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Endocrine-disrupting chemicals (EDCs) are diverse natural and synthetic chemicals

that may alter various mechanisms of the endocrine system and produce adverse

developmental, reproductive, metabolic, and neurological effects in both humans and

wildlife. Research on EDCs has revealed that they use a variety of both nuclear

receptor-mediated and non-receptor-mediated mechanisms to modulate different

components of the endocrine system. The molecular mechanisms underlying the effects

of EDCs are still under investigation. Interestingly, some of the effects of EDCs have

been observed to pass on to subsequent unexposed generations, which can be

explained by the gametic transmission of deregulated epigenetic marks. Epigenetics

is the study of heritable changes in gene expression that occur without a change

in the DNA sequence. Epigenetic mechanisms, including histone modifications, DNA

methylation, and specific micro-RNAs (miRNAs) expression, have been proposed to

mediate transgenerational transmission and can be triggered by environmental factors.

MiRNAs are short non-coding RNA molecules that post-transcriptionally repress the

expression of genes by binding to 3′-untranslated regions of the target mRNAs. Given

that there is mounting evidence that miRNAs are regulated by hormones, then clearly

it is important to investigate the potential for environmental EDCs to deregulate miRNA

expression and action.

Keywords: micro-RNA, endocrine disruptors, environment

INTRODUCTION

Endocrine-disrupting chemicals (EDCs) are diverse natural and synthetic chemicals that may alter
various mechanisms of the endocrine system and produce adverse developmental, reproductive,
metabolic, and neurological effects in both humans and wildlife (Henley and Korach, 2006). To
date, close to 800 chemicals are known or suspected to be capable of interfering with hormone
receptors and/or hormone synthesis and then play a larger role in the causation of many endocrine
diseases and disorders (WHO | State of the science of endocrine disrupting chemicals, 2012).
Excretion of EDCs is dependent on the nature of the chemical substances. If the substance is
non-persistent it is usually predicted that they are metabolized by the liver then finally eliminated
from the body through feces and urine. Persistent endocrine disruptors are accumulated especially
in adipose tissue and they can be released slowly. One way of excretion of these persistent
endocrine disruptors is thought to be from mother to child through breast feeding. It is observed
in many studies that the daily intake of breast milk containing organic pollutants may exceed the
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tolerable limit. It has been established that some EDCs can
act directly on hormone receptors as hormone mimics or
antagonists. Others can act directly on proteins that control the
delivery of a hormone to its target cell or tissue. In addition, EDCs
may act synergistically and produce additive effects. Most studies
on EDCs have focused on chemicals that affect the reproductive
and thyroid axis. However, several studies have suggested
that environmental chemicals could affect several physiological
systems that lead to metabolic disorders or central nervous
system dysfunctions (Casals-Casas and Desvergne, 2011). For
instance, neurobehavioral disorders have been associated with
hypothalamic-pituitary-adrenal (HPA) axis disruption induced
by hydroxyl-polychlorinated biphenyl (PCB; Kimura-Kuroda
et al., 2007).

It is particularly difficult to highlight only one mechanism
of action shared by the set of EDCs. In fact, the main
problem is that there are many and diverse EDCs including
industrial chemicals, pesticides, pollutants, and plastic industry
compounds. Nevertheless, research on EDCs has revealed that
they use a variety of both nuclear receptor- and non-receptor-
mediated mechanisms to modulate different components of the
endocrine system. For instance Vinclozolin (VCZ), a widely
used fungicide with antiandrogenic effects in mammals, is a
competitive antagonist of androgen receptor (AR) ligand binding
(Kelce et al., 1997). Several studies showed that exposure
to VCZ induce masculinized females and feminized males
in rodents (Buckley et al., 2006). Interestingly, some of the
effects of VCZ have been observed to pass on to subsequent
unexposed generations, which can be explained by the gametic
transmission of deregulated epigenetic marks (Anway et al., 2005;
Stouder and Paoloni-Giacobino, 2010; Guerrero-Bosagna et al.,
2012; Skinner et al., 2013). Epigenetic mechanisms, including
histone modifications, DNA methylation, and specific micro-
RNAs (miRNAs) expression, have been proposed to mediate such
transgenerational transmission (Reik et al., 2001; Del-Mazo et al.,
2013).

This review provides an insight into the toxicological
effects of EDCs and particularly new molecular mechanisms,
i.e., miRNAs, involved in the EDCs induced endocrine
disruption.

THE DIFFERENT TYPES OF EDCS

The term endocrine disruptors were first introduced by the
group of Soto in 1993 that showed that EDCs induced
developmental abnormalities (Colborn et al., 1993). The
International Program on Chemical Safety (IPCS) in 2002 and
World Health Organization in 2013 defined EDCs as “...an
exogenous substance or mixture that alters function(s) of the
endocrine system and consequently causes adverse health effects
in an intact organism, or its progeny, or (sub) populations.
A potential endocrine disruptor is an exogenous substance or
mixture that possesses properties that might be expected to lead
to endocrine disruption in an intact organism, or its progeny,
or (sub) populations.” To date, EDCs include a large variety of
chemical classes such as pesticides [methoxychlor, chlopyrifos,

and dichlorodiphenyltrichloroethane (DDT)], pharmaceutical
agents [diethylstrilbestrol (DES)], plastic packaging compounds
[Bisphenol A (BPA), phthalates], and other industrial products
that are used in daily life as fungicides VCZ or solvents/lubricants
(dioxins). Some of them but not all are exposed in this
paragraph.

A large number of chemicals are used as pesticides. The
most important pesticides are organochlorines pesticides (OCPs),
organophosphates, or triazines. The most emblematic of the
banned OCPs is DDT and the exposure to it persists. The
pesticides are involved in a large number of diseases including
cancer, diabetes but also neurodegenerative disease as Parkinson
or Alzheimer (Mostafalou et al., 2012; Mostafalou and Abdollahi,
2013).

The dioxins are a general name for a family of organochlorines
including the polychlorinated dibenzodioxins (PCDDs),
the polychlorinated dibenzofurans (PCDFs), and the
polychlorinated biphenyls (PCBs). Dioxins are produced by
various industrial processes and are commonly regarded as
highly toxic compounds that are environmental pollutants
and persistent organic pollutants. Among the PCDDs, the
2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) is the most potent
and toxic compound and became known as a contaminant in
Agent Orange, a herbicide used as a weapon in the Vietnam
War (Schecter et al., 2006). TCDD was also released into the
environment during the Seveso disaster (Sweeney and Mocarelli,
2000). The TCDD and the other toxins have been shown to
be involved in different diseases including cancers, thyroid
dysfunction, and nervous system degeneration but also type 2
diabetes (Pelclová et al., 2006; Schecter et al., 2006; Mostafalou
et al., 2012; Mostafalou and Abdollahi, 2013).

An important number of EDCs are found in plastic products.
World plastic production exceeded 300 million tons in 2010
(Halden, 2010). Most abundant of these plastics are phthalates
and BPA. These are two most common EDCs and are associated
with parental and social behavioral disturbances but also
endocrine disease. Phthalates are mainly used as plasticizers in
a wide range of common products, and are released into the
environment. Phthalate exposure may be through direct use or
by indirect means through leaching and general environmental
contamination (Aurela et al., 1999). Food products are believed
to be the main source of di-(2-ethylhexyl) phthalate (DEHP)
and other phthalates in the general population. Fatty foods
such as milk, butter, and meats are a major source. In several
studies in human and rodents, high and even low doses of
phthalates have been shown to change hormone levels as T3,
T4, and thyroid-stimulating hormone and cause birth defects
(Gayathri et al., 2004; Heudorf et al., 2007; Meeker et al.,
2009). BPA is one of the other emblematic plastics used in
polycarbonate plastic and polystyrene resins. Interestingly, it
has been shown that BPA is detected in 95% of urine sample
from a reference population of 394 adults in the United
States (Calafat et al., 2005). This higher level of BPA in urine
is associated with cardiovascular disease, sterility, and other
reproductive diseases but also diabetes and liver abnormalities
(Takeuchi et al., 2004; Sugiura-Ogasawara et al., 2005; Lang et al.,
2008).
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THE TOXICOLOGICAL EFFECTS OF EDCs
ON ENDOCRINE AXIS

Reproductive Axis
In the last few years, it has been noticed that the incidence of
certain diseases of the reproductive axis has increased (WHO
| State of the science of endocrine disrupting chemicals, 2012).
It is well-established that estrogen and androgen are involved
in sexual differentiation. In this context, EDCs may act as
estrogen and or androgen antagonists and induce different
sexual disorders in males and females (Diamanti-Kandarakis
et al., 2009; Sweeney et al., 2015; Toppari et al., 2016). For
instance, DES and phthalates exposure to rats are associated
with cryptorchidism or micropenis (Fisher et al., 2003; Li
et al., 2003). In human, it has been shown that breast milk
dioxin concentration correlated positively with the risk of
cryptorchidism in Denmark (Main et al., 2007). It has also
been shown that perinatal exposure to low doses of dioxin can
permanently reduce sperm quality (Mocarelli et al., 2011). In
humans, exposure to PCBs caused a defect in the development
of the reproductive system (Staessen et al., 2001). Recently,
epidemiological, study suggested that prenatal exposure to PCBs
may be also associated with increased risk for cryptorchidism
(Koskenniemi et al., 2015).

EDCs are associated with some types of female reproductive
axis disorder including polycystic ovarian syndrome (PCOS).
PCOS is a problem in which a woman’s hormones are out of
balance. It can disrupt the menstrual cycle and makes it difficult
to become pregnant. If it isn’t treated, over time it can lead
to serious health problems, such as diabetes and heart disease.
Most women with PCOS grow many small cysts on their ovaries.
Interestingly, women with PCOS have higher levels of BPA
and increased testosterone in these women is consistent with
decreased clearance of BPA (Takeuchi et al., 2004, 2006). The
cause of PCOS is not fully understood, but the EDCs as well as
BPA could play a role in the onset of PCOS. Female rats exhibited
sexual precocity as a consequence of exposure to DTT (Rasier
et al., 2007).

It has also been shown in the hypothalamic GT1-7 cell
line that organochlorine pesticides such as methoxychlor and
chlopyrifos altered gonadotropin-releasing hormone (GnRH)
gene expression and biosynthesis (Gore, 2002) suggesting that
EDCs could affect the different levels or reproductive axis.
Interestingly, it has been revealed that the BPA-mediated
inhibition of GnRH neuronal activity occurred independent
of estrogen receptors via a non-canonical unknown pathway
(Klenke et al., 2016).

Thyreotropic Axis
Thyroid hormones (T3 and T4) are important for brain
development, for the modulation of metabolism and are
associated with many aspects of normal adult physiology. For
these reasons, thyreotropic axis disruption induced a large
scale of perturbation in adult physiology, development, and
metabolism. It has been reported that numerous EDCs can
directly affect the normal functioning of the thyroid gland. In
numerous studies, it has been shown that different EDCs such

as PCBs, BPA, or DTT have thyroid-disrupting effects in animals
and humans (Patrick, 2009; Molehin et al., 2016).

The EDCs can affect the thyroid system at different levels such
as the transport and/or biosynthesis of the thyroid hormones.
It has been shown that PCBs have a high affinity with thyroxin
specific binding protein which can affect the thyroid hormone
transport (Rickenbacher et al., 1986; McKinney et al., 1987;
Darnerud et al., 1996). More precisely, treatment of mice during
gestation with PCB as 3,3′, 4,4′-tetrachlorobiphenyl (CB-77)
leads to a decrease of free and total T4 in fetal plasma (Darnerud
et al., 1996). More recently, the group of Seegal examined the
effects of a mixture of PCBs and polybrominated diphenyl ethers
(PBDEs) coexposure from gestational day 6 through postnatal
day 21, alone and in combination, on T4 levels in rat offspring
(Miller et al., 2012, 201). They observed that PCBs and PBDEs
induces similar reductions in T4 levels and that coexposure
to a mixture of PCBs and PBDEs has additive effects on T4
level in male and female offspring (Miller et al., 2012). In the
study of Schmutzler et al., rats (female, ovariectomized) were
treated for 12 weeks with different EDCs and an alteration
in thyrotropin (TSH) and thyroid hormones (T4, T3) serum
levels were observed (Schmutzler et al., 2004). In another set
of studies, exposure to phthalates induced thyroid function
alterations (Mitchell et al., 1985; Hinton et al., 1986; Price
et al., 1988). Interestingly, the treatment of rats for periods of 3
months with di-(2-ethylhexyl) phthalate increased the number
and size of lysosomes, hypertrophy of the Golgi apparatus, and
dilation of the rough endoplasmic reticulum in thyroid cells and
these changes are consistent with persistent hyperactivity in the
gland (Price et al., 1988). It has also been shown that EDCs
can alter deiodinase activity which is the peroxidase enzyme
that is involved in the activation or deactivation of thyroid
hormones (Meerts et al., 2002; Viluksela et al., 2004; Noyes et al.,
2013).

In human, there is now growing evidence that PCBs but
also BPA and phthalates have thyroid-disrupting effects (Boas
et al., 2012; Campos and Freire, 2016). For instance, the group
of Yoshinaga showed that exposure to hydroxylated-PCBs at
environmental levels during the first trimester of pregnancy can
affect neonatal thyroid hormone status (Hisada et al., 2014). It
has also been shown that early exposure to certain environmental
chemicals with endocrine-disruption activity as pesticides may
interfere with neonatal thyroid hormone status (Freire et al.,
2011).

Central Nervous System
There is strong evidence that there is a correlation between
the increasing prevalence of neurodevelopmental disorders and
the increase in exposure to pollutants over the past several
decades (Weiss and Landrigan, 2000; Landrigan and Goldman,
2011a,b). For instance, since the 1970s, there have been dramatic
increases in previously rare neurodevelopmental disorders such
as autism which is characterized by some degree of impaired
social behavior, communication and language, and a narrow
range of interests and activities that are both unique to the
individual and carried out repetitively. In the 1970s, autism’s
prevalence was estimated to be between 4 and 5 in 10,000

Frontiers in Neuroscience | www.frontiersin.org 3 June 2016 | Volume 10 | Article 318

http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Neuroscience/archive


Derghal et al. micro-RNA and the Endocrine Disruptors

children (Wing et al., 1976) but today this value is estimated
to be 1 in 110 children (Rice et al., 2007). In a review of the
literature performed by de Cock et al., a positive association was
found for autism in relation to exposure to different chemicals
investigated, which included hazardous air pollutants, pesticides,
and BPA (de Cock et al., 2012). In the same study, a relationship
between attention deficit hyperactivity disorders and different
EDCs including BCPs and pesticides such as chlorpyrifos has
been done (de Cock et al., 2012).

The function of central nervous system (CNS) can be
affected by EDCs and these effects can be induced by different
mechanisms. The most important is the effects of EDCs
on different endocrine axis important for CNS functions
and development. Evidence that prenatal estrogen exposure
is important in neuronal correct development emerged from
reports of psychosis in patients prenatally exposed to the
synthetic estrogen DES (Katz et al., 1987; Brown, 2009; Inadera,
2015; Negri-Cesi, 2015). Interestingly, several researches indicate
that BPA is an estrogenic EDC that alters or interferes
with normal endocrine development in various vertebrate and
invertebrate species (vom Saal et al., 2007) suggesting a role of
BPA in CNS disease. For instance, prenatal exposure to low dose
of BPA disturbed neocortical histogenesis in mice (Nakamura
et al., 2006, 2007).

As exposed above, BPA is a well-known xenoestrogen (Kuiper
et al., 1998; Delfosse et al., 2014; Inadera, 2015). BPA has complex
action in the CNS but primarily BPA was exhibited to bind
both estrogen receptors α and β (ERα and ERβ) and has also
been shown to act as an anti-androgen (Kuiper et al., 1998;
Wolstenholme et al., 2011). Interestingly, it has been described
endocrine and neuroendocrine abnormalities in schizophrenia
(Marx and Lieberman, 1998; Stevens, 2002). In fact, estrogen has
been associated with a neuroprotective effect but lower plasma
levels of estrogens induced schizophrenia-like syndrome inmales
and females (Huber et al., 2001; Kaneda and Ohmori, 2005; Segal
et al., 2007). Furthermore, neuronal disorders have also been
associated with an impairment of HPA axis. For instance, the
increase of glucocorticoid concentrations induced hippocampal
nerve damage and schizophrenia (Cotter and Pariante, 2002).
In rat, corticosterone exposures also lead to degeneration of the
prefrontal cortex causing impairments in executive functions
such as behavioral flexibility and working memory (Cerqueira
et al., 2005). It has been established in baboons that HPA
is potentially affected by estrogen (Pepe and Albrecht, 1998;
Albrecht et al., 2005). In addition, it has been recently shown
that perinatal exposure to low-dose of BPA caused HPA axis
dysfunctions (Panagiotidou et al., 2014; Chen et al., 2015;
Zhou et al., 2015). Particularly, the administration of low doses
of BPA (2 µg/kg.day) to female breeders from gestation day
10 to lactation day 7 induced obvious anxiety/depression-like
behaviors in the offspring (Chen et al., 2015). Notably, significant
increase in serum corticosterone and adrenocorticotropin, and
corticotropin-releasing hormone mRNA were detected in BPA-
exposed rats before or after the mild stressor (Chen et al.,
2015). Altogether these different observations strongly suggest
that BPA and other EDCs could be associated to schizophrenia
pathogenesis (Brown, 2009).

Metabolic Disorders
In addition to the reproductive and neuronal developmental
effects, there is also evidence that metabolic disorders may
be linked to EDCs (Casals-Casas et al., 2008; Newbold et al.,
2008). Obesity, diabetes and metabolic syndrome are due to
disruption of the energy storage balance endocrine system
and thus are potentially sensitive to EDCs. This hypothesis is
supported by different epidemiological and animal studies that
have shown that a variety of EDCs can influence adipogenesis
and obesity (Baillie-Hamilton, 2002; Casals-Casas et al., 2008;
Elobeid and Allison, 2008; Newbold et al., 2008; Chen et al.,
2009). For instance, the administration of DES to neonatal mice
induced overweight associated with an increase of abdominal
body fats and inflammatory biomarkers (Newbold et al., 2007).
In rats, perinatal exposure to low doses of BPA increased
adipogenesis and body weight in adult females (Somm et al.,
2009). EDCs are also involved in glucose homeostasis defects.
In accordance with this fact, epidemiological studies report
that exposure to EDCs may affect the risk of type 2 diabetes
(Remillard and Bunce, 2002; Huang et al., 2015; Song et al.,
2016). Very low doses of BPA induced hyperinsulenemia
and type 2 diabetes (Alonso-Magdalena et al., 2010). In the
same way, low doses of BPA and dioxins altered α-cell
function and glucagon release which lead to glucose homeostasis
defect (Alonso-Magdalena et al., 2005). Interestingly, it has
been established that EDCs such as BPA or dioxins are
accumulated by adipose tissue and that they are released slowly
and have induced glucose homeostasis impairment (Alonso-
Magdalena et al., 2011). When administrated to mother mice,
BPA induces metabolic disorders in adult male offspring
such as an age-related change in food intake, an increase
in body weight and liver weight, abdominal adipocyte mass,
number and volume, and in serum leptin and insulin, but
a decrease in serum adiponectin and in glucose tolerance
(Angle et al., 2013). Furthermore, mother mice treated with
BPA during gestation, at environmentally relevant doses, exhibit
profound glucose intolerance and altered insulin sensitivity
as well as increased body weight (Alonso-Magdalena et al.,
2015).

MICRO-RNAs AND EDCs

EDCs often act via more than one mechanism. The target cells
of the hormones bear receptors specific to a given hormone
and will be activated by either a lipid-soluble (permeable to
plasma membrane) or water-soluble hormone (binds cell-surface
receptor; Casals-Casas andDesvergne, 2011;Wolstenholme et al.,
2011; Maqbool et al., 2016). Lipid-soluble hormones (steroid
hormones and hormones of the thyroid gland) diffuse through
the plasma membrane to enter the target cell and bind to
a nuclear receptor (NR) protein that will in turn activates
expression of specific genes that influence specific physiological
cell activities. Water-soluble hormones (such as insulin) bind to
a receptor protein on the plasma membrane of the cell which
leads to specific cellular transduction pathways (Casals-Casas
and Desvergne, 2011; Maqbool et al., 2016; Wolstenholme et al.,
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2011). Because many EDCs are small lipophilic compounds, they
can directly interact with a given NR, which presumably perturbs
or modulates downstream gene expression.

In parallel with these classical pathways, it appears that
EDCs not only involve genetics but also epigenetic mechanisms.
Epigenetics is broadly defined as those heritable changes in the
genome not dependent upon changes in genetic sequences (e.g.,
DNA methylation or histone modification). These epigenetic
processes control tissue development by controlling gene
expression. Thus, a major route by which hormones act during
development is by changing the epigenome. These different
epigenetic mechanisms also include miRNAs which are short
non-coding RNA molecules that post-transcriptionally repress
the expression of genes by binding to 3′-untranslated regions
(3′UTR) of the target mRNAs. Recently, it appears that miRNAs
can be involved in the action of EDCs (Cameron et al., 2016;
Klinge, 2015). This part of the review focuses on the regulation
of miRNAs by the EDCs which appear as a new molecular
mechanism involved in endocrine disruption.

Biogenesis and Action of miRNAs
The miRNAs are short non-coding RNA with a size of 21–26
nucleotides that suppress target gene expression through the
inhibition of gene translation and the increase of the degradation
of target mRNAs (Bartel, 2004). These small regulatory molecules
are involved in a large range of biological processes such as
development, cell proliferation, apoptosis, synaptic plasticity,
and energy metabolism (Bartel, 2004). The gene regulation and
processing as well as themode of action of miRNAs are conserved
over the evolution of a species (Stricklin et al., 2005; Landgraf
et al., 2007; Ruby et al., 2007b). In recent decades, research on
miRNAs has deepened our understanding of their mechanisms of
action and their biological functions. These regulatory RNAs are
predicted to modulate the expression of∼30% of protein-coding
genes (Lewis et al., 2005). The miRNA can affect translation and
mRNA stability by means of RNA-RNA interactions. A number
of algorithms allow the identification of the potentially targeted
mRNA by miRNA and conversely miRNA modulator of mRNA.
Although the regulation of genes by miRNAs is an active area
of research, few targets of miRNAs have been experimentally
validated in a physiological context.

In parallel with the discovery of new miRNA, the
identification of the components of the miRNA maturation and
processing machinery is an active area of research (Figure 1).
The miRNA genes are located throughout the genome, within
introns of protein-coding genes and rarely in exons (Rodriguez
et al., 2004). Despite the small number of cases studied, it seems
that the promoters of miRNAs have the same characteristics
as those genes encoding proteins. The genes encode primary
RNA (pri-miRNAs) conformation stem-loop, with one or
two sequences which produce mature miRNAs (Hutvágner
et al., 2001; Lagos-Quintana et al., 2001; Lau et al., 2001). The
transcription machinery involves a RNA polymerase II (Lee
et al., 2004; Bortolin-Cavaillé et al., 2009). The pri-miRNA is
cleaved and polyadenylated at 3′ and 5′ capped in the same
manner as the mRNAs (Figure 1; Cai et al., 2004). The steps of
the pri-miRNA maturation require two endonucleases before

they become functional miRNAs (Lee et al., 2003). The first
step involves an RNA binding protein, the DiGeorge Syndrome
Critical Region 8 (DGCR8) also called Partner of Drosha
(PASHA) associated with Drosha (Denli et al., 2004; Gregory
et al., 2004; Han et al., 2004). Drosha cleaves sequences on either
side of the stem-loop of the pri-miRNA and gives the precursor
miRNA (pre-miRNA). Pre-miRNA is exported from the nucleus
to the cytoplasm by a karyopherin known as Exportin 5 (Yi
et al., 2003; Bohnsack et al., 2004; Lund et al., 2004). In the
second step, endonuclease DICER cleaves the pre-miRNA loop
region in the cytoplasm, thereby releasing a double-stranded
RNA of about 20 nucleotide pairs containing the mature miRNA
(Bernstein et al., 2001; Grishok et al., 2001; Hutvágner et al.,
2001; Ketting et al., 2001). Like Drosha, DICER is associated
with an RNA binding-protein, the human immunodeficiency
virus Transactivating Response RNA-Binding Protein (TRBP;
Chendrimada et al., 2005; Gregory et al., 2005; Haase et al.,
2005). One of the two strands is recognized by a protein of the
family of the Argonautes (AGO), most commonly AGO2, which
in turn recruits other elements of the RNA-induced silencing
complex (RISC; Sontheimer, 2005). The other strand called “star
strand” is degraded. An asterisk is associated with the name of
the miRNA that is not incorporated into the RISC complex (e.g.,
miR-488∗). However, for some miRNAs, both strands may be
incorporated into the RISC complex. In this case, the end of the
strand 5′ of the stem-loop is called “5p” and that of strand 3′ is
called “3p” (e.g., miR-384-5p and miR-384-3p). In fact, new data
indicates that a small fraction of the star strand is incorporated
into the RISC complex for most miRNA families (Yang et al.,
2011). For these reasons, the nomenclature scheme “–5p/–3p” is
increasingly used instead of the terminology “mature/star.” The
RISC complex/mature miRNA (miRISC) recognizes the target
mRNA and induces degradation and/or inactivation of the latter
(Figure 2).

However, various studies reveal that some families of miRNAs
undergo non-canonical pathway maturation. Importantly, some
studies described miRNAs called mirtrons which are located
in the short sequence of introns. The mirtrons undergo a
first processing step, independent of Drosha, by the splicing
machinery to give miRNA with a lariat structure. The introns
are then processed by the lariat-debranching enzyme to give
the pre-miRNAs which carry-on its maturation by the canonical
pathway (Okamura et al., 2007; Ruby et al., 2007a). It has also
been reported in one case (miR-451) that the cleavage step by
DICER is substituted with AGO2 (Cheloufi et al., 2010; Cifuentes
et al., 2010).

The miRNA-mRNA Interactions
The action of miRNAs depends on their specific interaction with
their targets. In plants, miRNAs bind to their targets with perfect
complementarity of bases, which induces a rapid cleavage of
the transcript by the ribonuclease activity of AGO (Baumberger
and Baulcombe, 2005). In metazoans, the majority of miRNAs
partially bind to their targets primarily through a region of
so-called seed sequence, located at positions 2–7 from the
miRNA 5′-end (Doench and Sharp, 2004; Brennecke et al., 2005).
This region binds perfectly on the 3′UTR via complementary
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FIGURE 1 | Biogenesis of miRNAs. Pol II, RNA Polymerase II; pri-miR, primary miRNA; pre-miR, precursor miRNA; RISC, RNA-Induced Silencing Complex; 5′ or

3′UTR, 5′ or 3′ untranslated region; DGCR8, DiGeorge Syndrome Critical Region 8; (A)n, Polyadenylation.
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FIGURE 2 | The different mechanisms of mRNA repression or degradation by miRNA. (A) The processing bodies. (B) Action on the initiation of translation and

repression in post-initiation steps. (C) Deadenylation. miRNA, microRNA; P-bodies, processing bodies; RISC, RNA-Induced Silencing Complex; 5′ or 3′UTR, 5′ or 3′

untranslated region; (A)n, Polyadenylation.
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base interactions. These interactions induce inhibition of the
expression of the target mRNA through a blocking of the
translation or a degradation of the transcript. The different
mechanisms of mRNA repression or degradation by miRNA are
briefly described below.

Processing bodies (P-bodies) are cytoplasmic foci containing
mRNA degradation enzymes and trinucleotide repeat-containing
gene 6A protein (TNRC6A or GW182 for Drosophila). These
are involved in the catabolism and/or storage of untranslated
mRNA (Figure 2A; Eystathioy et al., 2002, 2003; Ingelfinger et al.,
2002; van Dijk et al., 2002; Sheth and Parker, 2003). The GW182
proteins are also found in the miRISC complex where they play
a key role in the repression induced by miRNAs (Jakymiw et al.,
2005; Liu et al., 2005; Eulalio et al., 2008). In addition, the AGO
and GW182 proteins, miRNAs and targeted mRNAs are found in
the P-bodies (Ding et al., 2005; Liu et al., 2005; Pillai et al., 2005;
Sen and Blau, 2005). These studies suggest that targeted mRNAs
are repressed or degraded in the P-bodies.

The mechanism by which miRISC inhibits translation is
controversial. Several studies indicate a blocking of the initiation
of translation, while other studies suggest a repression in post-
initiation steps (Figure 2B). Indeed, it has been shown that the
miRNA targeted mRNAs are associated with fewer ribosomes
during elongation than in mRNAs controls (Humphreys et al.,
2005; Pillai et al., 2005; Bhattacharyya et al., 2006; Huang et al.,
2007; Ding and Grosshans, 2009). The initiation is stopped by
the blocking by miRISC of the interaction of the translation
ribosomal subunit 60S with mRNA (Chendrimada et al., 2007;
Wang et al., 2008). In addition, GW182 recognizes the 5′ cap
of the mRNA and prevents the initiation of translation (Eulalio
et al., 2008). In the other studies, two mechanisms inducing
translation repression after initiation have been described. It has
been shown that miRISC promotes the release of ribosomes
during elongation, thus blocking translation (Petersen et al.,
2006). Another study suggests that the elongation process is
maintained without peptide production when mRNA is targeted
by a miRNA (Nottrott et al., 2006). The authors suggest that
the complex-related proteases miRISC could degrade the native
peptides.

Studies showed that repression of many miRNA targets is
associated with a deadenylation and degradation (Figure 2C; Lim
et al., 2005; Giraldez et al., 2006; Wu et al., 2006; Wakiyama et al.,
2007; Eulalio et al., 2009). Comparative analysis of large scale
proteomic and transcriptomic changes, following overexpression
or inhibition of a miRNA in mammalian cells show that the vast
majority of targets repressed by a miRNA have decreased their
level of mRNA reflecting a lower presence of protein (Baek et al.,
2008; Selbach et al., 2008; Hendrickson et al., 2009; Guo et al.,
2010). These studies show that repression induced by miRNAs
predominantly results in mRNA degradation.

Modulation of miRNA Expression by
Hormones
Numerous studies clearly indicated that different hormones
modulate miRNA expression in different organs (Hu et al., 2013;
Cameron et al., 2016; Derghal et al., 2015; Klinge, 2015). For

instance, the treatment with thyroid hormones of hepatocytes
cells AML 12 over-expressing miR-206 resulted in decreased
miR-206 expression, and a significant increase in two predicted
target genes (i.e., Mup1 and Gpd2; Dong et al., 2010).

It has also been shown that estradiol actively controls miRNA
production in various tissues such as mammary and ovarian cells
(Gupta et al., 2012). More precisely, estrogens modulate miRNA
transcription by inactivating RNA polymerase II and precursor
miRNA biogenesis by blocking Drosha-mediated processing
(Gupta et al., 2012). It also been shown that estrogen regulates
miRNA expression in brain and particularly in the hippocampus,
the amygdala and paraventricular nucleus (Rao et al., 2013).
Recently, it has been established that miR-27a/b and miR-494
regulate tissue factor pathway inhibitor α (TFPIα) expression
suggesting a possible role of these miRNAs in the estrogen
mediated downregulation of TFPIα involved in breast cancer (Ali
et al., 2016).

Several studies indicate that gonadotropins as estrogen can
affect miRNA expression (Cohen et al., 2016). In accordance
with this, it has been observed variability in miRNA expression
profiles in estrogen receptor-positive and -negative breast cancer
phenotypes (Iorio et al., 2005; Mattie et al., 2006). As described
recently miR-136-3p expression levels were increased after the
administration of human chorionic gonadotropin to ovarian cells
(Kitahara et al., 2013). Direct action of estrogen on miRNAs
expression has been demonstrated in different studies. For
instance, an aberrant miRNA expression has been characterized
in estrogen-induced rat breast carcinogenesis (Kovalchuk et al.,
2007). Using the microarray approach, it has been shown that
estrogen can modulate the profile of miRNAs expression in
zebrafish model and in human MCF-7 and ZR-75 breast cancer
cells (Cohen et al., 2008; Bhat-Nakshatri et al., 2009; Maillot et al.,
2009; Ferraro et al., 2012).

Altogether, these different observations suggest that the link
between hormones, miRNAs and mRNA targets will lead to
an improved understanding of how EDCs affect the different
endocrine axis.

Modulation of miRNA Expression by EDCs
A few recent studies report the effect of several EDCs on the
expression of miRNAs in fish, animals, or cell lines (Collotta
et al., 2013; Vrijens et al., 2015). These disturbances of miRNAs
expression profile by EDCs are associated with diseases of the
CNS and reproductive axis as well as metabolic disorders (Vrijens
et al., 2015).

In humans, it has been shown that several EDCs as DTT or
BPA decreased the expression of miR-21 which has a key role
in cancer especially in breast cancer development (Tilghman
et al., 2012; Sicard et al., 2013). In addition, decreased expression
of let-7f is also associated with breast cancer (Sakurai et al.,
2012). In the work led by Tilghman et al., DTT (10 µM) or
BPA (10 µM) activate ERα in MCF-7 breast cancer cells which
down-regulated the expression of miR-21, let-7a-f, miR-15b,
and miR-28b and increased the expression miR-638, miR-663,
and miR-1915 (Tilghman et al., 2012). In addition, it has been
exhibited an important role of miR-19 in BPA-mediated MCF-
7 cell proliferation (Li et al., 2014). The xenoestrogens DES also
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showed a decrease of miR-34b expression in MCF-7 cells (Lee
et al., 2011). In rats, the neonatal exposure to the estrogenic
analog (i.e., estradiol benzoate) increased the expression of miR-
29 in testicular tissue (Meunier et al., 2012). Increased miR-
29 expression resulted in a decrease in DNA methyltransferases
(DNMT1, 3a and 3b) and antiapoptotic myeloid cell leukemia
sequence 1 (Mcl-1) protein levels. Together, the increased miR-
29 combined with a subsequent reduction of DNMT and Mcl-1
protein levels may represent a basis of explanation for the adult
expression of the germ cell apoptosis phenotype. Interestingly,
BPA given to rats at moderate doses is associated with erectile
dysfunction, cavernosal lipofibrosis and alterations of global
gene transcription including a set of miRNAs expressed in the
penile shaft (Kovanecz et al., 2014). In female, prenatal BPA
treatment in sheep results in hypergonadotropism and ovarian
cycle disruptions (Veiga-Lopez et al., 2013). Interestingly, in this
study it has been shown that fetal ovarian miRNAs expression
was altered by prenatal BPA with 45 down-regulated (>1.5-
fold) at day 65 and 11 down-regulated at day 90 of gestation
(Veiga-Lopez et al., 2013). In chicks, several miRNAs (miR-
1623, miR-1552-3p, miR-1573, miR-124a, and miR-1764) were
down-regulated in the DES-treated chick oviduct compared
with control oviduct (Lim and Song, 2015). Interestingly, these
miRNAs regulate the expression of vitelline membrane outer
layer protein 1, a basic protein present in the outer layer of the
vitelline membrane of eggs, plays essential roles in separating the
yolk from the egg white (Lim and Song, 2015). There is a growing
concern about the potential health effects of exposure to various
EDCs during pregnancy and infancy. The placenta is expected
to be an effective barrier protecting the developing embryo
against some EDCs circulating inmaternal blood. However, it has
been shown recently that miR-146a was significant overexpressed
and correlated significantly with BPA accumulation in the
placenta from pregnant women living in a polluted area and
undergoing therapeutic abortion due to fetal malformations (De
Felice et al., 2015). This observation has been also established
in HTR-8 and 3A human placental cells (Avissar-Whiting
et al., 2010). These different studies highlight the fact that the
EDCs induce miRNA-expression alterations in the reproductive
axis.

In the context of CNS disease, Jiang et al. established by
in silico approach that miR-146a is involved in Alzheimer’s
disease (Jiang et al., 2013). Interestingly, BPA exposure of human
placental cell lines has been shown to alter miRNA expression
levels, and specifically, miR-146a was strongly induced by BPA
treatment (Avissar-Whiting et al., 2010). Then, miR-146a could
be used as a biomarker for Alzheimer’s disease after EDCs
exposure.

Recently, it has been established that the expression of
hepatic miRNA (miR-22b, miR-140, miR-210a, mir-301, miR-
457b, and let-7d) is increased in fluoxetine (the active ingredient
in Prozac R©) exposed female zebrafish (Craig et al., 2014).
Interestingly, the miRNAs that were up-regulated were predicted
to be responsible for down-regulating pathways such as insulin

signaling, cholesterol synthesis, and triglyceride synthesis (Craig
et al., 2014). Recently, it was shown that miR-21, 221, 222, and
429 expression levels decreased in the liver of DDT-treated female
Wistar rats, whereas increases were observed in cytochrome
1A1 and 2B1 mRNA (Chanyshev et al., 2014; Gulyaeva et al.,
2016). By an original approach using DNA-Au bio bar code
(DNA-Au) and G-quadruplex-based DNA enzyme, Meng et al.
demonstrated that miR-21 expression is increased in BPA-treated
human hepatocarcinoma BEL-7402 cells (Meng et al., 2013). In
primary mouse hepatocyte, TCCD modulated the expression
of miR-503-5p that targeting cyclin D2 which was involved
in the discriminative process of p53 signaling and metabolism
(Rieswijk et al., 2015). In addition, it also been shown that TCDD
regulates the expression of miR-101a and miR-122 and that
cyclooxygenase-2, a target gene of miR-101a, plays a significant
role in liver damage in mice exposed to TCDD (Yoshioka et al.,
2011). Altogether, these observations suggest that the EDCs can
induce metabolic disorders through the disturbance of specific
miRNAs in the liver.

Altogether, these different studies indicated that miRNAs
profile changed in tissue exposed to different EDCs. Potentially,
miRNAs can be considered as new biomarkers for EDCs
exposure (Vrijens et al., 2015).

CONCLUSION

Despite the high number of studies generated in the past few
years on the mechanism of how EDCs act on the different
endocrine axis, much still needs to be learnt. To date, very few
ecotoxicology studies have considered miRNA in the context of
endocrine disruption. In this review, we have seen that exposure
to EDCs may lead to modification of miRNAs expression
associated with endocrine disruption. However, many questions
remain open, for instance (i) what is the impact on the miRNAs
expression in different tissues which have suffered chronic low
level EDCs exposure, (ii) what are the effects of the exposure
either to a single EDC or to a complex mixture of different
chemicals. Further, studies are warranted to evaluate if miRNAs
may act as a causal link between EDCs exposure and their effect
on health or if they can be used as a diagnostic or prognostic tools.
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