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Human capacity for entraining movement to external rhythms—i.e., beat keeping—is

ubiquitous, but its evolutionary history and neural underpinnings remain a mystery.

Recent findings of entrainment to simple and complex rhythms in non-human animals

pave the way for a novel comparative approach to assess the origins and mechanisms

of rhythmic behavior. The most reliable non-human beat keeper to date is a California

sea lion, Ronan, who was trained to match head movements to isochronous repeating

stimuli and showed spontaneous generalization of this ability to novel tempos and to

the complex rhythms of music. Does Ronan’s performance rely on the same neural

mechanisms as human rhythmic behavior? In the current study, we presented Ronanwith

simple rhythmic stimuli at novel tempos. On some trials, we introduced “perturbations,”

altering either tempo or phase in the middle of a presentation. Ronan quickly adjusted

her behavior following all perturbations, recovering her consistent phase and tempo

relationships to the stimulus within a few beats. Ronan’s performancewas consistent with

predictions of mathematical models describing coupled oscillation: a model relying solely

on phase coupling strongly matched her behavior, and the model was further improved

with the addition of period coupling. These findings are the clearest evidence yet for

parity in human and non-human beat keeping and support the view that the human

ability to perceive and move in time to rhythm may be rooted in broadly conserved neural

mechanisms.

Keywords: sensorimotor synchronization, rhythmic entrainment, neural oscillators, sea lions, music cognition and

perception, non-human models

INTRODUCTION

Auditory-motoric entrainment—the coordination of motor movement with simple and complex
rhythmic sounds—has a strong presence in human culture and is found across all human societies
(Clayton et al., 2005). This phenomenon of “beat keeping” was believed to be unique to humans
(Wallin et al., 2000; Bispham, 2006; Zatorre et al., 2007), but new findings in non-human animals
have decisively put that idea to rest. Evidence for some faculty to flexibly entrain movement to
simple metronome-like stimuli has been found in bonobos (Large and Gray, 2015), chimpanzees
(Hattori et al., 2013), and budgerigars (Hasegawa et al., 2011). The ability to entrain to more
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complex musical stimuli has been shown in cockatoos (Patel
et al., 2009), parrots (Schachner et al., 2009), and most reliably,
a California sea lion (Cook et al., 2013). Preliminary evidence
suggesting beat-keeping behavior has also been identified for
elephants (Schachner et al., 2009) and horses (Bregman et al.,
2013).While hypotheses have been advanced suggesting that beat
keeping is dependent on specialized and relatively rare neural
adaptations (Patel et al., 2009; Merchant and Honing, 2013),
or exposure to auditory rhythm during critical developmental
periods (Schachner, 2012), it is increasingly difficult to identify
candidate traits exclusive to the phylogenetically distant species
now shown capable of rhythmic entrainment. This suggests
that rather than being a derived ability, this faculty is instead
broadly conserved, supported by mechanisms of domain-general
sensorimotor synchronization found across the animal kingdom
(see Wilson and Cook, 2016).

Performance dynamics and variability in human rhythmic
behavior have been extensively and carefully studied (see Repp,
2005; Large, 2008; Repp and Su, 2013 for reviews). Although
beat-keeping behavior has now been ascribed to a number of
non-human species, the mechanisms have not yet been explored
outside of humans. If human rhythm is broadly conserved,
beat keeping in other animals should be consistent with the
principles governing the behavior in humans. One parsimonious
and well-established theory of beat keeping is that of neural
resonance. This theory proposes that the perception of pulse
in simple and complex rhythms, and associated behavioral
synchronization to those rhythms, arise from intrinsic properties
of neural oscillation (Large and Snyder, 2009; Large et al.,
2015). Unlike information-processing theories, in which beat
perception and synchronization are separate computational
processes that require specialized neural circuitry (Vorberg and
Wing, 1996; Repp and Keller, 2004; Patel, 2006; Patel and Iversen,
2014), the theory of neural resonance states that both phenomena
are byproducts of the physical principles of coupled oscillation
(Large, 2008), and does not presuppose any specialized and
potentially restricted neural adaptations beyond auditory-motor
coupling to explain auditory motor entrainment.

Neural resonance theory is supported by the well-established
finding of neural oscillation: interaction between excitatory
and inhibitory neuronal populations gives rise to population
rhythms throughout the brain, including across sensory and
motor networks (Brunel, 2003; Börgers and Kopell, 2003; Buzsáki
and Draughn, 2004; Stefanescu and Jirsa, 2008). In brief, when
acoustic stimuli are presented in a periodic pattern, auditory
oscillations spontaneously entrain to the structure of the stimulus
stream (Will and Berg, 2007; Nozaradan et al., 2011, 2012).
Presumably, these auditory oscillations then induce synchronized
neural oscillations in coupledmotor systems, leading to rhythmic
behavior with a strong phase and tempo relationship to the
auditory stimulus (e.g., Loehr et al., 2011). Models of neural
resonance are neurologically plausible and fully compatible
with widely accepted models of functional connectivity in the
brain (see Biswal et al., 1995). The brain can be described
as a complicated set of overlapping networks linking neural
populations into functional units (Bullmore and Sporns, 2009),
and connectivity between these units can be described in

terms of synchrony of firing rates between neural populations
(Biswal et al., 1995; Greicius et al., 2003). Perception and
cognition are then posited to emerge out of the action and
interaction of these networks (Sporns et al., 2004; Bressler and
Menon, 2010). Importantly, although neural resonance does not
require specialized neural mechanisms beyond linked auditory
and motor networks, beat-keeping behavior is not necessarily
obligate and automatic. Learning clearly changes the properties
of coupling between auditory and motor networks, and attention
and intention play important roles in producing or inhibiting
beat-keeping behavior (Large and Jones, 1999; Repp and Keller,
2004).

An advantage of this sort of theoretical analysis is the
ability to link complex oscillation of high dimensional neuronal
populations with simpler lower dimensional population- and
behavior-level models that capture much of the behavioral
richness observed in high dimensional systems (Wilson and
Cowan, 1973; Stefanescu and Jirsa, 2008) and that are amenable
to theoretical and computational analysis (Aronson et al., 1990;
Hoppensteadt and Izhikevich, 1996).

Neural resonance models have been used extensively to
accurately describe rhythmic entrainment in humans, for both
simple and complex stimuli. A common experimental approach
uses behavioral paradigms that involve perturbations in both
phase and tempo (Michon, 1967; Large and Palmer, 2002;
Large et al., 2002; Repp and Keller, 2004; Loehr et al., 2011).
Animal synchronization studies have historically attempted to
demonstrate synchronization using statistical methods designed
to show a nonrandom phase relationship between stimulus and
movement (e.g., Patel et al., 2009, see Fisher, 1993; Pikovsky et al.,
2001). However, to probe the underlying mechanisms, a different
approach is required. One avenue is to perturb the stimulus and
observe relaxation back to steady state behavior (a stable phase
relationship).

Behavioral responses to stimulus perturbations can be
modeled using the same discrete-time model of coupled
oscillation that has been applied to both perception of
rhythmic auditory sequences (Large and Jones, 1999) and
perception-action coordination with rhythmic auditory
sequences (deGuzman and Kelso, 1991; Loehr et al., 2011).
Conceptually, a neural/behavioral oscillation is coupled to a
rhythmic auditory stimulus that consists of brief acoustic events.
The model assumes that the behavioral oscillation is temporally
continuous, and the stimulus sequence is temporally discrete,
illustrated in Equation (1).

φn+1 = φn + � − α sin φn (1)

Here, φn is the phase of the behavioral oscillation at which
acoustic event n occurs. The model predicts the phase of the
behavioral oscillation φn+1 at the next acoustic event, given the
relative frequency of the behavioral oscillation and stimulus,
� = 2π fosc/fstim, and the coupling between the two, −α sin φn.
Generic models such as Equation (1) are particularly powerful
because they make strong predictions regarding both steady
state (synchronization) and transient (relaxation) behavior and
are easily implemented and analyzed. However, they have not
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yet been applied to examine rhythmic behavior in non-human
animals.

The most reliable and precise non-human beat keeper known
is Ronan, a California sea lion (Zalophus californianus) who was
trained using operant methods to match her head movement to a
simple isochronous stimulus, thus “bobbing” her head in time to
the rhythmic beats. Once she had learned to bob in time to simple
stimuli at set tempos, she successfully transferred to novel tempos
and stimuli, including music at multiple tempos (Cook et al.,
2013). To date, Ronan’s results represent the most extensive and
robust dataset of beat keeping in a non-human animal. This sea
lion’s ability to entrain her body movement to sound makes her a
valuable candidate for cross-species testing of theories and allows
the examination of the underlying mechanisms in a broader
comparative approach.

Here, we apply neural resonance theory to an experimental
study of Ronan’s entrainment behavior, in which we tested her
ability to adapt to sudden changes in both the phase and tempo
of an isochronous repeating stimulus. Although—like humans—
Ronan had previously shown strong entrainment to complex
musical stimuli, we used simple stimuli comparable to those
presented to humans in similar studies. To determine whether
her performance was consistent with theories of neural resonance
as is seen in humans, we evaluated her performance with a
discrete-time model of coupled oscillation (see Equation 1). We
hypothesized that Ronan’s beat-keeping performance, and her
response to phase and tempo perturbations, would be well fit by
simple models of phase and period coupling.

METHODS

Subject
The subject was “Ronan,” a 7-year-old female California sea lion
(NOA0006602), who was housed at Long Marine Laboratory
at the University of California Santa Cruz. Ronan was a
healthy individual that was placed into captivity around age one
after repeated stranding incidents and rescues. She previously
participated in a study examining her ability to synchronize
to auditory rhythms (Cook et al., 2013). In brief, Ronan was
trained to match regular head movement to a simple isochronous
stimulus at tempos of 80 and 120 beats per minute (bpm). She
then successfully generalized the behavior to novel tempos of
72, 88, 96, 108, and 132 bpm with the simple stimulus, and to
novel musical stimuli at tempos of 104, 108, 117, 124, 130, 137,
and 143 bpm. Following data collection for Cook et al. (2013),
Ronan received intermittent “practice” sessions (typically no
more than one per week) with familiar simple stimuli and several
novel musical stimuli. During this time, Ronan also participated
in several other cognitive and perceptual studies unrelated to
rhythm (Reichmuth et al., 2013; Cunningham et al., 2014a,b;
Cook et al., 2015; Cunningham and Reichmuth, 2016).

The current experiment occurred from September 2015 to
January 2016. During this time, Ronan received a daily diet of
5.7–6.6 kg of freshly thawed, cut herring and capelin fish. She
was maintained at a healthy weight of ∼72 kg, and her diet
was not constrained for experimental purposes. Ronan typically

participated in five sessions per week, receiving∼40% of her diet
during these experimental sessions.

The study was conducted without harm under National
Marine Fisheries Service marinemammal research permits 14535
and 18902, with the approval and oversight of the Institutional
Animal Care and Use Committee at the University of California
Santa Cruz.

Apparatus
Testing occurred in a 3.6 × 5.2m enclosure containing a 1.2m
deep, 2.25m square pool, and surrounding deck space. The
experimental setup (similar to that used in Cook et al., 2013)
consisted of a 1.1 × 1.5m painted wooden panel mounted
vertically in the doorway of the enclosure. A 0.8 × 0.3m raised
wooden platform was placed on the deck facing the panel,
0.4m away. Ronan used this platform to find and maintain a
consistent stationing position prior to each trial. She rested her
foreflippers on the platform while directly facing the panel, and
could then move her head freely without touching the panel.
An assistant sitting quietly outside the enclosure and behind
the panel delivered fish rewards through a short length of PVC
pipe mounted in the panel. The experimenter observed Ronan’s
real-time performance from behind the panel through a 9 cm
diameter convex mirror placed 2m to the side of the flipper
station. Both the experimenter and the assistant were concealed
from Ronan’s view during all trials.

Each session was recorded on a GoPro Hero 2 camera
mounted inside the enclosure, 0.25m above the convex mirror.
The auditory stimuli were projected from an Advent AV570
amplified speaker placed∼1m fromRonan and from the camera.
The absolute broadband received level of the brief auditory
stimuli presented through the speaker was ∼100 dBpeak (re
20 µPa); the equivalent sensation level was 60–80 dB at the
frequency of the test stimuli based on species-typical hearing
sensitivity (Reichmuth et al., 2013). The level of the stimulus was
established to ensure saliency of the auditory cues in an outdoor,
coastal environment.

Stimuli
Stimuli were repetitive click tracks created in Audacity, an open-
source audio editing program. The clicks comprised two overlaid
pure tones of 659 and 1319Hz for a duration of 10ms, as was
used in Cook et al. (2013). Each track began with a series of
beats at a steady rate followed by a single perturbation of either
phase or tempo at a magnitude of ±25, ±15, ±8, or ±3% of
the inter-onset interval (IOI, equivalent to 60 divided by the
tempo in beats per minute). For example, a +15% shift of the
85 bpm condition would be 73.913 bpm. The perturbations were
introduced at a different beat for each condition (between 16 and
25 beats after the beginning of the trial) to prevent prediction of
the onset location. Primary testing was completed at a base tempo
of 85 bpm (705.88ms IOI), to which Ronan had not previously
been exposed; Table 1 lists the perturbation tempos, and their
corresponding IOI values. We also tested Ronan with stimulus
perturbations at two additional novel base tempos (94.444 and
77.273 bpm, ±10% of the 85 bpm condition, see Supplementary
Materials) independently of each other and the main tempo.
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TABLE 1 | Tempo and inter-onset interval perturbation values referenced

to the baseline (no perturbation) condition.

Tempo (bpm) IOI (ms)

Baseline 85.000 705.882

+25% 68.000 882.353

+15% 73.913 811.765

+8% 78.704 762.353

+3% 82.524 727.059

−3% 87.629 684.706

−8% 92.391 649.412

−15% 100.000 600.000

−25% 113.333 529.412

General Procedure
The auditory stimulus was started after Ronan calmly positioned
at the flipper station and oriented toward the panel. The trial was
ended after a predetermined performance criterion of 20 or 40
consecutive, apparently entrained bobs (termed “good” bobs) as
judged by the experimenter in real time, similar to the procedure
used in Cook et al. (2013). Transfer trials (i.e., trials when a
perturbation was presented) were run to a criterion of 20 good
bobs following the perturbation, and baseline trials (those with
no perturbation) were run to a criterion of 40 good bobs starting
at the beginning of the trial. At the beginning of each session,
two “warm-up” trials (at the base tempo with no perturbation)
were presented to confirm stimulus control of the behavior and
run to a criterion of 15–30 apparently entrained beats. Each trial
was terminated with a previously conditioned reinforcer (a sharp
whistle blown by the experimenter that marked the last bob in
the criterial run) followed by a reward of two whole capelin fish
offered to Ronan through the feeding port in the panel. Ronan
then entered the pool for a small fish reward and returned to the
flipper station to begin the next trial.

One experimental replicate at a given base tempo
encompassed 24 trials: one trial at each test condition
(eight phase changes and eight tempo changes for a total of
16 perturbations) and eight unperturbed trials at the base
rate. One session, equivalent to one half of a replicate series,
consisted of two warm-up trials at the base rate followed
by a randomly-shuffled sequence consisting of four baseline
(unperturbed) trials, four tempo perturbations, and four phase
perturbations. The perturbations for both phase and tempo were
each counterbalanced to ensure an equal number of positive
and negative shifts per session. Sessions were broken into three
blocks of four stimulus presentations each (not including the two
warm-up trials), with a short 30 s break between each block, in
which Ronan received four to five half capelin while swimming
calmly in the water.

Ronan completed 10 replicates of the 85 bpm test series during
20 sessions; that is, she completed 10 trials with each of the 16
phase and tempo perturbations (n = 160 perturbation trials,
n = 80 baseline trials). Subsequently, she completed a single
replicate with the two additional base tempos over a total of four
sessions (n = 32 perturbation trials, n = 16 baseline trials).

During two sessions, trials were interrupted by external factors
before the perturbation occurred: once by vocalizations from an
animal in a neighboring enclosure, and once by beeping from
a truck in close proximity to the testing facility. In these cases,
the experimenter immediately stopped the interrupted trial and
proceeded as though the trial had been completed. The aborted
trial was retested at the end of the session, and the interrupted
trials were not included in any analysis.

Video Analysis
We recorded each session at a frame rate of 120 frames per second
(equivalent to a resolution of 8.333ms per frame). Although
Ronan’s behavior was continuous, the video data is necessarily
binned into windows of 8.333ms, which introduces some small
margin of error into any analysis of precise timing. Nevertheless,
a single frame represents, at most, 2% of the IOI.

The primary measure of Ronan’s performance was selected as
the coincidence of the nadir of her head position with the onset
of an auditory beat. Specifically, the height of the tip of the nose
was used as themarker for the inflection point. An observer using
frame-by-frame analysis determined the time of the lowest point
for each head bob, with trials viewed in AvsPmod, an open-source
video editing program. When more than one frame appeared to
show the lowest point, the first of these frames was selected.

Video footage was analyzed independently by two observers.
Inter-observer reliability was determined using a common subset
of practice trials. Out of 136 bobs, the observers agreed on the
frame number corresponding to the lowest point on 127 of
them, and the nine disagreements fell within one frame of each
other; this means that 100% of the observations were within
8.333ms. Considering the 10,777 frames over these 136 bobs,
the calculated Cohen’s kappa (0.933) indicated very high inter-
observer agreement.

To compare the observed head movements to the timing of
the auditory stimuli, we combined the movement data from
video analysis with the timing of beat onset determined from the
corresponding camera audio, sampled at 48 kHz. For each trial,
we located the onset of the first beat by visual analysis of the
waveform to the nearest millisecond using Audacity, and then
calculated times of subsequent beats based on the stimulus tempo
and perturbation location. Because the speaker, the camera, and
Ronan were approximately equidistant, we considered the sound
travel time from the speaker to Ronan as approximately equal to
the sound travel time from the speaker to the camera. Therefore,
we used the audio from the camera for timing and did not
consider the sound travel time in any subsequent calculations.

Statistical Analysis
We quantified Ronan’s performance with circular statistics. As
the analysis was focused on performance following perturbation
rather than overall statistical similarity between movement and
beat, analysis of each transfer trial was restricted to a subset of
bobs: specifically, the 10 bobs preceding the perturbation and
the 20 bobs following. In baseline trials, where there was no
perturbation, the entire trial was included.

In several trials (n = 10), Ronan exhibited “double bobs”
where she bobbed twice for a given beat. This typically occurred
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during the +25% tempo condition of the 85 bpm base tempo,
when she continued moving at the original rate such that when
the first shifted beat occurred, her head was near the highest point
of the bob rather than the lowest. In response to this beat, Ronan
immediately nodded her head in a smaller bobbingmotion before
slowing her overall movement to adapt to the new tempo. These
outlier bobs were easily identified by the shift in angle of her
head in relation to her neck, and were excluded from the analysis.
An example of a double bob can be seen in the first trial of
Supplementary Video 1.

First, the relative phase angle between each head bob and the
nearest stimulus beat was calculated using Equation (2).

φn = 2π(
tbobn − tbeatn

In
) (2)

The phase is expressed, in radians, as the time between a head bob
(tbobn ) and the nearest stimulus beat (tbeatn ), as a proportion of the
inter-onset interval of the beats surrounding the head bob (In).
For all bobs, the relative phase angle was inherently restricted to
a range of −π to π radians, as no bob occurred more than π

radians away from its nearest beat.
We calculated the mean relative phase angle (φ) and mean

vector length (r) for each trial using the argument (Equation 3)
and modulus (Equation 4), respectively, of the sums of the angles
as complex numbers.

φ =
1

n
arg

n∑

j= 1

ei·φj (3)

r =
1

n
abs

n∑

j= 1

ei·φj (4)

The mean vector length, which indicates the concentration of
the mean angle, ranges from 0 (no mean angle) to 1 (perfect
concordance of angles). Together, the mean relative phase
angle and mean vector length specify the strength of Ronan’s
performance on a given trial. For each trial, we used the V-
test to determine whether Ronan’s performance was significantly
different from a mean relative phase of 0, which would indicate
perfect synchrony with the stimulus (Zar, 1999). Again, we
included both pre-perturbation (10 preceding) bobs and post-
perturbation (20 following) bobs in this analysis to provide an
evaluation of her synchronization across each transfer trial; all
bobs within each baseline trial were included.

Relative phase angles for each beat were also averaged across
replicates to obtain an average trial for the baseline and each
perturbation type. We used these averaged trials to fit the
oscillator models.

Model Fitting
The nonlinear equations that describe rhythmic behavior are
often explained using a “circle map,” an equation that produces a
set of phases which predict the phase of a stimulus event relative
to the onset of the behavioral oscillation (Pikovsky et al., 2001;
Large and Palmer, 2002).

φn+1 = φn+2π fronan (tn+1 − tn)−α sinφn (mod−π,π2π) (5)

Equation (5) states that the phase of each successive auditory
event (φn+1)—in this case, the onset of the click stimulus—is
determined by the current auditory event’s relative phase (φn),
the frequency of the stimulus relative to the oscillator’s frequency
(expressed as the product of the current period of the stimulus
(tn+1 − tn) and the current radian frequency of the oscillator
(ωn = 2π fronan), and a stimulus coupling (i.e., sine of the current
auditory event’s relative phase modulated by a coupling factor,
α). The coupling factor indicates how strongly the relative phase
of the oscillator is affected by the stimulus. Because phase is
a circular value, the resulting phase is taken modulo 2π (the
remainder after dividing the phase by 2π) and normalized to the
range of−π to π .

If Ronan were to bob her head at exactly the same rate as the
stimulus, the number of bobs to correct for being ahead of or
behind the beat would depend solely on the phase coupling factor,
α: a high coupling factor would mean a very quick adaptation to
the stimulus, while a low coupling factor would mean a slower
adaptation. The optimal value for the phase coupling factor is 1.0,
which is the largest value that does not result in overcorrection.
A value >2.0 causes the equation to become unstable (Pikovsky
et al., 2001).

If, on the other hand, Ronan’s period were different from the
stimulus period, she still might be able to adapt to a steady phase,
but it would be at a non-zero phase. This non-zero phase can
be calculated with Equation (5) by assuming that φn+1 = φn

and solving for φn. However, if the phase coupling factor (α)
was not sufficiently large, she might never adapt to a steady
phase and instead would start to “phase-wrap.” Therefore, phase
adaptation alone does not guarantee perfect synchronization;
period adaptation is required as well. This is described by a
supplemental equation to the circle map.

ωn+1 = ωn − β sin φn (6)

From Equation (6), we can see that each successive oscillator
radian frequency (ωn+1)—in this case, the oscillator radian
frequency is 2π multiplied by the inverse of the time between
two successive head bobs—is dependent on the oscillator radian
frequency of the current beat (ωn) and a different stimulus
coupling (the sine of the relative phase of the current beat,
modulated by a different coupling factor, β). Again, this coupling
factor indicates how strongly the oscillator period is affected by
the stimulus.

Thus, in order to completely synchronize, an oscillator needs
to adapt both phase and period. Together, Equations (5) and (6)
accurately model not only the entrainment of human performers
to a simple repeating stimulus, but to stimuli with multiple
changes in phase and tempo over the course of the stimulus.

We fit a deterministic version of Equations (5) and (6) to the
circularly averaged trial from each condition. α and β were varied
to minimize the root mean squared error (RMSE) of the test
model compared to Ronan’s data. The range used for fitting αwas
0.4–2.0 in increments of 0.1, and the range used for fitting β was
0.01–0.70 in increments of 0.01. Because Equation (5) describes
the phase of the stimulus relative to the oscillator, the phases
produced by the model are opposite of the measured behavioral
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FIGURE 1 | Angular distribution of phase angles for the first presentation of each perturbation condition (n = 16) and baseline trial (n = 1) at a base

tempo of 85 bpm. Red wedges show 10 bobs prior to the perturbation and blue wedges show 25 bobs following. The radius of each wedge represents the square

root of the number of bobs in that wedge, so that the area of each wedge is equal to the number of bobs. The arrow indicates the mean vector of the

post-perturbation bobs, with length normalized to the outer radius of the plot. Note that angles >0 represent bobs trailing the stimulus beat, and angles <0 represent

bobs leading the stimulus beat.
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data, which indicates the phase of the oscillator to the stimulus.
In other words, φmodel = −φmeasured.

Parameter Regression

To identify any potential relationship between either of the
coupling parameters and the perturbation magnitude, we
regressed both α and β as a function of condition against
perturbation magnitude.

RESULTS

Ronan successfully entrained to all stimuli and perturbations at
the base tempo of 85 bpm (see Supplementary Video 1). For
all trials, the critical value of the V-test was >3.4, indicating
that the distribution of bobs was significantly nonrandom (p <

0.001) with respect to 0 radians. Thus, Ronan’s head movements
were strongly correlated with the beat on both baseline trials
and transfer trials containing a perturbation event. Figure 1
displays the correspondence of the angular distributions of the
initial presentations of each condition, and Figure 2 displays the
similarity between performances in all trials. Her subsequent
performance on the two additional base tempos (94.444 and
77.273 bpm) showed similar results: she successfully entrained to
all stimuli and perturbations (see Supplementary Tables 1, 2 and
Supplementary Figures 1–3).

Ronan’s performance on baseline and transfer trials revealed
rapid entrainment to the base tempo, with performance
stabilizing within the first four beats (Supplementary Video 1),
as previously observed by Cook et al. (2013). Unexpectedly, her
performance with all tempos and all stimuli showed a slight phase
progression over the course of each trial: the average slope of
relative phase per beat across all trials was −0.0206, and the
slope was different from zero for the majority of trials (n = 80
baseline trials, n = 62 phase perturbation trials, n = 55 tempo
perturbation trials, p < 0.05). This represents a deviation from
her previous performance (Cook et al., 2013). However, this
deviation was consistent across replicates and conditions.

Figure 3 shows the model fit compared to Ronan’s pooled
performance for each condition. Table 2 and Figure 4 show
the fitted coupling parameter values and final RMSE for each
condition. RMSE was very low for all conditions, with an average
value of 0.0518 radians. Phase coupling was strong; across all
conditions, the average parameter value was 0.894. Loehr et al.
(2011) found that human subjects performing a comparable task
(playing a piano keyboard to a metronome with a changing
tempo) had an average phase coupling parameter value of 0.875,
quite close to Ronan’s. Ronan’s observed period coupling was
much weaker, averaging 0.0471 across all conditions. This is quite
low compared to the subjects in the Loehr study, who had an
average period coupling parameter value of 0.450.

We also observed a significant positive linear relationship
between phase coupling magnitude and absolute perturbation
magnitude [RMSE = 0.2800, F(1, 15) = 35.1, p < 0.0001]. Period
coupling, on the other hand, showed a significant negative linear
relationship with perturbation magnitude [RMSE = 0.0288,
F(1, 15) = 9.02, p < 0.01].

FIGURE 2 | Mean phase (A) and vector length (B) of Ronan’s

post-perturbation bobs at a base tempo of 85 bpm, grouped by

condition. Each trial is plotted as a circle, and the mean for each condition is

represented by the line. Mean phase shows a linear trend with tempo changes

(right portion of plot A), a trend described in a prior study of Ronan’s rhythmic

entrainment ability (Cook et al., 2013). In all cases, mean vector length falls

between 0.88 and 0.99, indicating a very high concordance of phases within

the trial.

DISCUSSION

Ronan’s performance with novel tempos containing embedded
tempo and phase perturbations showed remarkable ability to
adapt quickly and accurately to synchronize her body motion to
the temporal features of the auditory stimulus stream. Moreover,
her beat keeping (ranging from 61.818 to 125.925 bpm across
the three base tempos) and adaptation (±25% of the IOI)
impressively fit models of co-oscillation, drawn from physics and
validated in human beat-keeping experiments. The findings show
a strong similarity between dynamics of Ronan’s performance
and human performance, and parsimony suggests these are
rooted in similar and conserved neural mechanisms rather than
species-specific adaptations. However, these results by themselves
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FIGURE 3 | The averaged relative phase in radians (Y-axis) over successive beats (X-axis) for averaged baseline trials (n = 80, top) and each averaged

perturbation condition (n = 10 per condition) at a base tempo of 85 bpm. Ronan’s results (circles) are plotted against the model predictions (x’s). The close

alignment of the model predictions to the experimentally obtained values indicate that Ronan’s responses to these perturbations are consistent with the model of

coupled oscillation. On perturbation conditions, the vertical line at 10 beats indicates the onset of the tempo or phase shift indicated at the top of the plot. Phase (α)

and period (β) coupling factors are noted in the upper right portion of each plot.

Frontiers in Neuroscience | www.frontiersin.org 8 June 2016 | Volume 10 | Article 257

http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Neuroscience/archive


Rouse et al. Modeling Rhythmic Entrainment in Animals

TABLE 2 | Phase (α) and Period (β) coupling parameter values and Root

Mean Squared Error (RMSE) for model fits of Ronan’s experimental data

at 85 bpm.

Condition α β RMSE

Baseline 0.4 0.02 0.0153

Phase −25% 1.4 0.04 0.0599

Phase −15% 1.0 0.07 0.0473

Phase −8% 0.5 0.05 0.0402

Phase −3% 0.4 0.03 0.0306

Phase +3% 0.4 0.03 0.0307

Phase +8% 0.4 0.04 0.0484

Phase +15% 0.8 0.02 0.0515

Phase +25% 0.9 0.01 0.0601

Tempo −25% 1.7 0.08 0.0871

Tempo −15% 1.2 0.12 0.0516

Tempo −8% 0.8 0.12 0.0602

Tempo −3% 0.4 0.08 0.0305

Tempo +3% 0.5 0.03 0.0433

Tempo +8% 1.0 0.01 0.0571

Tempo +15% 1.6 0.01 0.0744

Tempo +25% 1.8 0.04 0.0921

are not dispositive, andmore comparative data are needed to fully
resolve the debate over underlying mechanisms.

Through the lens of neural resonance, we see that Ronan’s
beat-keeping behavior in response to stimulus perturbations
compared strongly to that measured in humans in four ways:
(1) flexibility in tempo matching was evident in her behavior
throughout testing, (2) changes in phase and tempo were
matched through both phase and period adaptation, (3) phase
adaptation was stronger than tempo adaptation, and (4) reduced
sensitivity to smaller perturbations was observed (discussed
below).

Ronan’s performance in this study differed from human
performance in two important ways, related to (1) phase
coupling, and (2) period adaptation. For most perturbation
trials, phase coupling (α) varied based on perturbation
magnitude, dramatically increasing for larger magnitude shifts
(perturbations >8%). The significant linear relationship between
α and absolute perturbation magnitude suggests that the more
noticeable alterations induced a larger change in coupling. In
most human studies, phase coupling has been considered more
or less constant (for review see Repp, 2005; Large, 2008), so
Ronan’s variable coupling strength is a novel discovery. However,
her performance does align with findings in humans that larger
perturbations are more noticeable because they represent more
significant violations of expectation of where the next beat should
occur (Large and Jones, 1999). It also suggests another similarity
to humans: the just-noticeable difference in humans for tempo
changes of a single interval (equivalent to a change in phase) is
∼6% (Drake and Botte, 1993). Ronan’s results here imply that she
did not readily perceive the ±3 or ±8% phase perturbations or
the±3% tempo perturbations, similar to what might be expected
in human performance based on available research.

FIGURE 4 | Fitted model parameters and RMSE for averaged trials for

each condition at 85 bpm (n = 80 baseline trials, n = 10 perturbation

trials per condition). α (A) represents the strength of phase coupling, or how

strongly the stimulus affects the phase of the model’s behavior. β (B)

represents the strength of the period coupling. On average, the magnitude of

phase coupling was 20 times stronger than the magnitude of the period

coupling, suggesting that Ronan is primarily using phase adaptation to match

the stimulus. Also of note is that α is strongly affected by perturbation

magnitude. RMSE (C) is the root mean squared error of the fitted model

compared to Ronan’s behavior.

The second divergence in Ronan’s behavior relative to that of
humans is decreased period adaptation. While human studies
have shown typical period coupling values between 0.3 and
0.8 (Loehr et al., 2011), Ronan’s period coupling values did
not exceed 0.2. Again, it is important to note that the human
comparison is imperfect. Human subjects played a melody on
the keyboard with a metronome, as opposed to a single discrete
repeating movement. Furthermore, rather than a single sudden
shift, the tempo changed continuously following the shift onset.

Additionally, Ronan had a larger phase/tempo offset than
typically seen in humans (e.g., Repp, 2005; Repp and Su, 2013):
her starting relative phase showed a direct linear correlation with
IOI, with faster tempos effecting a starting phase further behind
the beat, a trend described previously in Cook et al. (2013).

These differences relative to human subjects may be rooted
in behavioral aspects of Ronan’s performance. The gradual phase
progression on all trials and changing phase coupling strength for
larger perturbations suggest that Ronan used a specific strategy
to entrain to these stimuli. Although she showed reliable phase
and tempo matching throughout the experiment, her precision
dramatically increased following relatively large perturbations.
One possible interpretation is that basic beat keeping with
simple metronomic stimuli is quite easy for Ronan following
her extensive training with these and more complicated stimuli.
Perhaps she uses a motor heuristic to produce “good enough”
entrainment without employing any significant attentive effort.
However, following a perturbation, realigning her movement
with the beat may require greater attention. This could then
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drive an up-regulation of auditory motor networks, leading to
increased coupling and greater performance. There is extensive
evidence that human beat-keeping performance is heavily
reliant on intent and attention (see Large and Jones, 1999;
Repp, 2005). Furthermore, “task-positive” networks in humans—
attention-driven brain networks that up-regulate in-network
functional connectivity (i.e., co-synchrony across nodes) during
rigorous mental action—include motor and motor planning
regions (Fox et al., 2005; Bardouille and Boe, 2012). Increased
attention to the stimulus following perturbation could therefore
lead to increased resonance between the neural oscillators of
interest.

In most respects, Ronan’s beat-keeping performance was as
precise and reliable as that observed in human studies, and was
well fit by models of coupled oscillation. Ronan’s obvious ability
to adaptively entrain her body movements to auditory rhythms
extends the findings reported for this subject by Cook et al.
(2013). Although the current experiment did not explicitly test
adaptation to phase or tempo change in more complex stimuli,
Ronan has successfully entrained to human-generated music
that contains natural variability in both phase and tempo (Cook
et al., 2013). Not only does this support the likelihood of shared
mechanisms, it emphasizes Ronan’s usefulness as a comparative
model to study other aspects of rhythmic entrainment. In
addition, Ronan’s beat keeping did not emerge de novo—she
received explicit and extensive operant (positive reinforcement)
training. Therefore, she may serve as a model for training
other non-human beat keepers. Supplemental testing with
Ronan and with additional non-human subjects should clarify
the mechanisms supporting beat-keeping ability and resolve
whether these mechanisms are evolutionarily conserved. Further
exploration of these results may also improve understanding
of other facets of human musical ability. Resonance of neural
oscillators with an external stimulus has been proposed as the
foundation for many areas of music perception and cognition,
including pitch and meter perception (see Large, 2008 for a
review).

Patterns of neural oscillations have been observed in every
nervous system examined (Glass, 2001). The basic physics of
the structure of neural oscillators shows that if stimulated
rhythmically, they will synchronize. The finding that non-human
as well as human beat keeping is consistent with models of
neural resonance supports a parsimonious explanation of beat-
keeping behavior as arising from basic principles of nervous
system behavior. That being said, the tendency of linked neural

populations to co-oscillate could be only the beginning of an

understanding of sensorimotor synchronization. While coupled
oscillation between neural populations may be necessary and
sufficient for supporting a general faculty for beat keeping, great
potential still exists for variability in the dynamics of beat-keeping
behavior. First and foremost, animals may differ in connection
strengths between relevant neural populations. This could be
due to differences in anatomical connectivity, or differences
in functional connectivity in these brain circuits, which can
change with learning, across development, and dynamically with
attention, intention, and other psychological factors. To date,
the field of comparative rhythm has focused on answering the
question “which species can keep a beat?” If basic and conserved
neural mechanisms support entrainment intrinsically, the more
productive question is this: “How can we use sensorimotor
synchronization paradigms as a comparative tool to better
understand brain function and behavior across species and
contexts?”
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