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Post-traumatic stress disorder (PTSD) is a debilitating psychiatric disorder. It can be

difficult to discern the symptoms of PTSD and obtain an accurate diagnosis. Different

magnetic resonance imaging (MRI) modalities focus on different aspects, which may

provide complementary information for PTSD discrimination. However, none of the

published studies assessed the diagnostic potential of multimodal MRI in identifying

individuals with and without PTSD. In the current study, we investigated whether the

complementary information conveyed by multimodal MRI scans could be combined to

improve PTSD classification performance. Structural and resting-state functional MRI

(rs-fMRI) scans were conducted on 17 PTSD patients, 20 trauma-exposed controls

without PTSD (TEC) and 20 non-traumatized healthy controls (HC). Gray matter volume

(GMV), amplitude of low-frequency fluctuations (ALFF), and regional homogeneity were

extracted as classification features, and in order to integrate the information of structural

and functional MRI data, the extracted features were combined by a multi-kernel

combination strategy. Then a support vector machine (SVM) classifier was trained to

distinguish the subjects at individual level. The performance of the classifier was evaluated

using the leave-one-out cross-validation (LOOCV) method. In the pairwise comparison

of PTSD, TEC, and HC groups, classification accuracies obtained by the proposed

approach were 2.70, 2.50, and 2.71% higher than the best single feature way, with the

accuracies of 89.19, 90.00, and 67.57% for PTSD vs. HC, TEC vs. HC, and PTSD vs.

TEC respectively. The proposed approach could improve PTSD identification at individual

level. Additionally, it provides preliminary support to develop the multimodal MRI method

as a clinical diagnostic aid.

Keywords: post-traumatic stress disorder, structural MRI, resting-state functional MRI, gray matter volume,

amplitude of low-frequency fluctuations, regional homogeneity, multi-kernel based support vector machine

INTRODUCTION

Post-traumatic stress disorder (PTSD) is newly defined as a trauma- and stressor-related disorder
in the fifth edition of the Diagnostic and Statistical Manual of mental disorder (DSM-V). PTSD
may develop in individuals who have experienced or witnessed severe traumatic events. This kind
of psychological disorder is characterized by re-experiencing, avoidance, negative cognitions and
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mood, and arousal (Contractor et al., 2014). Recent surveys
reported that, the prevalence of PTSD among direct victims
of disasters ranges between 30 and 40%; lifetime prevalence of
PTSD varies from 0.3 to 6.1% in different countries (Javidi and
Yadollahie, 2012), and 19% of PTSD patients will attempt suicide
(Kessler et al., 1999; Foa et al., 2006). Thus it is of paramount
importance for the early diagnosis and appropriate treatment of
PTSD. However, there are no reliable biomarkers that can be used
to identify trauma-exposed individuals with and without PTSD
at present. The diagnosis of this disorder is still very reliant on
the assessment of signs and symptoms, as well as a thorough
psychological evaluation. Accordingly, there has been substantial
interest in exploring automated and unbiased methods to assist
the diagnosis of PTSD.

In recent years, studies by structural and functional magnetic
resonance imaging (MRI) have yielded tremendous advances
in understanding the neural mechanisms underlying PTSD. A
number of structural MRI (sMRI) studies have revealed gray
matter volume (GMV) or density alterations in PTSD patients,
which occur in the anterior cingulate cortex (ACC) and insular
cortex within the limbic-prefrontal circuit (Meng et al., 2014),
ventral ACC and orbitofrontal cortex (OFC) (Sekiguchi et al.,
2013), frontal and occipital lobes (Tavanti et al., 2012), limbic and
paralimbic cortices (Nardo et al., 2010), and medial prefrontal
cortex (Li et al., 2014). Meanwhile, resting-state functional MRI
(rs-fMRI) studies have identified altered amplitude of low-
frequency fluctuations (ALFF) in patients with PTSD, in many
brain areas, such as the medial prefrontal cortex and ACC (Xie
et al., 2013), amygdala, anterior insula and thalamus (Yan et al.,
2013), medial frontal gyrus (Yin et al., 2011), visual cortex and
medial ACC (Zhu et al., 2014), and OFC (Zhu et al., 2015);
moreover, changes of regional homogeneity (ReHo) have been
found in the inferior parietal lobule, superior frontal gyrus,
middle temporal gyrus and lingual gyrus (Yin et al., 2012),
amygdala, hippocampus, thalamus, medial prefrontal cortex and
dorsolateral prefrontal cortex (Zhong et al., 2015). These findings
by sMRI and rs-fMRI collectively indicate that, PTSD relates not
only to morphological brain alterations but also to abnormalities
in spontaneous brain activities.

Most of the aforementioned findings were obtained by using
mass-univariate analysis approaches, and the differences were
reported at group level (Davatzikos, 2004). In clinical practice,
however, these group level observations were rarely beneficial
to individual diagnosis. For neuroimaging to be useful in a
clinical setting, we need techniques that are capable of providing
predictions at the individual level. In the past several years,
the application of machine learning techniques to neuroimaging
data analysis has made promising improvements in brain disease
classification (Orrù et al., 2012; Haller et al., 2014). In contrast
to the group comparisons that are based on mass-univariate
analyses, machine learning techniques allow inference at the
single-subject level, and moreover, they are sensitive to subtle
and spatially distributed differences in the brain which might be
undetectable in group comparison. In recent years, a growing
number of studies have explored the utility of machine learning
methods in classifying diseases based on imaging data, and
a range of psychiatric and neurological conditions have been

examined, such as Alzheimer’s disease (Abdulkadir et al., 2011),
autism (Ecker et al., 2010), social anxiety disorder (Frick et al.,
2014), depression (Gong et al., 2011), schizophrenia (Iwabuchi
et al., 2013).

With regard to the technical details of applying machine
learning methods, one can either use features derived from
single-modality MRI data or even a single measure, or include
multi-modality features. The advantage of the latter way is that
different neuroimaging modalities/measures focus on different
aspects, which may provide complementary information for
disease diagnosis. Therefore combining multimodal features,
instead of depending on one feature, is a promising direction
that worth exploration to improve classification accuracy.
Recent studies have successfully applied multimodal analysis on
Alzheimer’s disease (Fan et al., 2008; Zhang et al., 2011; Dai
et al., 2012; Liu et al., 2014b), Parkinson’s disease (Long et al.,
2012) and sexual dimorphism (Wang et al., 2012). However, so
far as we know, most of the very few studies that performed
classification on PTSD only utilized single modal imaging data
(Gong et al., 2014; Niehaus et al., 2014). A very recent study (Liu
et al., 2015) has explored the power of multivariate approach
in classifying PTSD in which features at three different levels
derived from rs-fMRI data were combined, although this should
be still considered as a single-modality study. In consideration
of the previous findings, we would presume that, by integrating
the information derived from sMRI and fMRI data properly
using multi-kernel learning methods, the discriminative power
for PTSD could be further improved.

In this study, we proposed a framework to identify PTSD
using both sMRI and rs-fMRI scans. Specifically, GMV, ALFF,
and ReHo were extracted as classification features and effectively
combined by using a simple-while-effectivemulti-kernel strategy.
Then a support vector machine (SVM) classifier was trained
to do the work and unbiased estimation of the classification
performance was obtained via a leave-one-out cross-validation
(LOOCV) scheme. The aim of this study was to examine whether
the complementary information conveyed among structural
and functional features could be combined to improve the
classification performance for PTSD.

MATERIALS AND METHODS

Subjects
We recruited 37 trauma-exposed individuals who had
experienced theWenchuan 8.0-magnitude earthquake, including
17 PTSD patients (5 males and 12 females with a mean age of
44.41 ± 8.44 years) and 20 trauma-exposed controls without
PTSD (TEC) (9 males and 11 females with a mean age of
40.35 ± 9.43 years). To avoid treatment-elicited changes
in patient mental function, only treatment-naïve (neither
psychotherapy nor pharmacotherapy) PTSD patients were
recruited into the study. The diagnosis of PTSD and TEC was
made with the Structured Clinical Interview for DSM-IV (SCID)
and the Clinician Administered PTSD Scale (CAPS). Inclusion
criteria for the trauma-exposed individuals included: (1)
physically experienced the earthquake; (2) personally witnessed
death, serious injury or the collapse of buildings; and (3) did
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not suffer any physical injury. Exclusion criteria included: (1)
history of neurological disorders; (2) present or past Axis-I
psychiatric disorders other than PTSD; (3) drug or alcohol
abuse/dependence within the 6 months prior to the study;
(4) contraindications to MRI; (5) learning or developmental
disorders; or (6) a family history of mental disorders. The
acquisition of neuroimaging and clinical data took place 2 years
after the earthquake. In addition, 20 non-traumatized healthy
controls (HC) (8 males and 12 females with a mean age of 42.52
± 7.89 years) were recruited by advertisement. Healthy controls
also satisfied the mentioned exclusion criteria. All subjects were
right-handed, aged between 21 and 61 years, and underwent
brain scans at the Huaxi MR Research Center of the West
China Hospital. This study was approved by the Medical Ethics
Committee of the West China Hospital, Sichuan University, and
written informed consent was obtained from each participant.

Image Acquisition
Structural and resting-state functional MRI scans were acquired
using a 3T MRI system (EXCITE, General Electric, Milwaukee,
USA) with an 8-channel phased array head coil. A three-
dimensional spoiled gradient-recalled (SPGR) sequence was used
to collect structural scans: repetition time/echo time (TR/TE) =
8.5/3.4ms, flip angle = 12◦, slice thickness/gap = 1/0mm, field
of view (FOV) = 240 × 240mm2, voxel size = 0.47 × 0.47 ×

1mm3. The resting-state functional images were collected using a
gradient-recalled echo planar imaging (EPI) sequence: TR/TE =

2000/30ms, flip angle = 90◦, slice thickness/gap = 5/0mm,
FOV = 240 × 240mm2, matrix = 64 × 64, voxel size = 3.75 ×
3.75 × 5mm3. Each brain volume comprised of 30 axial slices
and each functional run contained 200 image volumes. During
data acquisition, all participants were instructed to keep their
eyes closed but not fall asleep, relax their minds, and keep still
as possible.

Data Preprocessing
All structural images were preprocessed using the Statistical
Parametric Mapping software (SPM8, http://www.fil.ion.ucl.
ac.uk/spm). After orientation correction according to the
anterior commissure—posterior commissure line, images were
segmented into gray matter, white matter, and cerebrospinal
fluid partitions using the segment routine in SPM8. The
diffeomorphic anatomical registration through exponentiated lie
algebra (DARTEL) algorithm (Ashburner, 2007) was applied to
gray and white matter partitions to generate a study-specific
template. Then the gray matter images were warped to the study-
specific template and re-sampled to an isotropic resolution of
3mm. All the warped and re-sampled gray matter images were
modulated to assess the GMV. Finally, the modulated images
underwent spatial smoothing using an 8mm full-width at half-
maximum (FWHM) Gaussian kernel. Finally, a GMV map was
obtained for each subject.

Resting-state functional images were preprocessed
using SPM8 and the Resting-State fMRI Data Analysis
Toolkit (REST, http://rest.restfmri.net). Considering the
magnetization saturation effects and participants’ adaptation
to the environment, the first 10 volumes of each dataset were

discarded. The remaining images were first corrected for within-
scan acquisition time differences between slices, and further
realigned to the first volume to correct for susceptibility-by-
movement interaction. All subjects in this study had less than
2mm displacement and 2◦ of rotation in any direction. The
realigned scans were further spatially normalized to theMontreal
Neurological Institute template and resliced to 3× 3× 3mm3 in
SPM8. When calculate ALFF, the normalized and resliced images
were smoothed using a 4mm FWHM Gaussian kernel. Then
the ALFF, across the frequency band 0.01–0.08Hz (Zang et al.,
2007), was calculated for each voxel using the REST software. To
reduce the global effects of variability across all subjects, ALFF of
each voxel was divided by the global mean ALFF value for each
subject. Thus, an ALFF map was obtained for each subject. The
ReHo map of each subject was calculated in REST as well. For
each normalized and resliced image from SPM8, cluster size was
set at 27 voxels when computing ReHo value for each voxel (26
neighbors) (Zang et al., 2004). As did in ALFF, the ReHo of each
voxel was also divided by the global mean ReHo value for each
subject. After smoothing with a 4mm FWHM Gaussian kernel,
a ReHo map was obtained for each subject.

Feature Extraction
We obtained the GMV, ALFF, and ReHo maps for each
subject. These three features provide information from different
perspectives. For a given subject, GMV map gives us the
morphometric information; ALFF and ReHo reflect the degree
of regional activity and the degree of regional synchronization
respectively. In the present study, a whole brain mask including
only brain tissue voxels was applied for all subjects. Let x(1)

= [x
(1)
1 , x

(1)
2 , . . . , x

(1)
D ], x(2) = [x

(2)
1 , x

(2)
2 , . . . , x

(2)
D ], and x(3) =

[x
(3)
1 , x

(3)
2 , . . . , x

(3)
D ] denote feature vectors that were extracted

from the GMV, ALFF, and ReHo maps. D is the number of
voxels in the brain. Hence, each voxel i has three representations:

GMV value x
(1)
i , ALFF value x

(2)
i , and ReHo value x

(3)
i . Since the

individual feature value of vectors x(1), x(2), and x(3) may exhibit
significant variations in both their range and distribution, feature
normalization has always performed to ensure the contribution
of each feature to the final classifications is comparable (Ross
et al., 2006). We used the Z-score normalization technique in this
study, that is, feature values were normalized by subtracting their
mean and dividing the standard deviation, to get a zero mean,
and unit variance for each feature.

Multi-Kernel Based SVM
In order to effectively combine different feature vectors, the
multi-kernel combination strategy (Liu et al., 2014a), and SVM
were used here. After feature extraction, we constructed a kernel
matrix for each feature, and combined them using a weighted
linear combination as follows:

K(xi, x) =
∑3

f=1
βf kf (x

f
i , x

f ) (1)

where xi is the feature vector of the i-th training sample; x is

the feature vector of the test sample; kf (x
f
i , x

f ) is the f -th kernel
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function; and β f ≥ 0 is the weighting factor of f-th kernel function

with the constraint of
∑3

f=1β f = 1.

The relationship between features and the prediction is hard to
interpret when a nonlinear kernel function is used (Norman et al.,
2006; Pereira et al., 2009). Therefore, we trained a SVM classifier
with linear kernel functions to directly extract the weight vectors.
Given a labeled training set {(xi, yi)

n
i = 1} denotes the training

sample and yiǫ{−1, +1} denotes the corresponding class label.
The multi-kernel based SVM solves the following optimization
problem:

min
w(f ),b,ξ

1
2

3
∑

f=1

βf

∥

∥

∥
w(f )

∥

∥

∥

2
+ C

n
∑

i=1
ξi

s.t. yi

(

3
∑

f=1

βf

〈

w(f ),8(f )(x
(f )
i )
〉

+ b

)

≥ 1− ξi

ξi ≥ 0, i = 1, 2, · · · n

(2)

where w(f ) denotes the normal vector of hyperplane; 8(f ) is the
kernel-induced mapping function; C trades off the empirical risk
and mode complexity; and ξi is the slack variable.

The dual form of multi-kernel based SVM can be represented
as below:

min
β

max
α

n
∑

i=1
αi −

1
2

∑

i,j
αiαjyiyj

3
∑

f=1

βf kf (x
f
i , x

f )

s.t.
n
∑

i=1
αiyi = 0, 0 ≤ αi ≤ C, i = 1, 2, · · · n

3
∑

f=1

βf = 1, βf ≥ 0

(3)

where αi, αj are Lagrange multipliers.
In this study, the algorithm was developed using the

SimpleMKL Toolbox (http://asi.insa-rouen.fr/enseignants/~
arakoto/code/mklindex.html). The weights of different kernels
in the multi-kernel based SVM are learned based on the training
samples (Rakotomamonjy et al., 2008). The optimization of
kernel weights and SVM classifier are alternate: given the current
solution of kernel weights, it solves a classical SVM with the
combined kernel; then updates the kernel weights. This two-step
process is repeated until a convergence criterion is met (Xu
et al., 2010). As explained above, the multi-kernel based SVM
can provide a convenient and effective way for fusing various
features from different modalities. In our case, we focused on
multimodal classification using two modalities: sMRI and rs-
fMRI. Figure 1 gives a schematic illustration of our multimodal
feature combination and classification approach.

Cross-Validation
Cross-validation is often used to assess the generalizability of a
model and to ensure that the model does not overfit data. Here,
we used the LOOCV strategy to validate the performance of
our proposed approach. Specifically, each sample was designated
as a test sample, while the remaining samples were used to
train the classifier. By repeatedly repartitioning data in this way,
it is possible to derive an approximately unbiased estimator
of the true generalization error of the model. Optimal kernel

weights and optimal SVM model were obtained in the inner
cross-validation before applying it to the test set. The whole
process was repeated until all samples have been left out for test.
The final accuracy was computed by averaging the accuracies
from all experiments. Accuracy, sensitivity and specificity are
defined based on the prediction results of LOOCV, to quantify
the performance of all compared methods.

Sensitivity =
TP

TP + FN
(4)

Specificity =
TN

TN + FP
(5)

Accuracy =
TP + TN

TP + FN + TN + FP
(6)

where TP denotes the number of patients correctly classified; FN
denotes the number of patients classified as controls; TN denotes
the number of controls that are correctly predicted; and FP
denotes the number of controls classified as patients. In addition,
the receiver operating characteristic (ROC) curve is plotted and
the area under ROC (AUC) curve is calculated to illustrate the
performance of classification.

Discrimination Maps
Since the input space is voxel space (one dimension per voxel)
in this study, each voxel carry a certain weight value signifying
its contribution toward the classification function. The larger the
absolute magnitude of a weight vector is, the stronger it affects
the final discrimination. Hence, a map of the most discriminating
regions (i.e., a discrimination map) could be generated. Because
the SVM classifier is of multivariate and the discrimination is
based on the whole brain pattern (i.e., all voxels contribute
to the classification), local inferences should never be made
in regards to the weights. For each discrimination result, by
setting the threshold to 30% of the maximum (absolute) weight
value (Mourao-Miranda et al., 2012), we obtained a spatial
representation of the regions that contribute most to the group
discrimination.

RESULTS

Demographics and Clinical Scores
Data from 17 earthquake survivors with PTSD, 20 trauma-
exposed non-PTSD and 20 non-traumatized healthy controls
was utilized in the current study. Two-sample t-tests were
performed to assess the differences in age, years of education
and clinical score, and Chi square test was performed to assess
the difference in gender. There were no significant differences
in terms of gender, age or years of education (p > 0.05) in
pairwise comparison of the three groups. Compared with TEC,
patients with PTSD have significant higher CAPS total score (p <

0.001). The detailed demographic and clinical data are shown in
Table 1.

Comparison of Classification Performance
To examine whether or not GMV, ALFF, and ReHo features are
suitable for PTSD, TEC, and HC classification, and to examine
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FIGURE 1 | Schematic illustration of multimodal feature combination and classification. GMV, ALFF, and ReHo measures are used to map brain structure

and resting-state function, respectively. A SVM classifier is then designed using a multi-kernel combination strategy to classify PTSD, TEC, and HC.

TABLE 1 | Demographic and clinical characteristics of participants.

Variables (mean ± SD) PTSD TEC HC p-value

PTSD vs. HC TEC vs. HC PTSD vs. TEC

Gender (f/m) 17 (12/5) 20 (11/9) 20 (12/8) 0.50 0.75 0.33

Age (yrs) 44.41± 8.44 40.35±9.43 42.52± 7.89 0.49 0.44 0.18

Education (yrs) 7.59± 2.50 8.90±2.56 8.40± 2.50 0.33 0.54 0.13

CAPS (total) 59.76± 6.35 14.35±3.77 − − − <0.001

SD, standard deviation; PTSD, post-traumatic stress disorder; TEC, trauma-exposed controls without PTSD; HC, healthy controls; CAPS, Clinician Administered PTSD Scale.

whether integrating structural and functional information could
improve the classification performance, we applied single-
kernel SVM classifier and multi-kernel based SVM classifier
for single feature and multi-feature classification respectively.
The linear SVM has only one parameter C that controls the
trade-off between having zero training errors and allowing
misclassifications. We fixed C = 100 for all cases. It has
been shown previously that the SVM performance for whole-
brain classification does not change for a large range of C
values and only degrades with very small C values (LaConte
et al., 2005). In the current study, LOOCV approach was
used to evaluate the generalizability of different feature type
classifications. Same training and test data were used in all the
classifications for fair comparison. Table 2 lists the classification
results of the single feature method and our multimodal
feature combination method. Besides, the corresponding ROC
curves were plotted (see Figure 2). The larger area under
ROC is obtained, the better classification performance is
achieved.

In the identification of PTSD and HC, the best classification
accuracy was obtained using multimodal feature combined
method. Here, 89.19% of individuals were correctly assigned to
the appropriate diagnostic category. The sensitivity was 76.47%,
implying that 76.47% of the PTSD patients were correctly
classified. The specificity was 100%, indicating that all the control

subjects were correctly predicted. However, for the single feature
method, the best accuracy achieved was only 86.49% when using
ReHo as the feature. The ROC curves of the four feature type
methods were shown in Figure 2A.

To classify TEC from HC, we yielded a similar result.
Multimodal feature combined method achieved a classification
accuracy of 90.00%, with a sensitivity of 95.00%, and a specificity
of 85.00%. Nevertheless, the best accuracy of single feature
classification was only 87.50% (when using ALFF or ReHo). ROC
curves of the four feature typemethods were shown in Figure 2B.

Contrasted with the two classifications above, PTSD and TEC
classification performed at lower accuracy. Multimodal feature
combined approach resulted into an accuracy of 67.57%, with a
sensitivity of 52.94%, and a specificity of 80.00%, yet still better
than the single feature classification of which the best accuracy
was 64.86% (when using ALFF). ROC curves of the four feature
type methods were shown in Figure 2C.

Furthermore, the accuracy scores and the ROC curves analysis
(Figure 2) all showed that, in the single-feature mode, the
most powerful feature is different for the three pairwise group
classifications. For instance, ReHo is the best for PTSD vs.
HC and TEC vs. HC, but ALFF performed best in PTSD vs.
TEC. In any case, as seen in Table 2, the feature combination
approach always further improved the classification accuracy in
comparison with the single feature method.
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TABLE 2 | Classification performance of the single feature method and multimodal feature combined method.

Feature types PTSD vs. HC TEC vs. HC PTSD vs. TEC

SEN (%) SPE (%) ACC (%) AUC value SEN (%) SPE (%) ACC (%) AUC value SEN (%) SPE (%) ACC (%) AUC value

GMV 64.71 85.00 75.68 0.88 60.00 85.00 72.50 0.69 64.71 55.00 59.46 0.62

ALFF 88.24 80.00 83.78 0.86 90.00 85.00 87.50 0.87 52.94 75.00 64.86 0.70

ReHo 76.47 95.00 86.49 0.89 75.00 100.00 87.50 0.93 29.41 50.00 40.54 0.44

Combined 76.47 100.00 89.19 0.90 95.00 85.00 90.00 0.92 52.94 80.00 67.57 0.72

SEN, sensitivity; SPE, specificity; ACC, accuracy; AUC, area under receiver operating characteristic curve.

FIGURE 2 | ROC curves of different methods show the trade-off between sensitivity (y-axis) and specificity (x-axis, 1-specificity): (A) PTSD vs. HC, (B)

TEC vs. HC, and (C) PTSD vs. TEC classifications.

The Most Discriminative Regions
Brain regions with the most discriminative power between
groups were identified in both brain hemisphere and all the four
lobes (Figure 3), which mean there were widespread regional
alterations across the whole brain in PTSD patients as well as TEC
subjects.

In comparison of PTSD and HC, regions displaying most
difference in GMV appeared in the bilateral middle occipital
gyrus, right inferior parietal lobule, left superior frontal gyrus,
right cerebellum, and the bilateral middle frontal gyrus; ALFF
difference mainly exhibited in the right precuneus, left temporal
pole (superior temporal gyrus), left calcarine fissure, right
caudate nucleus, and the left superior frontal gyrus (medial);
ReHo difference appeared in the right temporal pole (middle
temporal gyrus) (Figure 3A; see Supplementary Table 1 for a full
list).

To classify TEC from HC, most discriminative regions in
GMVwere observed in the right inferior temporal gyrus, bilateral
superior frontal gyrus, right cerebellum, left angular gyrus, right
supramarginal gyrus, and the right median cingulate gyrus;
ALFF difference primarily shown in the right temporal pole
(superior temporal gyrus), bilateral cerebellum, left calcarine
fissure, right middle frontal gyrus, left caudate nucleus, bilateral
superior frontal gyrus (medial), and the right superior occipital
gyrus; ReHo difference was shown in the left precuneus gyrus
(Figure 3B; see Supplementary Table 2 for a full list).

In the comparison of PTSD and TEC, GMV difference mainly
included the bilateral middle temporal gyrus, right rolandic

operculum, right superior frontal gyrus, and the left postcentral
gyrus; ALFF difference were shown in the left lingual gyrus and
left precuneus gyrus; ReHo difference mainly exhibited in the
right precuneus gyrus (Figure 3C; see Supplementary Table 3 for
a full list).

DISCUSSION

To our best knowledge, this is the first study to examine
the capability of a machine learning approach to combine
different features extracted from sMRI and rs-fMRI data for
PTSD, TEC, and HC discrimination. The results showed that in
comparison with single feature method, the feature-combining
framework could achieve higher accuracies for all three pairwise
classifications among the three groups. This validated the efficacy
of our approach in integrating effective information from multi-
modality imaging data to improve classification performance.

In our single feature classifications of PTSD/TEC vs. HC,
higher accuracy was obtained when using ALFF or ReHo feature
than GMV feature. This may imply that in traumatized subjects
the spontaneous brain activity altered in a larger extent than
morphometric brain changes. In the study by Gong et al. (2014),
high classification accuracy (up to 91%) has been achieved using
a large sMRI dataset (50 vs. 50 vs. 40 subjects), while in a recent
rs-fMRI study (Liu et al., 2015), an accuracy at 92.5% was also
obtained using only 20 subjects per group. Based on this, we
would cautiously conclude that fMRI features could contribute
more than sMRI in PTSD identification. But in the comparison
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FIGURE 3 | Brain regions that showed the highest discriminative value for the classification in (A) PTSD and HC, (B) TEC and HC, and (C) PTSD and

TEC. Regions were identified by setting the threshold to 30% of the maximum (absolute) weight value. Red, blue, and green colors indicate the most discriminative

regions of GMV, ALFF, and ReHo features, respectively.

of PTSD and TEC, we noticed that the classification accuracies
of all three features were lower, especially ReHo (40.54%) was
much lower than ALFF (64.86%) and GMV (59.46%). Perhaps
the difference between PTSD and TEC in the sameMRI modality
was feature-specific; yet another possibility is that PTSD and TEC
subjects all experienced traumatic events so their imaging marker
do not differ as much as when comparing to HC group.

In multi-feature classification, the feature combining method
is an important technical point, especially when dealing with
multimodality imaging data. A common and simple practice is to
concatenate all features into a longer feature vector, however this
may not be enough to ensure effective information integration. In
this study, we combined features from different modalities using
a multi-kernel combination strategy, which firstly combined the
kernel matrices of different features into a mixed kernel matrix,
and from which to train a single SVM model. Compared to the
direct concatenation method, multi-kernel combination strategy
offered more flexibility of assigning different kernel weights
to different features. The improved classification performances
verified the superiority of this combination strategy.

Themost discriminative regions we identified by the proposed
approach were widespread and not restrict to particular brain
hemispheres or lobes. In SVM techniques, there are two
possible reasons that an individual region could display high
discriminative power: (1) a feature value difference between
groups in that region; and (2) a difference in the correlation
between that region and other areas between groups. Thus, the
widespread network revealed in this kind of studies should not
be interpreted as individual regions but a spatially distributed
pattern, and the discrimination was informed by all voxels in
the brain. So it’s difficult to directly compare our results with

previous reported sMRI and rs-fMRI studies that employed
mass-univariate analyses. However, intuitively one would assume
that brain regions showing great difference in group comparison
should also contribute more to the SVM based classification. By
a brief review we found that the discriminative regions revealed
here by setting a 30% threshold were partially overlapped with
previous PTSD studies. For example, volumetric MRI studies
have reported that relative to HC, PTSD patients presented
significant gray matter density changes in the middle frontal
gyrus and inferior parietal lobule (Sui et al., 2010), GMV
reductions in the frontal and occipital lobes (Tavanti et al.,
2012); compared with TEC, PTSD patients showed decreased
GMV in the temporal gyrus (Kühn and Gallinat, 2013) and
prefrontal cortex (Nardo et al., 2013); in rs-fMRI studies,
decreased ALFF values in the precuneus gyrus (Yan et al., 2013)
and lingual gyrus (Yin et al., 2011) of PTSD subjects have
been reported. Particularly, several limbic regions have been
identified with high discrimination power, this is consistent with
the recent observations that structural alterations or dysfunctions
of the limbic regions are closely associated with PTSD (Lanius
et al., 2010; Nardo et al., 2010). Even so, our discriminative
regions did not completely replicate those sMRI or rs-fMRI
findings.

Going through the very few PTSD classification studies, we
found the one used structural imaging feature (Gong et al.,
2014) also identified a widely distributed brain network that
comprised all brain lobes. In the other two studies that used
task fMRI (Niehaus et al., 2014) and rs-fMRI (Liu et al.,
2015) data respectively, limbic and prefrontal areas were all
considered played key role in discriminating PTSD subjects
with healthy controls that showed certain consistency with our
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discrimination maps. It is also worth noting that the network
pattern depends on the threshold selection, so the regions
shown on discrimination maps only indicate their relatively high
contributions.

Several limitations of this study should be noted. Firstly,
we only included sMRI and rs-fMRI data into the multimodal
classification, which is truly a “bimodal,” though three features
were used. We attempted to acquire data of extra modalities
(event-related fMRI, diffusion MRI and electroencephalogram
etc.), but the number of subjects was not yet enough for a
reasonable classification. Extra modalities data collection and
utilization will be considered in the further. Secondly, the PTSD,
TEC, and HC groups were compared only in a pairwise way.
Multi-class classification approach is a direction to explore to
see whether the accuracy could be further improved. Finally,
given that a small sample (57 subjects in total) was used in this
study, the obtained classifier is somewhat cohort specific. Next,
we would use a larger dataset to determine the generalizability of
the proposed approach.

CONCLUSION

This study proposed a novel framework to discriminate PTSD,
TEC, and HC using features derived from sMRI and rs-fMRI
scans. Single feature classification results revealed that GMV,
ALFF, and ReHo features could be used to identify PTSD/TEC
at individual level. Compared with the single feature method,
improved classification performance was obtained by combining
multimodal features via multi-kernel based SVM. The promising
classification results provide preliminary support to develop this
multimodal MRI approach toward assisting clinical practice,

which can potentially improve the clinical diagnosis of PTSD, as
well as other brain disorders.
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