking at
Vout by negative feedback that is achieved by the polarity inverter
in Figure 1D.

Polarity Inverter
The FG integrator is in need of a reset in order to complete
a single spike. The reset is equivalent to emptying a charge
in the FG by means of an electric field. The application of a
negative voltage to terminal MT2 lets the previously injected
charge vanish. Thus, a subcircuit that inverts Vout and relays it
to the FG integrator is necessary. The subcircuit in Figure 1D, in
conjunction with negative Vdd (Vdd−), flips the polarity of Vout,
resulting in a negative output at Vinv in Figure 1D. To highlight
this polarity inverter, the subcircuit is separately illustrated in
Figure 3A, and the simulated VTC at a Vdd− of−0.5V is plotted
in Figure 3B. Note that Vin in Figure 3A corresponds to Vout in
Figure 1. The VTC evidences a polarity reversal for Vin larger
than the midpoint voltage. A negative Vinv pulse is accordingly
elicited from the polarity inverter in response to a positive
Vin pulse (0.5 V in amplitude and 25µs in width), as seen in
Figure 3B.

Provided that such a negative voltage pulse resets the FG
integrator, VFG consequently falls below zero. This reset process
continues until VFG becomes sufficiently low to let an input to
either amplifier fall below the threshold for amplification.

Circuit Operation
Dc Input Mode
First, we verify the spiking dynamics of the FGLIF neuron
circuit (n = 1) under a constant voltage, which is equivalent

to controlled neurophysiology experiments. Applying a constant
voltage to MT1 continuously elevates VFG (integration) in light
of the positive charge injection into the FG. With that said,
the detailed balance (Riggert et al., 2014) eventually reconciles
the charge injection with the ejection at a particular VFG level;
therefore, the rate of a VFG increase largely declines when it is
close to this level. By contrast, an R-C integrator maintains such
a balance through charging on C and simultaneous discharging
through R. Figure 4B shows the VFG variation in time at
0.26V amid output spiking. VFG rises in the first place, and
thus so does the channel conductance of M1. Vamp_in and the
resulting Vamp_out consequently increase until Vamp_out reaches
the threshold (ca. 0.29V) for high Vout through Amp2, as plotted
in Figure 4C. The high Vout is temporally maintained in view of
the positive feedback through C1. The high Vout simultaneously
triggers the polarity inverter that activates negative feedback to
the FG integrator, resetting the FG integrator. Vamp_out therefore
falls below the threshold, leading to the termination of the high
Vout and negative feedback. This procedure produces a single
spike and is repeated for the next spike within the ISI. The reset
rate determines the spike width: the faster the reset, the narrower
the spike width. This relationship will be addressed in detail in
Section Adjustment of Circuit Parameters. The simulation with
the parameters in Table 1 uncovered an output spike width of
25µs and an output activity aout (spiking frequency) of ∼23Hz
(Figure 4D).

The neuronal gain function is the substrate of encoding
neuronal information (Gerstner and Kistler, 2002; Eliasmith
and Anderson, 2004); different inputs are encoded to represent
distinguishable outputs. In an attempt to verify a gain function
of the FGLIF neuron, the neuronal activity was evaluated at
different constant voltages (Figure 4E). A higher input voltage
significantly speeds up FG charging within the ISI, reducing the
ISI to a large extent. Thus, the activity largely increases with
the input voltage. Figure 4E also uncovers a threshold input
for spiking (60, 100, and 190mV for Vg2 = 0.60, 0.65, and
0.70V, respectively), which is determined by the threshold of
Amp2. Furthermore, there exists a minimum activity of∼0.2Hz,
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FIGURE 3 | Polarity inverter. (A) VTC of the polarity inverter whose circuit is redrawn in the inset. (B) Output Vinv (blue solid line) in response to three input spikes

(red solid line) in close succession (Vin = 0.5 V, tsp = 25µs).

FIGURE 4 | Spiking characteristics in dc input mode. (A) FGLIF neuron circuit (identical to Figure 1). (B) Input dc voltage Vin (upper panel) and resulting VFG
evolution (bottom panel). (C) Responses of Vamp_in and Vamp_out to Vin, which correspond to the input and output of Amp1, respectively. The gray dashed line

denotes the threshold of Amp2. The increase in Vamp_out owing to positive feedback through C1 is indicated. (D) Output spikes (tsp = 25µs, aout = 23Hz). (E)

Neuronal gain function for three different Vg2 values (0.6, 0.65, and 0.7 V).

and it features the type-II excitability of the Hodgkin-Huxley
model (Dayan and Abbott, 2001). The minimum activity is
fairly negligible. Note that the exponential change in activity
upon voltage (Figure 4E) arises from the tunnel current that
exponentially varies upon voltage (Jeong and Hwang, 2005; Soni
et al., 2014).

Spiking Input Mode
A spiking input mode realizes practical circumstances for the
operation of an FGLIF neuron in an SNN. As a whole, the
response of the FGLIF neuron is comparable to the dc input
mode, although there are differences to some extent. The

subcircuit-wise responses to an input spike train (activity: 100Hz;
spike amplitude: 0.42V; spike width: 25µs) are plotted in
Figure 5 in the same order as Figure 4. The main difference
between the two modes lies in the integration: the input
spikes cause stepwise evolution of VFG, unlike the former
case (Figure 5A). However, irrespective of an input type, the
FG integrator successfully features leaky integration. Analogous
to the dc input mode, Vamp_in is amplified through Amp1
(Figure 5B), and a spike is elicited from Vout when Vamp_out

crosses the threshold of Amp2 (Figure 5C). Likewise, the output
activity differs for different spike amplitudes and activities, as
shown in Figure 5D; the larger the amplitude or/and activity, the
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FIGURE 5 | Spiking characteristics in spiking input mode. (A) Input signal profile (Vin = 0.42V, tsp = 25µs) (upper panel) and resulting VFG evolution (bottom

panel). The input activity (ain) was set to 100Hz. (B) Responses of Vamp_in and Vamp_out to the input spikes. (C) Output spikes (tsp= 25µs, aout = 25Hz). (D)

Neuronal gain function for three ain values (100, 150, and 200Hz).

more frequently the neuron spikes. That is, when information
transmission between pre- and postsynaptic neurons is invoked
in an SNN, the postsynaptic FGLIF neuron is able to represent
the presynaptic neuron’s activity, i.e., input activity for the
postsynaptic neuron, by outputting a distinguishable activity.

Adjustment of Circuit Parameters
The proposed circuit provides a means of tweaking neuronal
behavior such as relaxation time, spiking threshold, and spike
width and amplitude. Recalling the change of the relaxation time
upon the tunnel barrier thickness (Section Circuit Simulations), a
thicker tunnel barrier, e.g., 1.5 nm for n = 10, is a priori preferred
in favor of a relaxation timescale that is biologically plausible. The
consequent decrease in maximum VFG can be compensated for
by increasing the spike width. For instance, for dtun_ox = 1.5 nm,
the use of a wider spike (100µs) raises the maximum VFG by
approximately one order of magnitude, per our simulation (not
shown).

In addition, gate voltages Vg1 and Vg2 of the loads in Amp1
alter the VTC. For instance, Figure 6A shows the VTC of Amp1
for three different Vg2 values at the same Vg1 (0.7 V) where
significant changes in the VTC are seen. The same holds for Vg1

as shown in Figure 6B; however, the VTC merely shifts relying
on Vg1. Provided that high Vout (spiking) is triggered only if
Vamp_out reaches the threshold of Amp2 (denoted by a dashed
line in Figure 6A), Vamp_in for spiking substantially varies upon

Vg2. In Figure 6A, a higher Vg2 leads to a higher Vamp_in for
spiking; therefore, spiking requires a higher VFG. A higher VFG

is in need of a longer integration time at a given input voltage
in the dc input mode, or equivalently at a given input activity
(if sufficiently high to evoke a spike) in the spiking input mode.
Thus, output activity aout declines with Vg2 (Figure 6C). On the
same grounds, a higher VFG requires a higher Vin to output the
same activity. As a consequence, the threshold for spiking in
the dc input mode increases with Vg2, as shown in Figure 6D.
Therefore, the neuronal gain function can be easily modified by
tweaking Vg2.

Triggering the positive feedback through C1 elevates Vamp_out

over the threshold of Amp2, as seen in Figures 4C, 5B; the
overshoot (ca. 65mV in this work) is mainly determined by
the capacitance of C1 and Vdd+. The overshoot is independent
of Vg2. Then Vamp_in immediately declines upon the onset of
the negative feedback to the FG integrator through the polarity
inverter. Vamp_in eventually falls below the threshold of Amp2.
The requisite time for this process is equivalent to the spike
width. The Vamp_out-Vamp_in relations in Figure 6A indicate
that the higher Vg2 is given, the larger decrease in Vamp_in

(1Vamp_in) needs to be made by the negative feedback to drag
Vamp_out below the threshold. 1Vamp_in is elucidated in the inset
of Figure 6E, where the VTCs in Figure 6A are zoomed in.
Notably, the requisite 1Vamp_in increases with Vg2, and thus it
takes longer for a higher Vg2 to decrease Vamp_out by 65mV,
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FIGURE 6 | Change in spiking dynamics upon circuit parameters. Change in VTC of Amp1 (A) for three Vg2 values and the same Vg1 (0.7 V), and (B) for three

Vg1 and the same Vg2 (0.65 V). (C) Change in aout upon Vg2 at 0.7 V Vg1 for different input dc voltages (0.2, 0.25, and 0.3 V). (D) Threshold of Vin for spiking with Vg2.

(E) Requisite change in Vamp_in for ceasing spiking (1Vamp_in) with Vg2. The inset provides a graphical view of 1Vamp_in for the VTCs (A) in case of an overshoot of

65mV by the positive feedback. (F) Output spike width with Vg2 for different Vdd− values (−0.45, −0.5, and −0.55V).

i.e., to reset the FG integrator with the same negative Vinv.
As a consequence, a higher Vg2 offers a wider spike, as shown
in Figure 6F. In addition, given that a higher |Vdd−|evokes a
higher |Vinv|, resetting the FG integrator takes less time with
a higher |Vdd−|, rendering the output spike width narrower
(Figure 6F).

Power Consumption
Regarding the principles of neuromorphic engineering, low
power consumption is strongly desired. Toward this end, we
evaluated the power consumption of the FGLIF neuron that
elicits different output activities amid the application of a
constant input voltage. The average power consumption was
acquired for various output activities by evaluating the consumed
energy during the period of a single spike and dividing it by the
period. The results are plotted in Figure 7, in which the average

power consumption is gently proportional to the output activity.
Notably, the proposed FGLIF neuron circuit consumes power less
than 30 pW in the entire activity range. This is mainly ascribed to
the subthreshold operation of Amp1 and Amp2, allowing a low
current flow through the channels in series.

Power consumption of the proposed circuit was compared
to the values achievable in the alternative VLSI neuron designs,
which are listed in Table 3. The FGLIF neuron circuit provides
power consumption that is several orders of magnitude lower
than those of other models, while the number of transistors in
use is comparable. Of course, a precise comparison between the
circuits is still difficult since power consumption also strongly
depends on several other factors such as CMOS technology in
use, neuron spike width, and firing rate. Therefore, the results
in Table 3 provide only an approximate overview and can be
expected to change.
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TABLE 3 | Power consumption comparison between the proposed neuron circuit and other VLSI neuron models.

Neuron model Number of transistors used Power consumption References

Conductance-based 27–30+ 60µW Mahowald and Douglas, 1991

Integrate-and-Fire 18–20 >10µW for output firing rate of 100Hz Indiveri et al., 2006

Hindmarsh-Rose 90 163.4µW Lee et al., 2004

Quadratic Integrate-and-Fire 14 8–40µW Wijekoon and Dudek, 2008

Log-domain low pass filter neuron 16 50–1000 nW Arthur and Boahen, 2007

Log-domain Izhikevich neuron 17+ 2.6µW at rest state Van Schaik et al., 2010

FGLIF 13 <30 pW

Spiking in the Presence of Noise
The operation of the FGLIF neuron circuit appears to be
markedly susceptible to noise because of the subthreshold
operation of the MOSFETs in the circuit. Thus, it is important to
identify the effect of noise on the operation of the neuron circuit
and analyze it in comparison with its biological counterpart.
Types of noise in a MOSFET are (i) thermal noise, (ii) shot noise,
(iii) burst noise, and (iv) flicker noise. The first two are white
noise, whereas the last two are nonwhite noise whose power
spectral density (PSD) relies on frequency (Chong and Sansen,
2013; Hamilton et al., 2014). The thermal voltage noise across
a MOSFET channel is analogous to that across a resistor, and
its PSD is Sv = 4kTRd (Nyquist, 1928). Here Rd denotes the
resistance of the channel. In the FGLIF circuit, the thermal noise
in each CMOS stage (a pair of pMOS and nMOS channels) is
filtered by the capacitance of the following stage. Therefore, the
thermal noise endows each voltage input node with 1VRMS:

△VRMS =
√

kbT/C, (1)

where kb, T, and C denote the Boltzmann constant, temperature,
and equivalent MOS capacitance of the following stage,
respectively. Note that the MOS capacitance relies on the gate
oxide capacitance and gate voltage. Given the subthreshold
operation of theMOSFETs in the neuron circuit,C is smaller than
that of above-threshold-workingMOSFETs, and thus the thermal
noise effect is perhaps prominent with regard to Equation (1).
For simplicity, C was evaluated at the average Vg values that
are applied to the input of each CMOS stage during the circuit’s
operation. 1VRMS was evaluated at each node that precedes a
given capacitance value, and it varied from 0.8 to 5.4mV for
different nodes. This thermal noise was taken into account in the
following circuit simulations, as detailed in SectionMaterials and
Methods. Additionally, it should be mentioned that Equation (1)
is in fact not limited to thermal noise but is rather universal for
the entire white noise of the system in the presence of a filtering
capacitor (Sarpeshkar et al., 1993). As a result, no extra terms are
needed to evaluate the shot noise in the circuit.

Burst noise (also known as random telegraph noise) appears
to markedly affect the operation of the neuron circuit, given
the fluctuation of Vfb, i.e., 1Vfb, upon the interaction of
a charge trap with an electron. The contribution of each
trap interacting with an electron to 〈△Vfb〉 differs for the
MOSFETs in the circuit owing to the different channel areas

FIGURE 7 | Average power consumption of FGLIF neuron with respect

to aout.

and gate oxide thicknesses (see Section Materials and Methods).
In the following simulations, 〈△Vfb〉 for each MOSFET was
evaluated, and the fluctuation of Vg (equivalent to 1Vfb that was
randomly generated from an exponential distribution function
with 〈△Vfb〉) was applied to eachMOSFET following the Poisson
process that is elucidated in Section Materials and Methods. The
same held for M1 (FG-MOSFET) except that 1Vfb was imposed
on VFG rather than Vg. The electron-trapping rate rt was also an
i.i.d. random variable (see Section Materials and Methods).

The topmost panel in Figure 8A shows a typical fluctuation in
Vg for nMOS (channel area: 120 × 60 nm2; gate oxide thickness:
2.5 nm) attributed to a single trap at the gate oxide/Si interface.
1Vfb was 1.0mV. 1Vg is thus toggled between 0 and −1.0mV
upon the interaction between the trap and an electron; Vg is
−1.0mV when the trap is filled with an electron, and Vg is 0
otherwise. The corresponding PSD is plotted in Figure 8B, in
which the PSD dispersion in the double logarithmic plot follows
a power low with an exponent of−2 (Lorentzian PSD). The same
holds for pMOSs with the same parameters, except that 1Vg is
toggled between 0 and 1.0mV, and 1Vg is 1.0mV when the trap
is filled with a hole.

The number of traps underneath the gate oxide is not
necessarily one. Interfacial trap density Dit evaluates the average
number of traps per unit area in the n-channel area; the larger
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FIGURE 8 | Burst noise in MOSFET. (A) Gate voltage fluctuations in an nMOS caused by electron trapping and detrapping events through interfacial charge traps.

Average trapping and detrapping times for single-trap case (upper graph) were chosen to be 10ms each, while in other cases they were taken from exponential

distribution with a mean value of 10ms. 1Vfb owing to a single trap was also taken from exponential distribution with a mean value of 1.0mV. (B) Noise PSD,

evaluated for the temporal patterns in (A).

Dit, the more traps are likely present at the interface. The
number of traps (7, 14, and 72 traps) markedly alters the
fluctuation in Vg, as shown in Figure 8A. An i.i.d. random
1Vfb and rt were assigned to each trap; both were drawn
from exponential distribution functions with 〈△Vfb〉 differing for
differentMOSFETs and a 〈τt〉 of 10ms, respectively. Additionally,
each trap was assumed to interact with a single carrier. The
method of noise generation is detailed in Materials and Methods.
As shown, the Vg deviation from 0 increases with the number
of traps because 1Vfb proportionally increases with the number
of filled traps. Notably, the PSD becomes close to flicker noise
with the number of traps; for instance, 72 traps (orange PSD in
Figure 8B) lead to a PSD approximately following an exponent
of -1 in the double logarithmic plot. This is a consequence of the
presence of multiple Lorentzian PSD functions (72 in total), i.e.,
superposition of these many PSD functions results in a 1/f PSD
function (Campbell et al., 2009). Burst noise is thus a subset of
flicker noise with regard to their origins. Long-channelMOSFETs
often exhibit flicker noise attributed to the probable large number
of traps at a given Dit (Uren et al., 1985). By contrast, deep-
submicron MOSFETs likely include a few traps (or even a single
trap); therefore, burst noise is predominantly observed (Hung
et al., 1990).

Eventually, the FGLIF neuron circuit was simulated taking
into account the aforementioned types of noise. The circuit
simulation was done for both dc input mode (Vin: 0.26V) and
spike input mode (ain: 100Hz, Vin: 0.42V) for direct comparison
with the behaviors without noise shown in Figures 4, 5. Figure 9
displays the simulation results, including output spikes in time
and ISI distribution. Note that Dit for all MOSFETs was set to
1011 cm−2 in the simulations. The ISI (τ ) distribution apparently

arises from the present noise as compared with the perfect
periodicity of spikes (single ISI) for the noise-free neuron circuit.
The ISI (τ ) histogram for both input modes can be fitted well to
a Gamma distribution function given by

p (τ ) = τ k−1e−τ/θ ·
(

θkŴ
(

k
)

)−1
, (2)

where k and θ are fitting parameters that determine the shape
and scale of the distribution, respectively (Maimon and Assad,
2009). As shown in Figure 8, the noise characteristic markedly
varies upon the number of traps; therefore, the ISI distribution
may change accordingly. To identify this effect, additional ISI
histograms were obtained with differentDit values (10

11, 2×1011,
and 4× 1011 cm−2), and the results are shown in Figure 10. The
higher number of traps at the interface, the more widely the ISI
is distributed. The decrease in the shape parameter k denotes an
increase in spiking irregularity (Maimon and Assad, 2009), which
is captured by the ISI widening. Note that in these simulations
the contribution of each noise source to the overall noise effect
cannot be distinguished mostly due to the physical origin of
flicker and burst noise as mentioned earlier. Nevertheless, the
power spectral density arising from interfacial charge traps
becomes close to flicker noise with the number of charge traps
(see Figure 8B), and thus the change in the ISI distribution with
trap density in Figure 10 most likely reflects the distributional
change upon the transition of a noise mechanism from burst-like
to flicker-like noise. This transition widens a range of trapping
and detrapping probabilities that are proportional to trapping
and deptrapping rates as detailed in Section Materials and
Methods. Consequently, a wide range of such rates is intertwined
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FIGURE 9 | Neuron firing in the presence of noise. (A) Neuron firing when stimulated by a dc input voltage of 0.26 V. (B) ISI histogram for dc input and Gamma

distribution function fitted to the ISI histogram. (C) Neuron firing when stimulated by a periodic spike train with a firing rate of 100Hz and amplitude of 0.42 V. (D) ISI

histogram for spiking input condition and Gamma distribution function fitted to the histogram.

in the overall noise dynamics. Therefore, spiking regularity—
parameterized by k—increases with trap density.

To identify the relative contributions of thermal and burst
noise to the overall ISI distribution, further simulations were
conducted by controlling the noise sources. Three cases were
considered: thermal noise only, burst noise (subset of flicker
noise) only, and simultaneous thermal and burst noise. Each case
was examined from 10 independent simulations. The resulting
ISI distributions (fitted to Gamma distribution functions)
are shown in Figures 11A–C. As such, the thermal noise is
determined by capacitance (see Equation 1) so that it is almost
invariant through the trials. This is featured by the negligible
trial-to-trial variation in the ISI distribution (Figure 11A).
Notably, the average ISI shifts toward a lower value due to the
thermal noise as seen in comparison with the noise-free case (ca.
43.5ms) indicated by a dashed vertical line. By contrast, the burst
noise markedly alters the ISI distribution upon trial (Figure 11B)
because 1Vfb and rt values were sampled at random for each
trial from exponential distributions (Yonezawa et al., 2013). The
center of the distribution for each trial is scattered around the
ISI of the noise-free case. In the present of simultaneous thermal
and burst noise, the effects are superimposed (Figure 11C); the
scattered positions of distributional centers relate to the burst
noise, and their shift below 43.5ms relates to the thermal noise.
The noise-sensitive ISI distribution ismostly dictated by the noise
in Amp1 (Figure 11B) whose input (Vamp_in) directly evokes
a spike. The thermal noise endows Vamp_in with a fluctuation
around the noise-free Vamp_in so that the output from the input

stage (M2–M3), i.e., VM3 in the inset of Figure 11D, fluctuates
around the noise-free VTC (gray zone in Figure 11D). This
fluctuation, in turn, affects the input into the following stage
(M4–M5) in conjunction with its own noise. A typical reduction
in ISI due to thermal noise is shown in Figure 11G. The output
overshoot accelerates spiking (orange line) that precedes the
noise-free spiking (gray line) by ∼10ms. Therefore, the thermal
noise generally shorten the ISI.

The effect of burst noise on Amp1 differs for pMOS and
nMOS. For pMOS, the trapped holes at the gate oxide/Si interface
leads to a negative shift in Vfb, i.e., 1Vfb < 0; therefore, when
the burst noise in the pMOS is solely present in the input stage,
the VTC shifts as a whole as shown in Figure 11E. Such a shift
causes a reduction in Vamp_in to output the same VM3 as for the
noise-free case so that the ISI is reduced—similar to the thermal
noise effect. An example is shown in Figure 11H. By contrast,
for nMOS, the electrons trapped at the channel interface elevate
Vfb, i.e., 1Vfb > 0, indicating a right shift in the VTC as a whole
(Figure 11F). Consequently, Amp1 needs higher Vamp_in than
the noise-free case to output the same VM3 as for the noise-free
case, implying larger ISI. An example of this case is plotted in
Figure 11I.

DISCUSSION

Recall that unlike capacitor-based integrators, the FG integrator
in the proposed FGLIF neuron has the characteristic relaxation
time defined by quantum mechanical tunneling dynamics
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FIGURE 10 | ISI distribution with interfacial trap density. (A–C) Neuron output ISI distributions for three different Dit values when it is subjected to a dc input of

0.26 V. (D) Gamma distribution parameters used for fitting histograms in (A–C). The gray and red symbols denote k and Θ, respectively.

through the tunnel barrier. The different basis of charge
integration largely mitigates a severe need for high capacitance
in favor of a biologically plausible timescale. In order to highlight
the scalability of the proposed FGLIF neuron circuit (particularly
the FG integrator), the FG integrator was compared with a
switched-capacitor integrator comprising n MOSFET switches
(MR1–MRn) and one capacitor Cmem. The switched-capacitor
integrator is illustrated in Figure 12A. Note that the MOSFETs
have the gate and drain shorted in order to realize “fast charging
and slow discharging.” They are switched on upon the application
of a voltage pulse to the shorted terminal.

All MOSFETs in this integrator were of the same size
(channel length/width: 60/120 nm) as the tunnel junctions and
FG transistor M1 in the FG integrator. The circuit simulation
results indicate a need for remarkably high capacitance—more
than three orders of magnitude higher than that of CFG (6 fF)—
to achieve a relaxation time of a few seconds for the FG integrator
(compare Figure 12B with Figure 2B). For a fair comparison,
the input voltage pulse was identical to that of the FG integrator
shown in Figure 2 (amplitude: 0.5 V, width: 10µs). Furthermore,
the use of multiple terminals (n = 10) significantly reduces
the relaxation time by approximately one order of magnitude
in light of a decrease in the equivalent resistance owing to the
MOSFETs being in parallel (Figure 12B). The same holds for the
FG integrator as addressed in Section Circuit Simulations, and a
relaxation time of a few seconds was recovered by introducing
a slightly thicker tunnel barrier. By contrast, the switched-
capacitor integrator requires a higher capacitance to avoid such
a large decrease in the relaxation time, e.g., 90 pF to endow
the integrator with a relaxation time of ∼2.5 s, as shown in

Figure 12B. However, the high capacitance value retards not only
the discharging (relaxation) but also the charging; therefore, the
Vmem maximum (ca. 24.8mV) was not reached during the period
of a single spike.

Such high capacitance in this simple integrator is hardly
affordable in integrated circuits, delimiting the scalability. It
is revealed that realizing a capacitance of a few pF requires
a few hundred µm2, which cannot fit in with the framework
for scaling down. As addressed in Section Circuit Simulations,
CFG of 6 fF in capacitance was placed on M1 (channel
length/width: 60/120 nm), and thus the FG integrator scheme
offers great scalability, which is a definite advantage over
switched-capacitor integrators. Of course, several strategies for
reducing the capacitor area are likely available, e.g., introducing
high-k dielectrics, or HfO2 and/or three-dimensional capacitors
(Kim et al., 2010). However, such attempts may cause additional
complexity in chip fabrication and a consequent fabrication cost
that may outweigh the benefits. Alternatively, maximizing the
resistance of the switch in a switched-capacitor integrator equally
enables a long relaxation time, as demonstrated by Noack et al.
(2015). Another strategy based on capacitor-based integration by
Qiao et al. (2015) accomplished a time constant of a few tens of
milliseconds using a 1 pF capacitor. Nevertheless, our FG-based
strategy may be a potential alternative to the capacitor-based
integration for further scaling down neurons.

One of the main concerns for flash memories is reliability,
particularly in the endurance of the FG transistor. Poor
endurance—although sufficient for flash memory applications
with a write endurance of 104–105 times—is mainly ascribed
to a high write voltage in exchange for better data retention
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FIGURE 11 | ISI variation upon noise-type. Output ISI distributions in the presence of (A) only thermal noise, (B) only burst noise, and (C) simultaneous thermal

and burst noise at a constant dc input of 0.26 V. The dashed vertical lines at 43.5ms indicate the ISI of noise-free spiking. The VTC of the input stage (M2–M3) of

Amp1—shown in the inset—in the presence of (D) only thermal noise and only burst noise in (E) pMOS (M2) and (F) nMOS (M3). The shaded regions denote VTC

variation ranges. The evolution of output of Amp1 (Vamp_out) for cases of (D–F) is exemplified in (G–I), respectively.

(Cappelletti and Modelli, 1999). Given the circumstances for the
operation of the FG integrator (receiving a train and/or burst of
a number of spikes), the poor endurance is perhaps a significant
obstacle. Low neuronal activity (as low as biological neurons) is
preferred partly on these grounds. Fortunately, unlike with flash
memory, we deliberately allow data (charge on the FG) loss for
a relaxation time of a few seconds, so that the requisite write
and erase voltages are much lower, i.e., ±0.5V in the proposed
circuit. This low voltage is mostly applied to the tunnel junction;
the voltage across CFG is merely 47mV (maximum VFG shown
in Figure 4B) at most, and the gate oxide is subject to even
less voltage with regard to the additional voltage drop in the Si
channel underneath. The simulation results show ∼90 electrons
that tunnel through the gate oxide in a single spiking period, i.e.,
one output spike (amplitude: 0.5 V, width: 25µs) and one ISI,
which is equivalent to a charge density of∼2×10−7 C/cm2. Thus,
such low voltage likely alleviates the burden on the FG, rendering
the FG fairly endurable (Wann and Hu, 1995).

Significant improvement in the reliability of flash memory
occurred by replacing the standard silicon FG with an insulating
SiNx one, forming so-called silicon-oxide-nitride-oxide-silicon
(SONOS; Chan et al., 1987). The insulating SiNx tolerates
shorting paths embedded in the tunnel barriers to a greater
degree than the standard SOSOS (silicon instead of SiNx in
SONOS; Chan et al., 1987). However, provided that the synapse
transistor stretches the FG to the separate tunnel junctions,
the conductance of the FG is of significant concern. To put it
precisely, the highly resistive SiNx FG barely alters VFG in M1
upon a charge transfer through the separate tunnel junctions. The
standard SOSOS is therefore suitable for the FG integrator. The
aforementioned low write and erase voltages that suffice for the
FG integrator likely support the reliability of SOSOS.

As such, the number of the interfacial charge traps is most
likely proportional to the channel size, and the effect of a single
trap on 1Vfb is predicted to become more significant as the
channel size shrinks (Fukuda et al., 2007; Miki et al., 2012).
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FIGURE 12 | Comparison with switched-capacitor integrator. (A) Switched-capacitor integrator circuit with n input MOSFET terminals (MR1–MRn). (B)

Relaxation of Vmem—parameterizing integration—with time for different n’s (1 and 10) and capacitance values of Cmem (9 and 90 pF). An input spike (Vin = 0.5V,

tisp = 10µs) was applied to a single tunnel junction at 0 s and the others were grounded.

The continuum-based model in this study may not precisely
elucidate the effect of interfacial traps on 1Vfb in a state-of-
the-art nanoscale MOSFET. However, discrete models that are
more suitable for dealing with a few traps also indicate the same
tendency as for the continuum model (Fukuda et al., 2007; Miki
et al., 2012). Experimental studies have pointed to burst noise as a
dominant type of noise in nanoscale MOSFETs (Tega et al., 2009;
Miki et al., 2012).

Noise in integrated circuits is inevitable as such, and the
noise induces irregular spiking patterns (Figures 9, 10). The ISI
histograms are nicely fitted to Gamma distribution functions
with different fitting parameters akin to biological neurons, e.g.,
parietal neurons (Bair et al., 1994; Maimon and Assad, 2009). The
integrated FGLIF neuron circuit in practice may differ in noise
characteristics from our theoretical one. Even among integrated
FGLIF neuron circuits, the difference in noise is most likely
evident because the variables that relate to noise, e.g., Dit, 1Vfb,
and rt, are markedly dependent on the details of fabrication
methods. It is obvious that traps are incorporated in a MOSFET
to some extent, and they endow the MOSFET with noise. A
fundamental question arises as to whether such irregular spiking
helps neural processing or is an obstacle to neural processing.
Within the framework of stochastic electronics (Chen et al.,
2010; Hamilton et al., 2014), such irregular spiking is necessary,
and imperfections such as charge traps are required for the
disorder. For instance, it has turned out that the noise given
to a VLSI Hodgkin-Huxley neuron enhances signal modulation
(Chen et al., 2010). Nevertheless, answering this fundamental
question is beyond the scope of this paper, so we leave the
question open.

CONCLUSION

We proposed an FGLIF neuron circuit, which likely achieves
input-dependent output spiking activity within a biologically
plausible range with a capacitor of merely 6 fF. Such low
capacitance offers a great opportunity for scaling down the FGLIF

neuron circuit while maintaining the activity scale. In addition,
given the subthreshold operation ofmostMOSFETs in the circuit,
spiking consumes less than 30 pW of power irrespective of
spiking activity, rendering the FGLIF neuron very suitable for
large-scale SNNs. In addition, the FGLIF neuron circuit is fully
compatible with standard CMOS technology, which is of great
benefit. Unavoidable noise in the circuit leads to distributional
features of ISIs. The ISI distribution was fitted to a Gamma
distribution function that has often described the ISI distribution
of neocortical neurons.
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