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Recent studies have shown that synaptic unreliability is a robust and sufficient

mechanism for inducing the stochasticity observed in cortex. Here, we introduce

Synaptic Sampling Machines (S2Ms), a class of neural network models that uses

synaptic stochasticity as a means to Monte Carlo sampling and unsupervised learning.

Similar to the original formulation of Boltzmann machines, these models can be viewed

as a stochastic counterpart of Hopfield networks, but where stochasticity is induced

by a random mask over the connections. Synaptic stochasticity plays the dual role

of an efficient mechanism for sampling, and a regularizer during learning akin to

DropConnect. A local synaptic plasticity rule implementing an event-driven form of

contrastive divergence enables the learning of generative models in an on-line fashion.

S2Ms perform equally well using discrete-timed artificial units (as in Hopfield networks)

or continuous-timed leaky integrate and fire neurons. The learned representations are

remarkably sparse and robust to reductions in bit precision and synapse pruning:

removal of more than 75% of the weakest connections followed by cursory re-learning

causes a negligible performance loss on benchmark classification tasks. The spiking

neuron-based S2Ms outperform existing spike-based unsupervised learners, while

potentially offering substantial advantages in terms of power and complexity, and are

thus promising models for on-line learning in brain-inspired hardware.

Keywords: stochastic processes, spiking neural networks, synaptic plasticty, unsupervised learning, Hopfield

networks, regularization, synaptic transmission

1. INTRODUCTION

The brain’s cognitive power emerges from a collective form of computation extending over
very large ensembles of sluggish, imprecise, and unreliable components. This realization spurred
scientists and engineers to explore the remarkable mechanisms underlying biological cognitive
computing by reverse engineering the brain in “neuromorphic” silicon, providing a means to
validate hypotheses on neural structure and function through “analysis by synthesis.” Successful
realizations of large-scale neuromorphic hardware (Schemmel et al., 2010; Indiveri et al., 2011;
Benjamin et al., 2014; Merolla et al., 2014; Park et al., 2014; Giulioni et al., 2015) are confronted
with challenges in configuring and deploying them for solving practical tasks, as well as identifying
the domains of applications where such devices could excel. The central challenge is to devise a
neural computational substrate that can efficiently perform the necessary inference and learning
operations in a scalable manner using limited memory resources and limited computational
primitives, while relying on temporally and spatially local information.
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Recently, one promising approach to configure neuromorphic
systems for practical tasks is to take inspiration from machine
learning, namely artificial and deep neural networks. Despite
the fact that neural networks were first inspired by biological
neurons, the mapping of modern machine learning techniques
onto neuromorphic architectures requires overcoming several
conceptual barriers. This is because machine learning algorithms
and artificial neural networks are designed to operate efficiently
on digital processors, often using batch, discrete-time, iterative
updates (lacking temporal locality), shared parameters and
states (lacking spatial locality), and minimal interprocess
communication that optimize the capabilities of GPUs or
multicore processors.

Here, we report a class of stochastic neural networks that
overcomes this conceptual barrier while offering substantial
improvements in terms of performance, power, and complexity
over existing methods for unsupervised learning in spiking
neural networks. Similarly to how Boltzmann machines were
first proposed (Hinton and Sejnowski, 1986), these neural
networks can be viewed as a stochastic counterpart of Hopfield
networks (Hopfield, 1982), but where stochasticity is caused by
multiplicative noise at the connections (synapses).

As in neural sampling (Fiser et al., 2010; Berkes et al.,
2011), neural states (such as instantaneous firing rates or
individual spikes) in our model are interpreted as Monte
Carlo samples of a probability distribution. The source of
the stochasticity in neural samplers is often unspecified, or is
assumed to be caused by independent, background Poisson
activities (Petrovici et al., 2013; Neftci et al., 2014). Background
Poisson activity can be generated self-consistently in balanced
excitatory-inhibitory networks (van Vreeswijk and Sompolinsky,
1996), or by using finite-size effects and neural mismatch
(Amit and Brunel, 1997). Although a large enough neural
sampling network could generate its own stochasticity in this
fashion, the variability in the spike trains decreases strongly
as the firing rate increases (Fusi and Mattia, 1999; Brunel,
2000; Moreno-Bote, 2014), unless there is an external source of
noise or some parameters are fine-tuned. Furthermore, when a
neural sampling network generates its own noise, correlations
in the background activity can play an adverse role in its
performance (Probst et al., 2015). Correlations can be mitigated
by adding feed-forward connectivity between a balanced network
(or other dedicated source of Poisson spike trains) and the
neural sampler, but such solutions entail increased resources
in neurons, connectivity, and ultimately energy. Therefore, the
above techniques for generating stochasticity are not ideal for
neural sampling.

On the other hand, synaptic unreliability can induce the
necessary stochasticity without requiring a dedicated source of
Poisson spike trains. The unreliable transmission of synaptic
vesicles in biological neurons is a well studied phenomenon
(Katz, 1966; Branco and Staras, 2009), and many studies
suggested it as a major source of stochasticity in the brain
(Abbott and Regehr, 2004; Faisal et al., 2008; Yarom and
Hounsgaard, 2011; Moreno-Bote, 2014). In the cortex, synaptic
failures were argued to reduce energy consumption while
maintaining the computational information transmitted by the

post-synaptic neuron (Levy and Baxter, 2002). More recent work
suggested synaptic sampling as a mechanism for representing
uncertainty in the brain (Aitchison and Latham, 2015), and
its role in synaptic plasticity and rewiring (Kappel et al.,
2015).

We show that uncertainty at the synapse is sufficient in
inducing the variability necessary for probabilistic inference in
brain-like circuits. Strikingly, we find that the simplest model
of synaptic unreliability, called blank-out synapses, can vastly
improve the performance of spiking neural networks in practical
machine learning tasks over existing solutions, while being
extremely easy to implement in hardware (Goldberg et al., 2001),
and often naturally occurring in emerging memory technologies
(Yu et al., 2013; Saïghi et al., 2015; Al-Shedivat et al., 2015a). In
blank-out synapses, for each pre-synaptic spike-event, a synapse
evokes a response at the post-synaptic neuron with a probability
smaller than one. In the theory of stochastic processes, the
operation of removing events from a point process with a
probability p is termed p-thinning. Thinning a point process has
the interesting property of making the process more Poisson-
like. Along these lines, a recent study showed that spiking
neural networks endowed with stochastic synapses robustly
generate Poisson-like variability over a wide range of firing rates
(Moreno-Bote, 2014), a property observed in the cortex. The
iterative process of adding spikes through neuronal integration
and removing them through probabilistic synapses causes the
spike statistics to be Poisson-like over a large range of firing
rates. A neuron subject to other types of noise, such as white
noise injected to the soma, spike jitter and random synaptic
delays tends to fire more regularly for increasing firing firing
rates.

Given the strong inspiration from Boltzmann machines, and
that probabilistic synapses are the main source of stochasticity for
the sampling process, we name such networks Synaptic Sampling
Machines (S2Ms) (Figure 1). Synaptic noise in the S2M is not
only an efficient mechanism for implementing stochasticity in
spiking neural networks but also plays the role of a regularizer
during learning, akin to DropConnect (Wan et al., 2013). This
technique was used to train artificial neural networks used
multiplicative noise on one layer of a feed-forward network for
regularization and decorrelation.

Compared to the neural sampler used in Neftci et al. (2014),
the S2M comes at the cost of a quantitative link between the
parameters of the probability distribution and those of the
spiking neural network. In a machine learning task, this does
not pose a problem since the parameters of the spiking neural
network can be trained with a learning rule such as event-
driven Contrastive Divergence (eCD). ECD is an on-line training
algorithm for a subset of stochastic spiking neural networks
(Neftci et al., 2014): The stochastic neural network produces
samples from a probability distribution, and Spike Timimg
Dependent Plasticity (STDP) carries out the weight updates
according to the Contrastive Divergence rule (Hinton, 2002) in
an online, asynchronous fashion.

S2Ms trained with eCD significantly outperform the
Restricted Boltzmann Machine (RBM), reaching error rates
in an MNIST hand-written digit recognition task of 4.4%,
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FIGURE 1 | The Synaptic Sampling Machine (S2M). (A) At every occurrence of a pre-synaptic event, a pre-synaptic event is propagated to the post-synaptic

neuron with probability p. (B) Synaptic stochasticity can be viewed as a continuous DropConnect method (Wan et al., 2013) where weights are masked by a binary

matrix 2(t), where * denotes element-wise multiplication. (C) S2M Network architecture, consisting of a visible and a hidden layer.

while using a fraction of the number of synaptic operations
during learning and inference compared to our previous
implementation (Neftci et al., 2014). Furthermore, the system
has two appealing properties: (1) The activity in the hidden
layer is very sparse, with less than 10% of hidden neurons
being active at any time; (2) The S2M is remarkably robust
to the pruning and the down-sampling of the weights: Upon
pruning the top 80% of the connections (sorted by weight
values) and re-training (32 k samples), we observed that the
error rate remained below 5%. Overall, the S2M outperforms
existing models for unsupervised learning in spiking neural
networks while potentially using a fraction of the resources,
making it an excellent candidate for implementation in
hardware.

The article is structured as follows: In the Methods section,
we first describe the S2M within a discrete-time framework to
gain insight into the functionality of the sampling process. We
then describe the continuous-time, spiking version of the S2M. In
the Results section, we demonstrate the ability of S2Ms to learn
generative models of the MNIST dataset, and illustrate some of
its remarkable features.

2. MATERIALS AND METHODS

2.1. The Synaptic Sampling Machine (S2M)
As a Hopfield Network with Multiplicative
Noise
We first define the S2M as a modification of the original
Boltzmann Machine. Boltzmann machines are Hopfield
networks with thermal noise added to the neurons in order
to avoid overfitting and falling into spurious local minima
(Hinton and Sejnowski, 1986). As in Boltzmann Machines, the
S2M introduces a stochastic component to Hopfield networks.
But rather than units themselves being noisy, in the S2M the
connections are noisy.

In the Hopfield network, neurons are threshold units:

zi[t] = 2(ui[t]) =

{

ron if ui[t] ≥ 0

roff if ui[t] < 0
∀i, (1)

and connected recurrently through symmetric weights wij = wji,
where ron > roff are two numbers indicating the values of the on
and off states, respectively.

For simplicity, we chose blank-out synapses as the model of
multiplicative noise. With blank-out synapses, the synaptic input
to Hopfield unit i is:

ui[t + 1] =
N

∑

j= 1

ξ
p
ij [t]zj[t]wij + bi, (2)

where ξ
p
ij [t] ∈ {0, 1} is a Bernoulli process with probability p and

bi is the bias. This corresponds to a weighted sum of Bernoulli
variables. Since the ξ

p
ij [t] are independent, for large N and p not

close to 0 or 1, we can approximate this sum with a Gaussian
with mean µi[t] = bi +

∑

j pwijzj[t] and variance σ 2
i [t] =

p(1− p)
∑

j(wijzj[t])21. So,

ui[t + 1] = µi[t]+ σi[t]ηi[t], (3)

where η ∼ N(0, 1). In other terms ui[t + 1] ∼ N(µi[t], σ 2
i [t]).

Since P(zi[t + 1] = 1|z[t]) = P(ui[t + 1] ≥ 0|z[t]),
the probability that unit i is active given the network state
is equal to one minus the cumulative distribution function
of ui:

P(ui[t + 1] ≥ 0|z[t]) =
1

2

(

1+ erf

(

µi[t]

σi[t]
√
2

))

,

1The Gaussian approximation of a sum of Bernouilli variables is deemed valid
when Np,N(1− p) > 5, where N is here the number of draws.
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where “erf” stands for the error function. Plugging back to
Equation (1) gives:

P(zi[t + 1] = 1|z[t]) = P(ui[t + 1] ≥ 0|z[t])

=
1

2



1+ erf



β

∑

j wijzj[t]+ bi
p

√

∑

j w
2
ijzj[t]

2







 ,

β =
√

p

2(1− p)
.

(4)

This activation function is the S2M-equivalent of the activation
function as defined for neurons of the Boltzmann machines (i.e.,
the logistic function). However, four properties distinguish the
S2M from the Boltzmann machine: (1) The activation function
is a (shifted) error function rather than the logistic function,
(2) the synaptic contributions to each neuron i are normalized
such that Euclidian norm of the vector (wi1z1, . . . ,wiNzN)⊤

is 1. Interestingly, this means that according to Equation (4),
a rescaling of the weights has the same effect of scaling the
bias. If the biases are zero, the rescaling has no effect; (3) β ,
which depends on the probability of the synaptic blank-out
noise and the network state, plays the role of thermal noise in
the Boltzmann machine; and (4) In general, despite that the
connectivity matrix is symmetric, the interactions in the S2M are
asymmetric because the effective slope of the activation function
depends on the normalizing factor of each neuron.

In the general case, the last property described above suggest
that the S2M cannot be expressed as an energy-based model (as
in the case for Boltzmann machines), and therefore we cannot
easily derive the joint distribution P(z[t]). Some insight can be
gained in the particular case where ron = −roff. In this case, the
denominator in Equation (4) simplifies such that:

P(zi[t + 1] = 1|z[t]) = P(ui[t + 1] ≥ 0|z[t]) (5)

=
1

2



1+ erf



β

∑

j wijzj[t]+ bi
p

ron

√

∑

j w
2
ij







 .

(6)

In other words: the standard deviation of the inputs σ 2
i does not

depend on the neural states. With the additional constraint that
∑

i w
2
ij =

∑

j w
2
ij, the connectivity matrix becomes symmetric. In

this case, the resulting system is almost a Boltzmann machine,
with the only exception that the neural activation function is
an error function instead of the logistic function. Generally
speaking, the error function is reasonably close to the logistic
function after a rescaling of the argument. Therefore, the
parameters of a Boltzmann machine can be approximately
mapped on the S2M with ron = −roff. To test the quality
of this approximation, we compute the Kullback-Leibler (KL)
divergence between an exact restricted Boltzmann distribution
(Pexact) and the distribution sampled by a S2M with ron =
1, roff = −1 (Figure 2) using Equation (6). This computation
is repeated in the case of the distribution obtained with Gibbs
sampling in the RBM. In order to avoid zero probabilities, we
added 1 to the number of occurrences of each state. As expected,
the KL-divergence between the S2M and the exact distribution

reaches a plateau due to the non-logistic activation function.
However, the results show that in networks of this size the
distribution sampled by the S2M has the same KL-divergence as
the RBM obtained after 105 iterations of Gibbs sampling, which
is more than the typical number of iterations used for many tasks
(Hinton et al., 2006). We premise that the S2Ms with all or none
activation values (ron 6= roff = 0) behave in a manner that is
sufficiently similar, so that learning in the S2M with Contrastive
Divergence (CD) is approximately valid. In the Results section,
we test this premise on the MNIST hand-written digit machine
learning task.

2.1.1. Learning Rule for RBM and S2Ms
The training of RBMs proceeds in two phases. During the first
“data” phase, the states of the visible units are clamped to a
given vector of the training set, then the states of the hidden
units are sampled. In a second “reconstruction” phase, the
network is allowed to run freely. Using the statistics collected
during sampling, the weights are updated in a way that they
maximize the likelihood of the data. Collecting equilibrium
statistics over the data distribution in the reconstruction phase
is often computationally prohibitive. The CD algorithm has
been proposed to mitigate this (Hinton, 2002; Hinton and
Salakhutdinov, 2006): the reconstruction of the visible units’
activity is achieved by sampling them conditioned on the values
of the hidden units. This procedure can be repeated k times
(the rule is then called CDk), but relatively good convergence is
obtained for the equilibrium distribution even for one iteration.
The CD learning rule is summarized as follows:

1wij = ǫ(〈vihj〉data − 〈vihj〉recon), (7)

where vi and hj are the activities in the visible and hidden
layers, respectively. The notations 〈·〉data and 〈·〉recon refer
to expectations computed during the “data” phases and the
“reconstruction” sample phases, respectively. The learning of the
biases follows a similar rule. The learning rule for the S2M was
identical to that of the RBM.

FIGURE 2 | KL-divergence between a restricted Boltzmann distribution

(Pexact, 5 hidden units, 5 visible units) and the distribution sampled by

a S2M with ron = 1, roff = −1 and matched parameters. As a reference,

the KL-divergence using an RBM is shown (blue curve). The saturation of the

green curve is caused by the inexact activation function of the S2M unit (error

function instead of the logistic function).
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2.2. Spiking Synaptic Sampling Machines
2.2.1. Neuron and Synapse Model
Except for the noise model, the neuron and synapse models
used in this work are identical to those described in Neftci et al.
(2014) and are summarized here for convenience. The neuron’s
membrane potential below firing threshold θ is governed by the
following differential equation:

C
d

dt
ui = −gLui + Ii(t), ui(t) ∈ (−∞, θ), (8)

whereC is a membrane capacitance, ui is the membrane potential
of neuron i, gL is a leak conductance, Ii(t) is the time-varying
input current and θ is the neuron’s firing threshold. When the
membrane potential reaches θ , an action potential is elicited.
After a spike is generated, the membrane potential is clamped to
the reset potential urst for a refractory period τr .

In the spiking S2M, the currents Ii(t) depend on the layer the
neuron is situated in (visible v or hidden h). For a neuron i in the
visible layer v

Ii(t) =Idi (t)+ Ivi (t),

τsyn
d

dt
Ivi (t) =− Ivi +

Nh
∑

j= 1

ξ
p

h,ji
(t)qjihj(t)+ bvi ,

(9)

where Idi (t) is a current representing the data (i.e., the external
input), Iv(t) is the feedback from the hidden layer activity and the
bias. The q’s are the respective synaptic weights, ξ

p
v,ij is a Bernoulli

process (i.e., “coin flips”) with probability p implementing
the stochasticity at the synapse, and bvi are constant currents
representing the biases of the visible neurons. Spike trains are
represented by a sum of Dirac delta pulses centered on the
respective spike times:

hj(t) =
∑

k∈Sphj

δ(t − tk), vi(t) =
∑

k∈Spvi

δ(t − tk) (10)

where Sphj , Sp
v
j are the sets the spike times of the hidden neuron

hj and visible neurons vi, respectively, and δ(t) = 1 if t = 0 and 0
otherwise.

For a neuron j in the hidden layer h,

Ij(t) =Ihj (t),

τsyn
d

dt
Ihj (t) =− Ihj +

Nv
∑

i= 1

ξ
p
v,ij(t)qijvi(t)+ bhj ,

(11)

where Ih(t) is the feedback from the visible layer, and v(t) are
Poisson spike trains of the visible neurons defined in Equation
(10) and bhj are the biases of the hidden neurons. The dynamics of

Ih and Iv correspond to a first-order linear filter, so each incoming
spike results in Post–Synaptic Potentials (PSPs) that rise and
decay exponentially (i.e., alpha-PSP) (Gerstner and Kistler, 2002).

2.2.2. Event-Driven CD Synaptic Plasticity Rule
Event-driven Contrastive Divergence is an online variation
of CD amenable for implementation in neuromorphic and
brain-inspired hardware: by interpreting spikes as samples of
a probability distribution, a possible neural mechanism for
implementing CD is to use STDP synapses to carry out CD-like
updates.

The weight update in eCD is a modulated, pair-based STDP
rule with learning rate ǫq:

d

dt
qij = ǫqg(t) STDPij(vi(t), hj(t)) (12)

where g(t) ∈ R is a zero-mean global gating signal controlling
the data vs. reconstruction phase, qij is the weight of the synapse
and vi(t) and hj(t) refer to the spike trains of neurons vi and hj,
defined as in Equation (10). The same rule is applied to learn
biases bv and bh:

d

dt
bvi = ǫb

1

2
g(t) STDPi(vi(t), vi(t)), (13)

d

dt
bhi = ǫb

1

2
g(t) STDPi(hi(t), hi(t)), (14)

where ǫb is the learning rate of the biases. The weight update
is governed by a symmetric STDP rule with temporal window
K(t) = K(−t),∀t:

STDPij(vi(t), hj(t)) =vi(t)Ahj (t)+ hj(t)Avi (t),

Ahj (t) =A

∫ t

−∞
dsK(t − s)hj(s),

Avi (t) =A

∫ t

−∞
dsK(s− t)vi(s),

(15)

with A > 0 defining the magnitude of the weight updates.
Although any symmetric learning window can be used, for

simplicity, we used a nearest neighbor update rule where:

K(t − s) =
{

1 if |t − s| < τSTDP
0 otherwise

In our implementation, updates are additive and weights can
change polarity. A global modulatory signal that is synchronized
with the data clamping phase modulates the learning to
implement CD:

g(t) =







1 ifmod(t, 2T) ∈ (τbr,T)
−1 ifmod(t, 2T) ∈ (T + τbr, 2T)
0 otherwise.

, (16)

The signal g(t) switches the behavior of the synapse from Long-
Term Potentiation (LTP) to Long-Term Depression (LTD) (i.e.,
Hebbian to Anti-Hebbian). The temporal average of g(t) vanishes
to balance LTP and LTD. The modulation factor is zero during
some time τbr , so that the network samples closer to its stationary
distribution when the weights updates are carried out. The time
constant τbr corresponds to a “burn-in” time of Markov Chain
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Monte Carlo (MCMC) sampling and depends on the overall
network dynamics. (Neftci et al., 2014) showed that, when pre-
synaptic neurons and post-synaptic neurons fire according to
Poisson statistics, eCD is equivalent to CD. The effective learning
window is:

ǫ = 2A
T − τbr

2T
.

We note that the learning rate between the S2M and the spiking
spiking S2M cannot be compared directly because there is no
direct relationship between the synaptic weights q and w.

In the spiking S2M, weight updates are carried out even if
a spike is dropped at the synapse. This speeds up learning
without adversely affecting the entire learning process because
spikes dropped at the synapses are valid samples in the sense of
the sampling process. During the data phase, the visible units
were driven with constant currents equal to the logit of the
pixel intensity (bounded to the range [10−5, 0.98] in order to
avoid infinitely large currents), plus a white noise process of low
amplitude σ to simulate sensor noise.

2.2.3. Synaptic Blank-Out Noise
Perhaps the simplest model of synaptic noise is the blank-
out noise: for each spike-event, the synapse has a probability
p of evoking a PSP, and a probability (1 − p) of evoking no
response. This is equivalent to modifying the input spike train
to each synapse such that spikes are dropped (blanked-out) with
probability p. In particular, for a Poisson spike train of rate ν,
the blank-out with probability p gives a Poisson spike train with
rate pν (Parzen, 1999; Goldberg et al., 2001). For a periodic
(regular) spike train, stochastic synapses add stochasticity to the
system. The coefficient of variation of the Inter–Spike Interval
(ISI) becomes

√
1− p. The periodic spike train thus tends to a

Poisson spike train when p → 0, with the caveat that events
occur at integer multiples of the original ISI. Intuitively, the
neural network cycles through deterministic neural integration
and stochastic synapses. (Moreno-Bote, 2014) found that the
recurring process of adding spikes through neuronal integration
and removing them through stochastic synapses causes the spike
statistics to remain Poisson-like (constant Fano Factor) over a
large dynamical range. Synaptic stochasticity is thus a biologically
plausible source of stochasticity in spiking neural networks,
and can be very simply implemented in software and hardware
(Goldberg et al., 2001).

2.2.4. Spiking Neural Networks with Poisson Input

and Blank-Out Synapses
This section describes the neural activation function of leaky
Integrate & Fire (I&F) neurons. The collective dynamics of
spiking neural circuits driven by Poisson spike trains is often
studied in the diffusion approximation (Brunel and Hakim, 1999;
Fusi and Mattia, 1999; Wang, 1999; Brunel, 2000; Renart et al.,
2003; Tuckwell, 2005; Deco et al., 2008). In this approximation,
the firing rates of individual neurons are replaced by a common
time-dependent population activity variable with the same mean
and two-point correlation function as the original variables,

corresponding here to a Gaussian process. The approximation is
true when the following assumptions are verified:

(1) the charge delivered by each spike to the post-synaptic
neuron is small compared to the charge necessary to generate
an action potential,

(2) there is a large number of afferent inputs to each neuron,
(3) the spike times are uncorrelated.

In the diffusion approximation, only the first two moments of the
synaptic current are retained. The currents to the neuron, I(t),
can then be decomposed as:

I(t) = µ + ση(t), (17)

where µ = 〈I(t)〉 = p
∑

j qjνj + b and σ 2 = p
∑

j q
2
j νj, νj

is the firing rate of pre-synaptic neuron j, and η(t) is the white
noise process. Note that a Poisson spike train of mean rate ν with
spikes removed with probability p is a Poisson spike train with
parameter pν. As a result, blank-out synapses have the effect of
scaling the mean and the variance by p.

In this case, the neuron’s membrane potential dynamics is
an Ornstein-Uhlenbeck process (Gardiner, 2012). For simplicity
of presentation, the reset voltage was set to zero (urst =
0). We consider the case where the synaptic time constant
dominates the membrane time constant. In other words,
the membrane potential closely follows the dynamics of the
synaptic currents and the effect of the firing threshold and
the reset in the distribution of the membrane potential can be
neglected. This problem was studied in great detail with first
order approximations in τm/τsyn (Petrovici et al., 2013). For
comparison with the S2M, we focus here on the case τm = 0.
In this case, the stationary distribution is a Gaussian distribution:

u ∼ N(
µ

gL
,

σ 2

2g2Lτsyn
).

Neurons such that p(u > 0|ν) fire at their maximum rate of 1
τref

.

Following similar steps as in the S2M, the firing rate of a neuron
i becomes:

νi =
1

τref

1

2

(

1+ erf

(

µi

σi

√
τsyn

))

,

=
1

τref

1

2
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√
p

∑

j qijνj +
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p

√

∑

j q
2
ijνj

√
τsyn







 .

(18)

Equation (18) clarifies how the noise amplitude σ affects the
neural activation ν, and thus allows a quantitative comparison
with the S2M. Similarly to Equation (4), the input is effectively
normalized by the variability in the inputs (where on/off values
are replaced by firing rates). These strong similarities suggest that
the S2M and the spiking neural network are very similar. Using
computer simulations of the MNIST learning task, in the Results
section we show that the two networks indeed perform similarly.
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2.3. Training Protocol and Network
Structure for MNIST
2.3.1. RBM and the S2M
The network consisted of 1294 neuron, partitioned into 794
visible neurons and 500 hidden neurons (Figure 3). In the results,
we used ron = 1 and roff = 0 for the S2M neurons for a
closer comparison with spiking neurons and the spiking S2M.
The visible neurons were partitioned into 784 sensory (data)
neurons, denoted vd and 10 class label neurons, denoted vc.
The S2M is similar to the RBM in all manners, except that the
units are threshold functions, and each weight is multiplied by
independently drawn binomials (p = 0.5) at every step of the
Gibbs sampling.

In both cases the training set was randomly partitioned
into batches of equal size Nbatch. One epoch is defined as the
presentation of the full MNIST dataset (60,000 digits). We used
CD-1 to train the RBM and the S2M.

Classification is performed by choosing the most likely label
given the input, under the learned model. To estimate the
discrimination performance, we sampled the distribution of class
units P(class|digit) using multiple Gibbs Sampling chains (50
parallel chains, 2 steps). We take the classification result to be the
label associated to the most active class unit averaged across all
chains.

For testing the discrimination performance of an energy-
based model such as the RBM, it is common to compute the
free-energy F(vc) of the class units (Haykin, 2004), defined as:

exp(−F(vc)) =
∑

vd,h

exp(−E(vd, vc, h)), (19)

and selecting vc such that the free-energy is minimized. The free-
energy computes the probabilities of a given neuron to be active,
using the joint distribution of the RBM. Classification using free
energy is inapplicable to S2Ms because it cannot be expressed
in terms of an energy-based model (See Section 2). Therefore,
throughout the article, free energy-based classification was used
only for the RBM.

The learning rate in the RBM and the S2M was linearly
reduced during the training, reaching 0 at the end of the learning.
Both RBM and S2M were implemented on a GPU using the
Theano package (Bergstra et al., 2010).

2.3.2. Spiking S2M
The spiking S2M network structure is identical to above.
Similarly to Neftci et al. (2014), for a given digit, each neuron
in layer v was injected with currents transformed according to a

logit function Idi ∝ log
(

si
1−siτr

)

, where si is the value of pixel i.

To avoid saturation of the neurons using the logit function, the
pixel values of the digits were bounded to the range [10−5, 0.98]

Training followed the eCD rule described in Equation (12).
The learning rate was decayed linearly during the training,
reaching 0 at the end of the learning. Similarly to the S2M,
the discrimination performance is evaluated by sampling the
activities of the class units for every digit in the test dataset.
In the spiking S2M, this is equivalent to identifying the neuron

that has the highest firing rate. The spiking neural network
was implemented in the spike-based neural simulator Auryn,
optimized for recurrent spiking neural networks with synaptic
plasticity (Zenke and Gerstner, 2014). Connections in the
S2M are symmetric, but due to the constraints in the parallel
simulator, the connections were implemented using two separate
synapses (one in each direction), and periodically symmetrized to
maintain symmetry (every 1000 s of simulated time). A complete
list of parameters used in our simulator is provided in the
Appendix (Table A1).

3. RESULTS

We demonstrate two different implementations of synaptic
sampling machines (S2Ms), one spiking and one non-spiking.
The non-spiking S2M is a variant of the original RBM, used
to provide insight into the role of stochastic synapses in
neural networks, and to justify spiking S2Ms. The spiking S2M
consisted of a network of deterministic I&F spiking neurons,
connected through stochastic (blank-out) synapses (Figure 1).
In the Section 2, we show that S2Ms with activation values
(−1,+1) are similar to Boltzmann machines, except that the
activation function of the neuron is an error function instead
of the logistic function, and where the input is invariant to
rescaling. We assumed that the S2M with activation levels (0,1)
and the spiking S2M are sufficiently similar to the Boltzmann
distribution, such that CD and eCD as originally described
in Neftci et al. (2014) are approximately valid. We test this
assumption through computer simulations of the S2Ms in
an MNIST hand-written digit learning task. Independently,
Müller explored the idea of unreliable connections in Hopfield
units, reaching similar conclusion on the role of the blank-
out probabilities in the Boltzmann temperature, as well as such
networks being good approximations of restricted Boltzmann
machines (Müller, 2015).

3.1. Unsupervised Learning of MNIST
Handwritten Digits in Synaptic Sampling
Machines
Similarly to RBMs, S2Ms can be trained as generative models.
Generative models have the advantage that they can act
simultaneously as classifiers, content-addressable memories, and
carry out probabilistic inference. We demonstrate these features
in a MNIST hand-written digit task (LeCun et al., 1998), using
networks consisting of two layers, one visible and one hidden
(Figure 3).

Learning results are summarized in Table 1. The spiking S2M
appears to slightly outperform the S2M, although a direct
comparison between the two is not possible because the
sampling mechanism and the batch sizes are different. We
find that spiking S2Ms attain classification error rates that
slightly outperform the machine learning algorithm (error
rates: spiking S2M 4.4 vs. RBM 5%), even after much fewer
repetitions of the dataset (Figure 4). To date, this is the best
performing spike-based unsupervised learner on MNIST. The
spiking network implementing the spiking S2M is many times
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FIGURE 3 | The net work architecture consists of a visible and a hidden

layer. The visible layer is partitioned into 784 sensory (data) neurons (vd ) and

10 class label neurons (vc). During data presentation, the activities in the

visible layer are clamped to the data, consisting of a digit and its label (one-hot

coded). In all models, the weight matrix between the visible layer and the

hidden layer is symmetric.

TABLE 1 | Error rates on MNIST hand-written digits task.

Model, nH = 500, 60 k digits training set MNIST Error

spiking S2M + Event-driven CD (this work) 4.4%

spiking S2M + Event-driven CD + 74% connection pruning

+ relearning (this work)

5.0%

spiking S2M + Event-driven CD + 4 bit synaptic weights (this

work)

5.2%

spiking S2M + Event-driven CD + 2 bit synaptic weights (this

work)

7.8%

S2M + Standard CD (this work) 4.5%

Gibbs Sampling + Standard CD 4.7%

Neural Sampling + Event-driven CD (Neftci et al., 2014) 8.1%

Neural Sampling + Event-driven CD (Neftci et al., 2014) (5

bits post-learning rounding)

10.6%

smaller than the best performing spike-based unsupervised
learner to date (1294 neurons 800 k synapses vs. 7184 neurons, 5
M synapses) (Diehl and Cook, 2015). For comparisons with other
recent techniques for unsupervised learning in spiking neural
networks, we refer the reader to Diehl and Cook (2015), which
provides a recent survey of the MNIST learning task with spiking
neural networks.

We tested the speed of digit classification under the trained
S2M.We computed the prediction after sampling for a fixed time
window that we varied from 0 to 300 ms (Figure 5). Results show
that the trained network required approximately 250 ms to reach
the lowest error rate of 4.2%, and that only 13% of the predictions
were incorrect after 50 ms.

Similarly to RBMs, the S2M learns a generative model of
the MNIST dataset. This generative model allows to generate
digits and reconstruct them when a part of the digit has been
occluded. We demonstrate this feature in a pattern completion
experiment where the right half of each digit was presented to the
network, and the visible neurons associated to the left half of the
digit were sampled (Figure 6). In most cases, the S2M correctly
completed the left half of the digit. Figure 6 also illustrates the
dynamics of the completion, which appears to reach a stationary

FIGURE 4 | The S2M outperforms its RBM counterpart at the MNIST

task. The RBM, the S2M, and the continuous-time spiking S2M were trained

to learn a generative model of MNIST handwritten digits. The S2M model is

identical to the RBM except that it consists of threshold units with stochastic

blank-out synapses with probability 50%. The recognition performance is

assessed on the testing dataset which was not used during training (10,000

digits). Error rate in the RBM starts increasing after reaching peak

performance, mainly due to decreased ergodicity of the Markov chains and

overfitting. Learning in the S2M is slower than in the RBM, as reported with

other models using DropConnect (Wan et al., 2013) but it is effective in

preventing overfitting. At the end of the training, the recognition performance

of the spiking S2Ms (S3M) averaged over eight runs with different seeds

reached 4.6% error rate. Due to the computational load of running the

spike-based simulations on the digital computer, the spiking S2M was halted

earlier than the RBM and the S2M. In spite of the smaller number of digit

presentations, the spiking S2M outperformed the RBM and the S2M. This is

partly because weight updates in the spiking S2M are undertaken during each

digit presentation, rather than after each minibatch. The curves are plotted up

to the point where the best performance is reached.

FIGURE 5 | Accuracy evaluation in the spiking S2M. To test recognition,

for each digit in the test dataset (10,000 digits), class neurons in the S2Ms are

sampled for up to 300ms. The classification is read out by identifying the

group of class label neurons that had the highest activity and averaging over all

digits of the test set. The error rate after 50ms of sampling was above 13%

and after 250ms the error rates typically reached their minimum for this trained

network (4.2%, horizontal bar).

state after about 200ms. Overall, these results show that the S2M
can achieve similar tasks as in RBMs, at a similar or better
recognition performance while requiring fewer dataset iterations
during learning.

3.2. Representations Learned with
Synaptic Sampling Machines are Sparse
In deep belief networks, discriminative performance can improve
when using binary features that are only rarely active (Nair and
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Hinton, 2009). Furthermore, in hardware sparser representations
result in lower communication overhead, and therefore lower
power consumption.

To quantify the degree of sparsity in the RBM and the S2M,
we computed the average fraction of active neurons. For a similar
parametrization, the average activity ratio of S2Ms is much
lower than that of RBMs (Figure 7). RBMs can be trained to be
sparse by added sparsity constraints during learning (Lee et al.,
2008), but how such constraints can map to spiking neurons and
synaptic plasticity rules is not straightforward. In this regard, it is
remarkable that S2Ms are sparse without including any sparsity
constraint in the model. The difference in S2M and the S3M
curves is likely to be caused by different parameters in the spiking
and the non-spiking S2M, as these cannot be exactly matched.

One can gain an intuition on the cause for sparsity in the S2M
by examining the network states during learning: In the absence

FIGURE 6 | Pattern completion in the spiking S2M. (A) The right half of a

digit and its label is presented to the visible layer of the S2M. The ensuing

activity in the visible layer is partitioned in 100ms bins and the average activity

during each bin is presented in the color plots to the right. The network

completes the left half of the digit. (B) Raster plot of the pattern completion for

the first row of (A).

FIGURE 7 | For a similar parametrization, S2Ms learn sparser

representations than RBMs. The curves plot the average number of active

units during learning in the hidden layer, computed over 50 digits for the S2M

and the RBM, and 1000 digits for the spiking S2M. In the case of the

spiking S2M (S3M), the average activity ratio is the average firing rate of the

neurons in the network divided by the maximum firing rate t−1
ref

. The colored

dot indicates the point where the peak of the recognition accuracy was

reached. Nearly three times fewer units were active in the S2M than in the

RBM at the designated points, and even fewer in the case of the spiking S2M.

of additive noise, the input-output profile of leaky I&F neurons
near the rheobase (minimal current required to cause the neuron
to spike) is rectified-linear. Consequently, without positive inputs
and positive bias values, the spiking neuron cannot fire, and
thus the pre-synaptic weights cannot potentiate. By selecting
bias values at or below zero, this feature causes neurons in
the network to be progressively recruited, thereby promoting
sparsity. This is to be contrasted in the case of neurons with
additive noise (such as white noise with constant amplitude),
which can fire even if the inputs are well below rheobase. In the
S2M, the progressive recruitment can be observed in Figure 8:
early in the training, hidden neurons are completely silent during
the reconstruction phase. Because there is no external stimulus
during the reconstruction phase, only neurons that were active
during the data phase are active during the reconstruction phase.
After the presentation of 60 digits, the activity appears to “grow”
from the data phase. Note that similar arguments can be made in
the case of S2Ms implemented with threshold neurons.

3.3. Robustness of spiking S2Ms to
Synapse Pruning and Weight
Down-sampling
Sparse networks that require using very few bits for storage can
have a lower memory cost, along with a smaller communication
and energy footprint. To test the storage requirements for
the spiking S2M and its robustness to pruning connections,
we removed all synapses whose weights were below a given
threshold. We varied the threshold such that the ratio of
remaining connections spanned the range [0%, 100%].

The resulting recognition performance, plotted against the
ratio of connections retained, is shown in Figure 9A (black
curve). We then re-trained the spiking S2M over 32 epochs and
tested against 10, 000 images from the MNIST test dataset. The
re-learning substantially recovered the performance loss caused
by the weight pruning as shown in Figure 9A (red curve). This
result suggests that only a relatively small number of connections
play a critical role in the underlying model for the recognition
task.

3.3.1. Learning Low Precision Weight Synapses
Dedicated memory for storing the synaptic connectivity table
and the synaptic weights often occupies the largest area in
neuromorphic devices (Merolla et al., 2014; Moradi and Indiveri,
2014). Therefore, the ability to reduce the synaptic precision
required for the operation of an algorithm can be very beneficial
in hardware. We quantify the effects of lowered precision
in inference by downsampling the synaptic weights, while
performing computation at full precision. In the context of a
hardware implementation, this results in lower memory costs
since fewer bits can be used to store the same network. To test
the performance of the spiking S2M with lowered resolution, we
truncated the weights to a single decimal point. The resulting
weights were restricted to less than 128 unique values (7 bits).
In Figure 9B, we truncated the weights of the previously pruned
network to 7 bits, and examined the results over the range of
retained connections. The results of testing 10,000 samples of
MNIST on this network are shown in Figure 9B. The error rate
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FIGURE 8 | (A–C) Spike rasters during eCD learning. The data phase is 0− 50ms and the reconstruction phase is 50− 100ms, repeated every 100ms for a different

digit of the training set. Due to the deterministic neural dynamics, a neuron receiving no input can never fire if its bias is below the rheobase (i.e., the minimum amount

of current necessary to make a neuron fire). Consequently, at the beginning of learning, the hidden neurons are completely silent in the reconstruction phases, and are

gradually recruited during the data phase of the eCD rule (e.g., see 50ms in B).

was about 8 with 12.5% of the total synaptic weights retained and
about 5 with 49% of the connections retained.

Another recently proposed technique for reducing the
precision of the weights while minimizing impact on
performance is the dual-copy rounding technique (Stromatias
et al., 2015). In the context of our sampling machine, the key idea
is to sample using reduced precision weights, but learn with full
precision weights. Dual copy rounding was shown to outperform
rounding of the weight after learning.

Training the spiking S2M with dual-copy rounding at 4-bit
weights (16 different weight values) resulted in 5.2% error rate
at the MNIST task, and rounding at 2 bits (4 weight values)
increased this number to 7.8%. Synaptic weight resolution of 4
bits is recognized as a sweet spot for hardware (Pfeil et al., 2012;
Merolla et al., 2014). Furthermore, it is a plausible synaptic weight
precision for biological synapses: recent analysis of synapses in
the rat Hippocampus suggested that each synapse could store
about 4–5 bits of information (Bartol et al., 2015).

We note that the dual-copy approach is only beneficial
at the inference stage (post-learning). During inference, the
high-precision weights can be dropped and only the low-
precision weight are maintained. However, during learning
it is necessary to maintain full precision weights. Learning
with low precision weights is possible using stochastic
rounding techniques (Muller and Indiveri, 2015). We could
not test stochastic rounding in spiking S2Ms because the
symmetry requirements in the spiking neural network
connectivity prevent a direct, efficient implementation in
multithreaded simulators (such as the used Auryn neural
simulator).

3.4. Synaptic Operations and Energy
Efficiency in S2Ms
Power consumption in brain-inspired computers is often
dominated by synaptic communication and plasticity. Akin
to the energy required per multiply accumulate operation

(MAC) in digital computers, the energy required by each
synaptic operation (SynOp) is one representative metric of the
efficiency of brain-inspired computers (Merolla et al., 2014).
The reason is that every time one neuron spikes, a large
number of synapses of other, possibly physically distant neurons
are updated (in practice, hundreds to ten of thousands of
synapses).

A SynOp potentially consumes much less energy than a
MAC even on targeted GPGPUs, and improvements in energy
per SynOP directly translate into energy efficiencies at the
level of the task. However, these operations are not directly
comparable because it is unclear how many SynOps provide the
equivalent of a MAC operation at a given task. To provide a
reference to this comparison, we count the number of SynOps
and approximate number of MACs necessary to achieve a
target accuracy at the MNIST task for spiking S2Ms and RBMs,
respectively (Figure 10). Strikingly, the spiking S2M achieves
SynOp-MAC parity at this task. Given that the energy efficiency
of a SynOp is potentially orders of magnitude lower than
the MAC (Merolla et al., 2014; Park et al., 2014), this result
makes an extremely strong case for hardware implementations
of spiking S2Ms. The possible reasons for this parity are two-
fold: (1) weight updates are undertaken after presentation
of every digit, which mean that fewer repetitions of the
dataset are necessary to achieve the same performance. (2)
only active connections incur a SynOp. In the RBM, the
operations necessary for computing the logistic function, random
numbers at the neuron, and the weight updates were not
taken into account and would further favor the spiking S2M.
The operation necessary for the stochastic synapse in the
spiking S2M (a Bernoulli trial) is likely to be minimal because the
downstream synapse circuits do not need to be activated when
the synapse fails to transmit. Furthermore, the robustness of
spiking S2Ms to the pruning of connections (described in Section
3.3) can further strongly reduce the number of SynOps after
learning.
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FIGURE 9 | Pruning connections in the spiking S2M and re-learning.

(A) We test the spiking S2M’s robustness to synapse pruning by removing all

connections whose weights were below a given threshold. We quantified the

effects of pruning by testing the pruned spiking S2M over the entire MNIST

test set (black curve). After pruning, we re-trained the network over 32 epochs

(corresponding to 32 k sample presentations), which recovered most of the

loss due to pruning (red curve). (B) Reduced synaptic weight precision in the

spiking S2M. After learning, pruning and re-learning, the synaptic weights

were downsampled by truncating them to a single decimal point. There

remained fewer than 128 unique weight values in the final matrix. The

horizontal line is at 4.4%.

4. DISCUSSION

The Boltzmann Machine stems from the idea of introducing
noise into a Hopfield network (Hinton and Sejnowski, 1986). The
noise prevents the state from falling into local minima of the
energy, enabling it to learn more robust representations while
being less prone to overfitting. Following the same spirit, the
S2M introduces a stochastic component to Hopfield networks,
but rather than the units themselves being noisy, the connections
are noisy.

The stochastic synapse model we considered is blank-out
noise, where the synaptic weight is multiplied by binary random
variable. This is to be contrasted with additive noise, where the
stochastic term such as a white noise process is added to the
membrane potential. In artificial neural networks, multiplicative
noise forces weights to become either sparse or invariant to
rescaling (Nalisnick et al., 2015). When combined with rectified
linear activation functions, multiplicative noise tends to increase
sparsity (Rudy et al., 2014). Multiplicative noise makes neural
responses sparser: In the absence of additive noise, neurons have
activation functions very close to being rectified linear (Tuckwell,
2005). In the absence of a depolarizing input, the neuron cannot

FIGURE 10 | The spiking S2M achieves SynOp-MAC parity at the

MNIST task. The number of multiply-accumulate (MAC) operations required

for sampling in the RBM during learning is compared to the number of

synaptic operations (SynOps) in the spiking S2M during the MNIST learning

task. At this task, the spiking S2M (S3M) requires fewer operations to reach

the same accuracy during learning. Other necessary operations for the RBM,

e.g., additions, random number generations, logistic function calls, and weight

updates were not taken into account here, and would further favor the

spiking S2M. One reason for the SynOp-MAC parity is that learning in the

spiking S2M requires fewer repetitions of data samples to reach the same

accuracy compared to the RBM. Another reason is that only active

connections in the spiking S2M incur a SynOp. SynOp-MAC parity between

the spiking S2M and the RBM is very promising for hardware implementations

because a SynOp in dedicated hardware potentially consumes much less

power than a MAC in a general purpose digital processor. Note that the

non-spiking S2M is not competitive on this measure because it requires N2

random number generations per Gibbs sampling step in addition to the same

number of MACs as the RBM. The curves are plotted up to the point where

the best performance is reached.

fire, and thus its synapses cannot potentiate. Consequently, if
the parameters are initiated properly, many neurons will remain
silent after learning.

Event-driven CD was first demonstrated in a spiking neural
network that instantiated a MCMC neural sampling of a target
Boltzmann distribution (Neftci et al., 2014). The classification
performance of the original model was limited by two properties.
First, every neuron was injected with a (additive) noisy current
of very large amplitude. Neurally speaking, this corresponded to
a background Poisson spike train of 1000Hz, which considerably
increased the network activity in the system. Second, in spite of
the large input noise, neurons fired periodically at large firing
rates due to an absolute refractory period. This periodic firing
evoked strong spike-to-spike correlations (synchrony) that were
detrimental to the learning and the sampling. Consequently, the
performance of eCD in an MNIST task was significantly lower
than when standard CD was used (8.1% error rate).

The performance of the spiking S2M in the MNIST hand-
written digits task vastly improved accuracy metrics over our
previous results while requiring a fraction of the number of
synaptic operations. The reduction in the number of operations
was possible because our previous neuron model required an
extra background Poisson spike train for introducing noise,
whereas the S2M generates noise through stochastic synapses.
The improvement in accuracy over our earlier results in Neftci
et al. (2014) stems from at least two reasons: (1) Spike-to-spike
decorrelations caused by the synaptic noise better condition
the plasticity rule by preventing pair-wise synchronization; (2)
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Regularization, whichmitigates overfitting and the co-adaptation
of the units. In the machine learning community, blank-out
noise is also known as DropConnect (Wan et al., 2013). It was
demonstrated to perform regularization, which helped achieve
state-of-the-art results on several image recognition benchmarks,
including the best result so far on MNIST without elastic
distortions (0.21%). Note that the S2M model did not include
domain-specific knowledge, which suggests that its performance
may generalize to other problems and datasets.

4.1. Synaptic Unreliability in the Brain
The probabilistic nature of synaptic quantal release is a well
known phenomenon (Katz, 1966). Unreliability is caused by
the probabilistic release of neurotransmitters at the pre-synaptic
terminals (Allen and Stevens, 1994). Detailed slice and in vivo
studies found that synaptic vesicle release in the brain can
be extremely unreliable— typically 50% transmission rate and
possibly as low as 10% in in vivo—at a given synapse (Branco
and Staras, 2009; Borst, 2010). Such synaptic unreliability can
be a major source of noise in the brain (Calvin and Stevens,
1968; Abbott and Regehr, 2004; Faisal et al., 2008; Yarom and
Hounsgaard, 2011). Assuming neurons maximize the ratio of
information theoretic channel capacity to axonal transmission
energy, synaptic failures can lower energy consumption without
lowering the transmitted computational information of a neuron
(Levy and Baxter, 2002). Interestingly, an optimal synaptic
failure rate can be computed given the energetic cost synaptic
and somatic activations. Another consequence of probabilistic
synapses is that, via recurrent interactions in the networks,
synaptic unreliability would be the cause of Poisson-like activity
in the pre-synaptic input (Moreno-Bote, 2014).

In the S2M, the multiplicative effect of the blank-out noise
is manifested in the pre-synaptic input by making its variance
dependent on the synaptic weights and the network states.
Our theoretical analysis suggests that, in the S2M’s regime of
operation, increased variability has the effect of reducing the
sensitivity of the neuron to other synaptic inputs by flattening the
neural transfer curve. With multiplicative noise, input variability
can be high when pre-synaptic neurons with strong synaptic
weights are active. In the S2M, such an activity pattern emerges
when the probability of a given state under the learned model
and the sensory data is high. That case suggests that the network
has reached a good estimate and should not be easily modified by
other evidence, which is the case when the neural transfer curve is
flatter. Synaptic unreliability can thus play the role of a dynamic
normalization mechanism in the neuron with direct implications
on probabilistic inference and action selection in the brain.

Aithchison and Latham suggested the “synaptic sampling
hypothesis” whereby pre-synaptic spikes would draw samples
from a distribution of synaptic weights (Aitchison and Latham,
2013). This process could be a mechanism used in the brain to
represent uncertainty over the parameters of a learned model
(Aitchison and Latham, 2014). Stochasticity can be carried to the
learning dynamics as well. Recent studies point to that fact, when
learning the blank-out probability at the synapses is also learned
(Al-Shedivat et al., 2015a,b), the learned neural generativemodels
capture richer representations, especially when labeled data is

sparse. Kappel and colleagues also showed that stochasticity
in the learning dynamics improves generalization capability of
neural network.

The blank-out noise model used in this work is a particular
case of the studies above, whereby the weights of the synapses
are either zero or the value of the stored weight with a fixed
probability. In contrast to previous work, we studied the learning
dynamics under this probabilistic synapse model within an
otherwise deterministic recurrent neural network. Besides the
remarkable fact that synaptic stochasticity alone is sufficient for
sampling, it enables robust learning of sparse representations and
an efficient implementation in hardware.

4.1.1. Related Work on Mapping Machine Learned

Models onto Neuromorphic Hardware
Many approaches for configuring spiking neural networks
rely on mapping pre-trained artificial neural networks onto
spiking neural networks using a firing rate code (O’Connor
et al., 2013; Cao et al., 2015; Diehl et al., 2015; Hunsberger
and Eliasmith, 2015). Many recent work show that the
approximations incurred in brain-inspired and neuromorphic
hardware platforms (O’Connor et al., 2013; Merolla et al., 2014;
Neftci et al., 2014; Cao et al., 2015; Das et al., 2015; Diehl
et al., 2015; Marti et al., 2015) including reduced bit precision
(Marti et al., 2015; Muller and Indiveri, 2015; Stromatias et al.,
2015) have a minor impact on performance. Standard artificial
neural networks such as deep convolutional neural networks
and recurrent neural networks trained with Rectified linear units
(ReLU) can be mapped on spiking neurons by exploiting the
threshold-linear of integrate and fire neurons (Cao et al., 2015;
Diehl et al., 2015). Such mapping techniques have the advantage
that they can leverage the capabilities of existing machine
learning frameworks such as Caffe (Jia et al., 2014) or pylearn2
(Goodfellow et al., 2013) for brain-inspired computers. Although
mapping techniques do not offer a solution for on-line, real-
time learning, they resulted in the best performing spike-based
implementations on standard machine learning benchmarks
such as MNIST and CIFAR.

4.1.2. Related work on Online Learning with Spiking

Neurons
Training neural networks is a very time- and energy-consuming
operation, often requiring multiple days on a computing
cluster to produce state-of-the-art results. Using neuromorphic
architectures for learning neural networks can have significant
advantages from the perspectives of scalability, power dissipation
and real-time interfacing with the environment.While embedded
synapses require additional chip resources and usually prohibits
the implementation of more complex rules, a recent survey of
software simulators argues that dedicated learning hardware is a
prerequisite for real-time learning (or faster) in spiking networks
(Zenke and Gerstner, 2014). This is because the speed-up margin
of parallelism encounters a hard boundary due to latencies in the
inter-process communications.

The S2M is an ideal candidate for embedded, online learning,
where plasticity is implemented locally using a dedicated on-chip
device (Azghadi et al., 2014). These operate on local memory
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(e.g., synaptic weights) using local information (e.g., neural
events) which will lead to more scalable, faster and more power
efficient learning compared to computer clusters, and the ability
to adapt in real-time to changing environments.

Previous work reported on on-line learning of MNIST
classification with spiking neurons. A hierarchical spiking neural
network with a STDP-like learning rule achieved 8% error rate
on the MNIST task (Beyeler et al., 2013). Using models of non-
volatile memory devices as synapses and STDP learning, error
rates of 6.3% were reported (Querlioz et al., 2015). Diehl and
Cook demonstrated the best results on unsupervised learning
with spiking neural networks so far (Diehl and Cook, 2015).
Their network model is comparable to competitive learning
algorithms where each neuron learns a representation of a
portion of the input space. Their architecture could achieve
up to 5% error rate. The S2M outperformed this best result
using a much smaller number of neurons and synapses and
relying on dynamics that are more amenable to hardware
implementations. However, the number of repetitions to reach
this performance using the spiking S2Mwas larger than the above
studies (512,000 presentations vs. 40,000 in Diehl and Cook,
2015). Our neural sampling based architecture with stochastic
neurons and deterministic synapses achieved peak performance
after 15,000 samples (Neftci et al., 2014), suggesting that the
slowness is partly caused by the stochastic connections. Similar
results have been observed using the DropConnect algorithm
(Wan et al., 2013).

4.2. Implementations of Synaptic
Unreliability in Neuromorphic Hardware
At least four studies reported the implementation of blank-out
synapses for neuromorphic systems using the Address Event
Representation (AER) (Goldberg et al., 2001; Choudhary et al.,
2012; Corradi et al., 2014; Merolla et al., 2014). In these studies,
synaptic unreliability was mainly used as a mechanism for
increasing the resolution of the synaptic weights in hardware
(which is often binary). In fact, the mean of a synaptic current
produced by a stochastic synapse is the probability times the
weight of the synapse. By allowing the probability to take values
with high precision, the effective resolution of the synapse weight
can be increased. The downside is that this approach is valid
only when the neural computations are rate-based, such as in

the neural engineering framework (Eliasmith and Anderson,
2004) where synaptic unreliability in neuromorphic systems was
primarily applied (Choudhary et al., 2012; Corradi et al., 2014).

In rate-based models, the variability introduced by stochastic
synapses is dealt with by averaging over large populations of
neurons or by taking temporal averages. Implementations based
on firing rate codes thus disregard spike times. From a hardware
perspective, firing rate codes often raise the question whether
a spike-based hardware platform is justifiable over a direct,
dedicated implementation of the machine learning operations,
or even a dedicated implementation of the rate dynamics (Wang
et al., 2015). In contrast, codes based on neural sampling, synaptic
sampling or phase critically depend on spike statistics or the
precise timing of the spikes. For example, in the S2M, synaptic
unreliability and the variability that it causes are an integral
part of the sampling process. The variability introduced by
the multiplicative property of synaptic noise is exploited both
as a mechanism that generates sigmoidal activation and that
improves learning. Results from the network dynamics suggest
that the introduced variability generates sparser representations,
and in some cases are insensitive to parameter rescaling. Thus,
our work suggests that synaptic unreliability can play much more
active roles in information processing.

The robustness and to synaptic pruning and weight down-
sampling is a promising feature to further decrease the
hardware footprint of S2M. However, these two features are
currently introduced post-learning. Learning procedures that
could introduce synaptic pruning and synaptic generation during
(online) learning is the subject of future research.
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APPENDIX

TABLE A1 | Parameters used for the neural networks.

σ Noise amplitude spiking S2M, visible neurons 4.47 nA

p Blank-out probability at synapse All models 0.5

τr Refractory period All spiking S2M 4ms

τsyn Time constant of recurrent, and bias synapses All spiking S2M 4ms

τbr “Burn-in” time of the neural sampling All spiking S2M 10ms

gL Leak conductance All spiking S2M 1 nS

urst Reset Potential All spiking S2M 0V

C Membrane capacitance All spiking S2M 1pF

θ Firing threshold All spiking S2M 100mV

2T Epoch duration All spiking S2M 100ms

W Initial weight matrix All spiking S2M N(0,0.3)

All S2M, RBM N(0,0.1)

bv,bh Initial bias for layer v and h All spiking S2M −0.15

All S2M, RBM 0

Tsim Simulation time per epoch All spiking S2M 100 s

Nv,Nh Number of visible and hidden units All models, 794,500

Except in Figure 2 5,5

Nc Number of class label units All models 10

Nsamples Total number of MNIST sample presentations Figure 4, spiking S2M 512000

Figure 4, S2M, RBM 75 · 106

τSTDP Learning time window All models 10ms

ǫq Learning rate for W All spiking S2M 3.85 · 10−6

ǫ All S2M, RBM 0.025

ǫb Learning rate for bv, bh All spiking S2M 1.43 · 10−5

All S2M, RBM .025

nbatch Batch size All S2M, RBM 50

W Distribution of weight parameters Figure 2 N(−0.3, 1.5)

bh,bv Distribution of bias parameters Figure 2 N(0,1.5)
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