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Recent studies have demonstrated alterations in the topological organization of structural

brain networks in diabetes mellitus (DM). However, the DM-related changes in the

topological properties in functional brain networks are unexplored so far. We therefore

used fluoro-D-glucose positron emission tomography (FDG-PET) data to construct

functional brain networks of 73 DM patients and 91 sex- and age-matched normal

controls (NCs), followed by a graph theoretical analysis. We found that both DM patients

and NCs had a small-world topology in functional brain network. In comparison to

the NC group, the DM group was found to have significantly lower small-world index,

lower normalized clustering coefficients and higher normalized characteristic path length.

Moreover, for diabetic patients, the nodal centrality was significantly reduced in the right

rectus, the right cuneus, the left middle occipital gyrus, and the left postcentral gyrus, and

it was significantly increased in the orbitofrontal region of the left middle frontal gyrus, the

left olfactory region, and the right paracentral lobule. Our results demonstrated that the

diabetic brain was associated with disrupted topological organization in the functional

PET network, thus providing functional evidence for the abnormalities of brain networks

in DM.
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INTRODUCTION

Diabetes mellitus (DM) has emerged as an important risk factor for cognitive dysfunction and
dementia. The observed impairments in cognitive function are hypothesized to be subserved by
alterations structure and function in diabetic brain (Mansur et al., 2014). Evidence from previous
neuroimaging studies has shown DM-related brain abnormalities, involving global and regional
atrophy in frontal, temporal and posterior cortex (Den Heijer et al., 2003; van Elderen et al.,
2010; Frøkjaer et al., 2013; Hughes et al., 2013), decreased neuronal activities predominantly in
prefrontal and middle temporal gyrus correlated with cognitive dysfunctions (Xia W. et al., 2013;
García-Casares et al., 2014a,b), as well as alterations in structural and functional connectivity
between different regions (Musen et al., 2012; van Duinkerken et al., 2012; Antenor-Dorsey
et al., 2013; Reijmer et al., 2013a; Chen et al., 2015). Recently, a growing number of studies
also have provided significant insights into the abnormalities in the functional integration of
the entire brain networks (Lyoo et al., 2013; Reijmer et al., 2013b; van Duinkerken et al.,
2016). For example, by using cortical thickness (Lyoo et al., 2013) and gray matter volume
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(van Duinkerken et al., 2016) from magnetic resonance imaging
(MRI), studies found that structural brain network was disrupted
in type 1 diabetes mellitus (T1DM) patients. Moreover, a study
performed diffusion tensor imaging (DTI) and also found
damage to the brain white matter network in type 2 diabetes
mellitus (T2DM) patients, which was related to slowing of
information processing speed (Reijmer et al., 2013b). Network-
based measures can be more sensitive to alterations that are not
apparent in specific regions because they consider each region’s
integration into the global unit rather than as an independent
entity (Brown et al., 2011). Therefore, studies of the brain
network using neuroimaging technology may provide a new
approach for the diagnosis and treatment of this disease.

As a conventional functional imaging technology, fluoro-D-
glucose positron emission tomography (FDG-PET) can reflect
brain activity by detecting changes in the brain glucose
metabolism (Sokoloff, 1981; Jueptner and Weiller, 1995), which
is different from other types of imaging modality. With respect
to DM, several studies have found reduced cerebral glucose
metabolism primarily in frontal an temporal regions (Baker
et al., 2011; García-Casares et al., 2014a,b; Roberts et al., 2014).
Meanwhile, previous studies have suggested that inter-subject
correlations of metabolic rates are capable of reflecting functional
relationships between regions (Horwitz et al., 1984, 1987; Di
et al., 2012; Morbelli et al., 2013). And on this basis, recent
studies have constructed functional networks of the human brain
from FDG-PET data and further characterized by using graph
theoretical approaches (Sanabria-Diaz et al., 2013; Seo et al., 2013;
Kim et al., 2015; Yao et al., 2015). Through these approaches,
metabolic networks of human brain have been consistently found
to have a “small-world” topology, characterized by a high cluster
coefficient like a regular network and small path length like a
random network (Watts et al., 1998).

Given the existence of metabolic abnormalities in specific
brain regions (Baker et al., 2011; Roberts et al., 2014) as well
as disruption of structural brain networks in DM patients, it
is plausible that the abnormalities of whole brain functional
network in DM may be observed by using FDG-PET technique.
However, to our knowledge, the DM-related changes in the
topological properties in functional network based on FDG-PET
data are unexplored so far. Thus, we used graph theoretical
analysis and FDG-PET technique to investigate the hypothesis
that the topological properties of brain functional network in
DM is disrupted. First, we assessed the small-world topology of
each network. Second, we investigated the topological parameters
of the functional networks (small-world index, normalized
clustering coefficient, and normalized characteristic path length)
at different connection densities. Finally, we observed the hub
regions and evaluated the statistical differences in nodal centrality
between the DM and NC groups.

DATA AND METHODS

Subjects
This was a retrospective analysis and all subjects were selected
from a data pool in the PET Center of the First Affiliated
Hospital of Dalian Medical University. A total of 73 diabetic

patients (54 males, 19 females) with a mean age of 57 ±

10 years, and 91 normal individuals (66 males, 25 females)
with a mean age of 56 ± 8 years, were selected into this
study (Table 1). The subjects met the following criteria: (1)
All diabetic patients met the diagnosis proposed by the World
Health Organization 1999 (Alberti and Zimmet, 1998) and these
patients had peripheral blood glucose levels of >7.0mmol/L; (2)
Most of the normal individuals in the normal control group
were individuals recruited during routine health checks. They
had no history of diabetes, and their peripheral blood glucose
levels were 4.1–5.5mmol/L; (3) All subjects had no metabolic
diseases such as hyperthyroidism or hypothyroidism; (4) All
subjects had no prior stroke, transient ischemic attack, epilepsy,
headache, brain trauma, mental illness, or carbon monoxide
poisoning; (5) All subjects had no severe heart, liver, spleen,
pancreas, or kidney diseases; (6) All subjects had no history of
heavy drinking; (7) All subjects had no estrogen replacement
therapy for postmenopausal women; (8) All subjects had no prior
chemotherapy or radiotherapy in the head or neck. Additionally,
this study was approved by the Institutional Review Board of the
First Affiliated Hospital of Dalian Medical University.

Acquisition of PET Data
The Eclipse RD cyclotron (Siemens AG, Germany) and FDG
synthesis device (Siemens ExploraFDG4, Germany) were used
to synthesize 18F-FDG, and the resulting radiochemical purity
was >95%. All of the subjects were asked to fast at least 6 h
before the exam, rested for 15min in a dark, quiet environment,
and received intravenous FDG 0.15 mCi/kg via the cubital vein.
Afterward, the subjects continued to rest for 40–50min and then
underwent head PET scans for 3min. The PET scanner used was
a Siemens Biograph 64 HD PET/CT (Siemens AG, Germany),
and the spatial resolution of the scanner is 4.2mm full width at
half maximum (FWHM) in axial, sagittal or coronal plane. The
PET scan used the 3-dimensional (3D) mode.

Data Preprocessing
Image format conversion, spatial normalization, and smoothing
were performed during data processing using the MATLAB
platform-based SPM8 software. Spatial normalization was
performed using the standard template of the Montreal
Neurological Institute, and smoothing was performed using
an isotropic Gaussian kernel with an 8mm full width at half
maximum to increase the signal-to-noise ratio (Liu et al., 2014).

TABLE 1 | Demographic and clinical data of the subjects.

DM group

(n = 73)

NC group

(n = 91)

P

Gender (male) 54 66 0.84

Age (years) 57± 10 56± 8 0.25

Fasting blood

glucose (mmol/L)

8.4± 0.9 5.1± 0.4 < 0.001

Duration of illness

(years)

8.0± 6.6 – –
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TABLE 2 | Anatomical parcellation defined by automated anatomical

labeling atlas and abbreviations for the regions of interest (ROIs).

Abbreviations Regions

PreCG Precental gyrus

SFGdor Superior frontal gyrus, dorsolateral

ORBsup Superior frontal gyrus, orbital part

MFG Middle frontal gyrus

ORBmid Middle frontal gyrus, orbital part

IFGoperc Inferior frontal gyrus, opercular part

IFGtriang Inferior frontal gyrus, triangular part

ORBinf Inferior frontal gyrus, orbital part

ROL Rolandic operculum

SMA Supplementary motor area

OLF Olfactory cortex

SFGmed Superior frontal gyrus, medial

ORBsupmed Superior frontal gyrus, medial orbital

REC Gyrus rectus

INS Insula

ACG Anterior cingulate and paracingulate gyri

DCG Median cingulate and paracingulate gyri

PCG Posterior cingulate gyrus

HIP Hippocampus

PHG Parahippocampal gyrus

AMYG Amygdala

CAL Calcarine fissure and surrounding cortex

CUN Cuneus

LING Lingual gyrus

SOG Superior occipital gyrus

MOG Middle occipital gyrus

IOG Inferior occipital gyrus

FFG Fusiform gyrus

PoCG Postcentral gyrus

SPG Superior parietal gyrus

IPL Inferior parietal, but supramarginal and angular gyri

SMG Supramarginal gyrus

ANG Angular gyrus

PCUN Precuneus

PCL Paracentral lobule

CAU Caudate nucleus

PUT Lenticular nucleus, putamen

PAL Lenticular nucleus, pallidum

THA Thalamus

HES Heschl gyrus

STG Superior temporal gyrus

TPOsup Temporal pole: superior temporal gyrus

MTG Middle temporal gyrus

TPOmid Temporal pole: middle temporal gyrus

ITG Inferior temporal gyrus

The listed names are for one hemisphere.

Construction of Brain Functional PET
Network
In graph theory analysis, the network consists of many nodes
and edges that connect the nodes (Rubinov and Sporns, 2010). In

this study, we employed anatomically automatic labeled (AAL)
to divide the cortex into 90 regions of interest (ROIs; 45 in
each hemisphere except cerebellum) represented nodes, which
has been broadly used in many structural and functional brain
network studies (Yan et al., 2011; Sanabria-Diaz et al., 2013;Wang
et al., 2014). The names of the ROIs and their abbreviations are
listed inTable 2. Themean glucosemetabolism value of each ROI
was used to construct functional network. Before performing a
correlation analysis, we normalized themean glucosemetabolism
value of each ROI (i.e., we divided the mean glucose metabolism
value of each ROI by that of the whole brain), and we then used a
linear regression model to control for age, gender, and the effect
of blood glucose on the local glucose metabolism. The resulting
regression residual was used to substitute the local glucose
metabolism value for a Pearson correlation analysis to construct
the inter-regional correlation matrix for glucose metabolism. It
is also noteworthy that the correlation was calculated across
subjects in each group and one network was obtained for each
group. This method has been employed in other functional brain
network studies (Sanabria-Diaz et al., 2013; Liu et al., 2014).

Graph Theory Analysis of Brain Functional
PET Network
We converted the inter-regional correlation coefficient matrix
into a binary matrix: in the 90 × 90 correlation coefficient
matrix, if the absolute value of the correlation coefficient was
above a certain threshold, there was a connection (assigned “1”);
otherwise, there was no connection (assigned “0”; Liu et al., 2014;
Kim et al., 2015). Currently, researchers have no consensus about
how to choose a fixed threshold, we therefore threshold each
correlation matrix over a wide range of density (10–40% with
a 1% increment), then estimated the properties of the resulting
graphs at each threshold value. In present study, the lowest
density where the largest component size was 90 was density
10%. The range of density bigger than 10% also ensured that
every nodal pairs in both graphs had a connecting path and
minimizing the number of false-positive paths (Liu et al., 2014).
It also can characterize the network with continuous weighting
between nodes, but this will lead to complicated descriptions of
statistical features in graph theoretical analysis (He et al., 2007).
Therefore, this study used binarized networks to a relatively
simpler statistical features descriptions.

Cluster Coefficient
The parameter cluster coefficient C reflects the extent of network
clustering (Watts et al., 1998; Sporns et al., 2004). The value of
the cluster coefficient Ci of node i was the ratio of the number
of actual connecting edges ei between the node and neighboring
nodes to themaximumpossible number of connecting edges. The
mean cluster coefficient of all the nodes in the network was the
cluster coefficient C of the network, which was calculated using
the following formula:

C =
1

N

∑

Ci, Ci =
2ei

ki
(

ki−1
) (1)

Note: ki is the number of neighboring nodes of node i.
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Characteristic Path Length
The shortest path length depicted the optimal path for the
information in one node to reach another node in the network.
Information was transmitted faster via the shortest path, thus
saving system resources (Latora and Marchiori, 2001). The path
between nodes i and j with the smallest number of edges was the
shortest path between two nodes, and the number of edges in
the path was the shortest path length Lij between nodes i and
j. The characteristic path length of the network described the
mean shortest path length between any two nodes of the network,
which was calculated using the following formula:

L =
1

N(N− 1)

∑

Lij (2)

“Small-World” Network
Studies have shown that regular networks have a larger cluster
coefficient and a longer characteristic path length, while random
networks have a smaller cluster coefficient and a shorter
characteristic path length (Watts et al., 1998). In-between
networks have a relatively large cluster coefficient similar to that
of regular networks, and a relatively short characteristic path
length similar to that of random networks. In other words, these
in-between networks combine the benefits of regular networks
and random networks, thus ensuring the efficiency of local and
global information transmission. Therefore, these networks with
a large cluster coefficient and a short characteristic path length are
known as “small-world” networks. To quantify the “small-world”
characteristics of these networks, a random network was used
as a reference. If the network being studied has a larger cluster
coefficient and an approximate shortest path length relative to
the random network (normalized clustering coefficient γ =
Creal

Crandom
≫1, normalized characteristic path length λ =

Lreal
Lrandom

∼ 1

where the subscript “random” represents a random network and
“real” represents a real network), then the network is a “small-
world” network. Some researchers have proposed unifying the
two metrics into one (σ), and the small-world index σ = γ/λ is
used to measure the “small-world” characteristics of the network
(Achard, 2006; Humphries et al., 2006). The random network
and the corresponding network have the same number of nodes,
average degree and degree distribution (Sanabria-Diaz et al.,
2010).

Betweenness Centrality
The betweenness centrality defines the centrality of nodes from
the perspective of information flow (Freeman, 1977). For any
node i in the network, its betweenness centrality B(i) was
calculated with the following formula:

B (i) =

∑

njk (i)

njk
(3)

where njk is the number of all shortest paths from node j to node
k, and njk(i) is the number of shortest paths that go through node
i. We used bi = B(i)/B to normalize B(i), where B represents
the mean betweenness centrality of all the nodes in the network.
When normalized betweenness (bi) is >1.5, node i represents the
hub region in the network (Melie-García et al., 2013).

In this study, both the global and nodal parameters were
computed by using software packages of GRETNA (Wang et al.,
2015).

Statistical Analysis
1. Statistics of the differences in gender, age and blood glucose

between the two groups: A two-sample T-test was performed
to analyze the difference in age and blood glucose between the
two groups, and a chi-square test was performed to analyze the
difference in gender between the two groups. No significant
difference in gender and age between the two groups was
detected (Table 1).

2. Statistics of the difference between the network parameters:
We used a non-parametric test to determine whether the
difference in the brain network parameters was significant
between the diabetic group and the normal group. (1) At
different density thresholds, we calculated the normalized
cluster coefficient γ, the normalized characteristic path length
λ, the small-world index σ, and the betweenness centrality
B(i) of each group; (2) assuming that the difference in
each network parameter between the two groups was due
to randomization, we randomly assigned the two groups of
subjects again to form two new groups, and we calculated
the correlation coefficient matrix, re-constructed two brain
networks, and calculated each parameter for the two networks
using different density thresholds; (3) we repeated the
randomization, constructed new networks, and calculated the
network parameters 1000 times to obtain the distribution of
the inter-group differences in the network parameters under
different thresholds; (4) we used the 95 percentile points of
the distribution as the critical values for one-tailed to analyze
whether the null hypothesis with a probability of type I error of
0.05. If the null hypothesis was rejected, then the inter-group
difference in the brain network parameters was significant (He
et al., 2008).

RESULTS

Changed Cerebral Glucose Metabolism in
DM Patients
After controlling for the effect of age, gender, and glucose
level, the local brain glucose metabolism rate of the DM group
was significantly lower than that of the NC group (Table 3,
Figure 1), and there were no significant higher metabolism
regions in DM group compared with NC group (P < 0.001,
uncorrected). Overall, the DM group presented reduced cerebral
glucose metabolism in several frontal and temporal brain areas,
which was coherent with the previous studies (Baker et al., 2011;
García-Casares et al., 2014a,b; Roberts et al., 2014).

Small-World Topology of the Functional
Networks
The brain functional networks of both the DM group and the NC
group had the characteristics of “small-world” networks (σ > 1).
For example, at all of the density thresholds, both networks had
a large normalized cluster coefficient (γ >> 1) and a normalized
characteristic path length close to 1 (λ ∼ 1; Figure 2).
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TABLE 3 | The decreased glucose metabolism regions in DM (P < 0.001, uncorrected).

AAL regions Volume (voxels) T Coordinates BA

x y z

Superior frontal gyrus, medial (Left) 136 3.7 0 45 26 9

Superior temporal gyrus (Right) 58 3.8 66 −18 4 42

Inferior frontal gyrus, orbital part (Right) 66 4.3 44 40 −6 47

Inferior frontal gyrus, triangular part (Right) 228 4.4 50 28 6 45

Coordinates x,y,z refer to the anatomical location of peak voxel defined by the Montreal Neurological Institute space. All regions significant on voxel level uncorrected P < 0.001. BA

indicates Brodmann’s area.

FIGURE 1 | The decreased glucose metabolism regions in DM

(P < 0.001, uncorrected). The cluster size >50 voxels. The color bar

indicates the T-value. Small-world topology of the functional networksThe

brain functional networks of both the DM group and the NC group had the

characteristics of “small-world” networks (σ > 1). For example, at all of the

density thresholds, both networks had a large normalized cluster coefficient (γ

>> 1) and a normalized characteristic path length close to 1 (λ ∼ 1; Figure 2).

Altered Small-World Parameters in DM
Patients
This study showed that the normalized clustering coefficient
γ was significantly smaller in the DM group than in the NC
group (density thresholds: 10–22, 34, 36–40%; Figure 2A), the
normalized characteristic path length λ was significantly longer
in the DM group than in the NC group (density threshold: 10%;
Figure 2B), and the small-world index σwas significantly smaller
in the DM group than in the NC group (density thresholds:
10–22, 34, 36–40%; Figure 2C) (P < 0.05).

The Distribution of the Hub Regions and
Altered Nodal Centrality in DM Patients
To explore the nodal centrality, the functional networks were
constructed at a fixed density threshold of 10%, which ensures
that all regions were included in the functional networks and
minimizing the number of false-positive paths. Furthermore,

such a fixed constraint might optimize interregional correlation
strengths and therefore be biologically plausible (Bassett and
Bullmore, 2006; He et al., 2008).

To identify the hub regions, we measured the normalized

betweenness centrality in both networks (see Section Data and

Methods). The DM had 21 hub regions (Table 4), and the

NC had 19 (Table 5). The two groups shared five hub regions

(Figures 3A,B). We used a 1000 non-parametric permutation

test and obtained seven hub regions with significant differences

between the DM patients and NCs (P < 0.05; Figure 3C). In

addition, given that it is no reason to say that there are hub shifts

between groups if normalized betweenness centrality distribution
are highly correlated between the two groups, we therefore have
verified that the normalized betweenness centrality distribution
between the two groups are no significantly correlated (R =

−0.03, P = 0.77). Compared with NCs, the centrality was
significantly reduced in four brain regions: the right rectus,
the right cuneus, the left middle occipital gyrus, and the left
postcentral gyrus, and it was significantly increased in three brain
regions: the orbitofrontal region of the left middle frontal gyrus,
the left olfactory region, and the right paracentral lobule in the
diabetic patients.

DISCUSSION

Because the local glucose metabolism rate is a possible
contributing factor in DM-related functional network, we first
showed the reduced glucosemetabolism rate in DM group, which
is similar to previous findings. Then we focused to demonstrate
alterations in the topological organization of functional brain
networks in DM patient by using FDG-PET data. Our main
findings included the following: (1) Both DM patients and NCs
had a small-world topology in functional brain network; (2)
The DM group was found to have significantly lower small-
world index, lower normalized clustering coefficients, and higher
normalized characteristic path length compared with NC group;
(3) The spatial distribution of hub regions and nodal centrality
were changed in DM group.

Small-World Properties of the Functional
Networks
Our results showed that brain functional network of both DM
patients and NCs had a small-world properties, which was
consistent with many studies of brain structural and functional
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FIGURE 2 | Normalized cluster coefficient (γ), normalized characteristic path length (λ), and small-world index (σ) in DM and NC. (A) The γ from NC and

DM. p < 0.05 for DM vs. NC (significant at 10–23, 34, and 36–40%). (B) The λ from NC and DM. p < 0.05 for DM vs. NC (significant at 10%). (C) The σ from NC and

DM. p < 0.05 for DM vs. NC (significant at 10–23, 34, and 36–40%).

network constructed from MRI, EEG, and FDG-PET data (He
et al., 2008; de Haan et al., 2009; Lo et al., 2010; Sanz-Arigita
et al., 2010; Sanabria-Diaz et al., 2013; Liu et al., 2014; Kim
et al., 2015). In particular, other PET studies have reported
that the human brain functional PET networks of both normal
individuals and patients with certain diseases (such as AD and
MCI) fit the characteristics of small-world network (Sanabria-
Diaz et al., 2013; Seo et al., 2013; Hu et al., 2014; Kim et al.,
2015). Unlike regular network or random network, a small-world
network is an optimized network for information separation
and integration (Bullmore and Sporns, 2009). In this study, the
brain functional network of diabetic patients also showed small-
world property, suggesting that even in human brains afflicted
with certain diseases (such as AD and MCI in other studies), a
relatively efficient network was maintained in order to meet the
needs of daily activities (Zhao et al., 2012).

Changed in the Small-World Parameters in
DM Patients
Although functional PET network in diabetic patients preserved
small-world characteristics, several network parameters (γ,
λ, σ) were found to be significantly changed. We showed
that DM group had significantly lower normalized clustering
coefficients and higher normalized characteristic path length as
compared with NC group (Figure 2). The cluster coefficient
reflected the local efficiency and fault tolerance of the network
(Strogatz, 2001). The normalized clustering coefficients of brain
functional network was found to be lower in DM patients,

indicating that these patients have a reduced ability for local
information processing and a lower processing efficiency.
Given that short path length ensures the effective integration
and prompt transfers of information between distant brain
areas (Sporns and Zwi, 2004), our finding of increased
normalized characteristic path length in DM network indicated
a slower inter-regional information integration and long-
distance information transfer in diabetic patients. Our result
in functional brain networks were conformed to a recent
study about structural brain networks by using DTI data, in
which the diabetic group showed significantly lower clustering
coefficient and higher characteristic path length compared with
control group (Reijmer et al., 2013b). The similar finding in
structural and functional brain network analysis may suggest
that DM-related alterations in cortical functional networks can
be related to structural impairments. Additionally, DM has
emerged as an important risk factor for cognitive dysfunction
(McCrimmon et al., 2012). Human cognitive $precessing are
believed to be built up on a basis of information interactions
between interconnected brain regions (Horwitz, 2003; Sporns,
2011). Therefore, the disrupted topological properties in
functional network may also contribute to DM-related cognitive
impairment.

The Distribution of the Hub Regions in DM
Patients and NCS
We also used the betweenness centrality to define important
hub regions of the brain network. In this study, if the centrality
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FIGURE 3 | (A) The hub regions in DM. (B) The hub regions in NC. (C) Differences of between-group betweenness centrality in DM and NC (p < 0.05). The green

spheres are represented the common hub regions. The sphere diameter denotes normalized betweenness centrality (bi ), in this case bi > 1.5. The blue spheres

represent betweenness centrality with significant decreases (four hub regions) and the red spheres represent betweenness centrality with significant increases (three

hub regions) in DM compared with NC. The fixed density threshold value was 10%. Hubs were visualized with the BrainNet Viewer (http://www.nitrc.org/projects/bnv;

Xia M. et al., 2013).

of a node was 1.5-fold higher than the mean centrality of
all of the nodes in the network (Melie-García et al., 2013),
the region represented by the node was considered a hub
region in the functional network. Figures 3A,B showed hub
regions in diabetic patients and normal individuals. We found
that 95.2% (20/21) DM hubs (Table 4) and 94.7% (18/19) NC
hubs (Table 5) were localized in association and paralimbic
regions. Association and paralimbic regions are divided out
from the cerebral cortex by using a functional rather than
strictly cytoarchitectonic approach (Mesulam, 2000). Studies
have shown that association areas help to maintain the integrity
of multifunction systems, such as memory and attention,
and their function mainly involves intelligence information
processing and maintaining advanced mental activities, while
paralimbic areas are highly correlated with the prefrontal lobe
and many subcortical regions, which are intricately involved
in emotions and states of consciousness (Mesulam, 1998; Liu
et al., 2014). This result is in line with previous studies that
association and paralimbic cortices regions tend to be hubs of
brain structural and functional network (He et al., 2008; Tian
et al., 2011; Yan et al., 2011; Hu et al., 2014). Meanwhile, five brain
regions were identified as the common hubs for both groups,
which may indicate that DM poses little impact on these hub
regions.

Altered Nodal Centrality in DM Patients
Our analysis showed that the regions with significant reduced
centrality were located in the right rectus, the right cuneus,
the left middle occipital gyrus, and the left postcentral gyrus in
diabetic patients (P < 0.05; Figure 3C, blue sphere area), all
of which in present study were found as hub regions in NC
group. These hub regions have been reported to be related to
DM outcomes in previous neuroimaging studies of the brain
structure and function (Cui et al., 2014; Marzelli et al., 2014;
Zhang et al., 2014). Cui et al. showed, in their fMRI study,
that neural activity was reduced in the cuneus, the middle
occipital gyrus, and the postcentral gyrus in DM patients, while
changes in neural activity in the cuneus and the postcentral
gyrus were associated with cognitive impairment (Cui et al.,
2014). Zhang et al. found that DM patients, with or without
cognitive impairment, had atrophy of the middle occipital gyrus
(Zhang et al., 2014). Matthew et al. found that in DM patients,
rectus atrophy was associated with the disease course of diabetes
(Marzelli et al., 2014). Several other studies have also reported
that disruption of these regions involved in many essential
functions were associated with behavioral and cognitive brain
functioning. The cuneus is involved in basic visual information
processing (Beason-Held et al., 1998; Slotnick and Schacter,
2006). Neural abnormalities in the cuneus were thought to
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TABLE 4 | The hubs of functional network in DM group.

Region (DM) Classification bi

Middle frontal gyrus, orbital part (Left) Paralimbic 7.14

Superior parietal gyrus (Right) Association 4.14

Superior parietal gyrus (Left) Association 3.82

Precuneus (Right) Association 3.55

Olfactory cortex (Left) Paralimbic 3.47

Thalamus (Right) Subcortical 3.22

Paracentral lobule (Right) Association 2.98

Parahippocampal gyrus (Left) Paralimbic 2.98

Angular gyrus (Right) Association 2.92

Middle frontal gyrus (Left) Association 2.88

Angular gyrus (Left) Association 2.85

Precental gyrus (Left) Paralimbic 2.72

Hippocampus (Right) Paralimbic 2.64

Parahippocampal gyrus (Right) Paralimbic 2.40

Fusiform gyrus (Right) Association 2.39

Supplementary motor area (Right) Association 1.99

Inferior frontal gyrus, triangular part (Left) Association 1.98

Middle frontal gyrus (Right) Association 1.95

Insula (Left) Paralimbic 1.91

Superior temporal gyrus (Right) Association 1.85

Superior occipital gyrus (Left) Association 1.53

This table list the hub regions (bi > 1.5) in the functional network of DM group. The

common hub regions for both groups are indicated by bold. bi denotes the normalized

betweenness centrality of the region i.

have contributed to poor performance on related cognitive tests
(Cui et al., 2014). The middle occipital gyrus is the secondary
visual cortex that is involved in the visual spatial and visual
perceptive functions (Schurz et al., 2013; Tu et al., 2013), while
the postcentral gyrus is part of the primary motor cortex. The
decreased of neural activity in the occipital region and postcentral
gyrus were found to be associated with visual impairment (Xia
W. et al., 2013) and sensory loss (Luo et al., 2012), respectively.
The rectus was thought to be part of a circuit that mediates some
specific emotional functions in humans (Andreasen et al., 1995).
Thus, the observed features from the network models of brain
function were consistent with and supportive of the findings from
other researches.

The altered hub regions in NC presented structural and
functional abnormalities in DM from the above evidence
indicated that DM targets some important regions that could
disturb the normal functional network. This finding supports
the viewpoint that the high level of centrality of hubs
makes them points of vulnerability that are susceptible to
dysfunction in brain disorders (van den Heuvel and Sporns,
2013), which may be potential pathological mechanism that
disrupts the properties of functional brain network in DM.
In addition, it should be noted that betweenness centrality as
a local property integrates the global information of whole
network. The regions of reduced centrality didn’t overlap with
that of hypometabolism in DM in present study indicated
that the disturbances of hub regions may not be explained

TABLE 5 | The hubs of functional network in NC group.

Region (NC) Classification bi

Cuneus (Right) Association 6.18

Gyrus rectus (Right) Association 4.42

Middle occipital gyrus (Left) Association 4.38

Insula (Right) Paralimbic 4.33

Postcentral gyrus (Left) Paralimbic 3.92

Superior occipital gyrus (Left) Association 3.21

Heschl gyrus (Right) Paralimbic 3.02

Parahippocampal gyrus (Right) Paralimbic 2.61

Caudate nucleus (Right) Subcortical 2.40

Temporal pole: superior temporal gyrus (Left) Paralimbic 2.15

Superior frontal gyrus, medial orbital (Left) Paralimbic 2.04

Heschl gyrus (Left) Paralimbic 2.04

Precuneus (Left) Association 1.95

Precuneus (Right) Association 1.94

Parahippocampal gyrus (Left) Paralimbic 1.85

Superior parietal gyrus (Right) Association 1.82

Supramarginal gyrus (Left) Association 1.69

Gyrus rectus (Left) Association 1.61

Olfactory cortex (Right) Paralimbic 1.57

This table list the hub regions (bi > 1.5) in the functional network of NC group. The

common hub regions for both groups are indicated by bold. bi denotes the normalized

betweenness centrality of the region i.

entirely by structural and functional abnormalities in specific
brain regions. Therefore, the mechanism of the normalization
betweenness centrality variation correlated to structural and
functional changes is very complicated and deserves a detailed
study.

Moreover, our results showed that compared with normal
individuals, the nodal centrality was significantly increased
in the orbitofrontal region of the left middle frontal gyrus,
the left olfactory region, and the right paracentral lobule in
DM patients (P < 0.05; Figure 3C, red sphere area). The
betweenness centrality was defined as the centrality of the node
from the perspective of information flow. Thus, the increased
in centrality of these hub regions may be a compensatory
mechanism for the decrease in centrality of other regions in
the process of information exchange (Tijms et al., 2013). That
is, the degeneration of some hub regions may also lead to
an increased betweenness centrality in other regions (van den
Heuvel and Sporns, 2013). To our knowledge, this study was
the first base on FDG-PET data to identify hub regions with
significant differences in the betweenness centrality between DM
patients and NCs. However, more research is needed to confirm
whether these changes are also present in other structural and
functional networks.

This study has some limitations. First, the results could not
survive when we adopted Family-wise Error (FWE) or False
Discovery Rate (FDR) to adjust for multiple comparisons. To
increase the statistical power, a larger sample size is needed.
Second, given that most relevant studies employed AAL-90
template to define the nodes, we also used the same template
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in order to allow better comparison with previous results. It
should be note that AAL-90 atlas is a structure template which
do not include the cerebellum, and it may not be appropriate for
studying brain functions. Future studies should therefore validate
these findings by using other functional parcellations such as
Power-264 (Power et al., 2011). Third, partial volume correction
was not used in this study, therefore the results may in part reflect
structural variation due to DM or other etiology. Fourth, because
recent evidence suggests that anticorrelation might have special
importance for understanding brain dysfunction inmental illness
(Whitfield-Gabrieli and Ford, 2012; Buckner et al., 2013), we
used absolute threshold value to binarize the matrix and did
not separate the anticorrelation in our study. However, owing
to the way PET data are typically normalized (dividing regional
values by the global values), the anticorrelation is likely to be
introduced (Murphy et al., 2009), which may make the complete
interpretation of the sign of correlation more difficult. Thus,
new strategies for processing PET data is required to be further
study to mitigate the specific issue of normalization. Lastly, the
lack of objective and specific neurocognitive assessment limited
our interpretation of the results. Thus, further work should
be conducted to investigate whether the functional network

abnormalities is associated with the trajectories from normal
cognition to dementia in diabetes, even in prediabetic stages,
which will help to increase understanding of the DM-related
cognitive decline.

CONCLUSION

We have investigated the topological properties of human
brain functional networks in DM patients using FDG PET
and graph theory analysis. Our result indicated that diabetic
brain was related to disrupted topological organization in the
functional PET network, which was also compatible with a recent
study of brain structural networks. Specifically, we found that
the DM patients had significantly reduced nodal centrality of
several brain regions. Thus, our findings provided the functional
evidence for abnormalities of brain networks in DM.
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