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Recent advances in multi-atlas based algorithms addressmany of the previous limitations

in model-based and probabilistic segmentation methods. However, at the label fusion

stage, a majority of algorithms focus primarily on optimizing weight-maps associated

with the atlas library based on a theoretical objective function that approximates the

segmentation error. In contrast, we propose a novel method—Autocorrecting Walks

over Localized Markov Random Fields (AWoL-MRF)—that aims at mimicking the

sequential process of manual segmentation, which is the gold-standard for virtually all

the segmentation methods. AWoL-MRF begins with a set of candidate labels generated

by a multi-atlas segmentation pipeline as an initial label distribution and refines low

confidence regions based on a localized Markov random field (L-MRF) model using

a novel sequential inference process (walks). We show that AWoL-MRF produces

state-of-the-art results with superior accuracy and robustness with a small atlas library

compared to existing methods. We validate the proposed approach by performing

hippocampal segmentations on three independent datasets: (1) Alzheimer’s Disease

Neuroimaging Database (ADNI); (2) First Episode Psychosis patient cohort; and (3)

A cohort of preterm neonates scanned early in life and at term-equivalent age. We

assess the improvement in the performance qualitatively as well as quantitatively by

comparing AWoL-MRF with majority vote, STAPLE, and Joint Label Fusion methods.

AWoL-MRF reaches a maximum accuracy of 0.881 (dataset 1), 0.897 (dataset 2),

and 0.807 (dataset 3) based on Dice similarity coefficient metric, offering significant

performance improvements with a smaller atlas library (<10) over compared methods.

We also evaluate the diagnostic utility of AWoL-MRF by analyzing the volume differences

per disease category in the ADNI1: Complete Screening dataset. We have made the

source code for AWoL-MRF public at: https://github.com/CobraLab/AWoL-MRF.
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INTRODUCTION

The volumetric and morphometric analysis of neuroanatomical
structures is increasingly important inmany clinical applications.
For instance, structural characteristics of the hippocampus have
been used as an important biomarker in many neuropsychiatric
disorders including Alzheimers disease (AD), schizophrenia,
major depression, and bipolar disorder (Harrison, 2004; Frey
et al., 2007; Lerch et al., 2008; Kempton et al., 2011; Meda et al.,
2013; Weiner, 2013). The gold standard for neuroanatomical
segmentation is manual delineation by an expert human rater.
However, with the increasing ubiquity of magnetic resonance
(MR) imaging technology and neuroimaging studies targeting
larger populations, the time and expertise required for manual
segmentation of large MR datasets becomes a critical bottleneck
in analysis pipelines (Mazziotta et al., 1995, 2001; Pausova et al.,
2007). Manual rater performance is dependent on specialized
knowledge of the neuroanatomy. A generic manual segmentation
protocol leverages this anatomical knowledge and uses it in
tandem with voxel intensities to enforce structural boundary
conditions during the delineation process. This is, of course,
the premise of many automated model-based segmentation
approaches.

Multi-atlas based approaches have been shown to improve
segmentation accuracy and precision over model-based
approaches (Collins et al., 1995; Pruessner et al., 2000; Warfield
et al., 2004; Heckemann et al., 2006, 2011; Aljabar et al., 2009;
Chakravarty et al., 2009, 2013; Leung et al., 2010; Lötjönen
et al., 2010; Sabuncu et al., 2010; Wolz et al., 2010; Wang et al.,
2012; Yushkevich et al., 2012). The processing pipelines of these
approaches can be divided into multiple stages. First, several
atlas images are registered to a target image, i.e., an image to
be segmented. Subsequently, the atlas labels are propagated to
produce several candidate segmentations of the target image.
Finally, a label fusion technique such as voxel-wise voting is
used to merge these candidate labels into the final segmentation
for the target image. For the remainder of the manuscript we
refer this latter stage within a multi-atlas based segmentation
pipeline as “label fusion,” which is the core interest of this
work.

Traditionally, in many image processing and computer vision
applications in neuroimaging, the use of Markov Random
Field (MRF) has been a popular approach for modeling
spatial dependencies and has been used in several model-
based segmentation techniques. Existing software packages
such as FreeSurfer (Fischl et al., 2002) and FMRIB Software
Library (Smith et al., 2004) use MRF for gray matter,
white matter, and cerebrospinal fluid classification as well
as for segmentation of multiple subcortical structures. For
example, FreeSurfer uses an anisotropic non-stationary MRF
that encodes the inter-voxel dependencies as a function of
location within the brain. Pertaining to multi-atlas label fusion
techniques, STAPLE (Simultaneous Truth And Performance
Level Estimation; Warfield et al., 2004), uses a probabilistic
performance framework consisting of an MRF model and an
Expectation-Maximization (EM) inference method to compute
the probabilistic estimate of a true segmentation based on an

optimal combination of a collection of segmentations. STAPLE
has been explored in several studies for improving a variety of
segmentation tasks (Commowick and Warfield, 2010; Akhondi-
Asl and Warfield, 2012; Commowick et al., 2012; Jorge Cardoso
et al., 2013).

Alternatively, a majority of modern multi-atlas approaches
treat label fusion as a weight-estimation problem, where the
objective is to estimate optimal weights for the candidate
segmentation propagated from each atlas. In a trivial case with
uniform weights, this label fusion technique boils down to a
simple majority vote. In other cases (Aljabar et al., 2009), the
weights can be used to exclude atlases that are dissimilar to
a target image to minimize the errors from unrepresentative
anatomy. In a more general case, weight values are estimated
using some similarity metric between the atlas library and
the target image. A comprehensive probabilistic generative
framework is provided by Sabuncu et al. (2010) that models
such an underlying relationship between the atlas and target
data, exploited by the methods belonging to this class. More
recently, several methods (Coupé et al., 2011; Rousseau et al.,
2011; Wang et al., 2012) have extended this label fusion approach
by adopting spatially varying weight-maps to capture similarity
at a local level. These algorithms usually introduce a bias during
label fusion when the weights are assigned independently to each
atlas, allowing several atlases to produce similar label errors.
These systematic (i.e., consistent across subject cohort) errors
can be mitigated by taking pairwise dependencies between atlases
into account during weight assignment as proposed in the Joint
Label Fusion (JLF) approach (Wang et al., 2012; Yushkevich et al.,
2012).

In contrast, the proposed method—Autocorrecting Walks
over Localized Markov Random Field (AWoL-MRF)—pursues
a different idea for tackling the label fusion problem. We
hypothesize that we could achieve superior performance by
mimicking the behavior of the manual rater, since virtually all
segmentation methods use manual labels to define the gold-
standard. Consequently, the label fusion objective developed
here comprises capturing the sequential process of manual
segmentation rather than optimizing atlas library weights based
on similarity measure proxies and/or performing iterative
inference to estimate optimal label configurations based on
MRFs. Hence the novelty of the approach lies in the
methodological procedure as we combine the strong prior
anatomical information provided by the multi-atlas framework
with the local neighborhood information specific to the given
subject.

In the context of segmentation of anatomical structures such
as hippocampus, the challenging areas for label assignment
are mainly located at the surface regions of the structure. We
observe that a manual rater traces these boundary regions
by balancing intensity information and anatomical knowledge,
while enforcing smoothness requirements and tackling partial
volume effects. In practice, this behavior translates into a
sequential labeling process that depends on information offered
by the local neighborhood around a voxel of interest. For
instance, a manual rater would begin by marking a boundary
of a structure that they believe to be correct (high-confidence)
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based on anatomical knowledge. Next, the rater would identify
certain regions that require further refinement (low-confidence).
Then, region-by-region (patches), the rater would perform these
refinements by moving from high-confidence areas to low in a
sequential manner, while taking into account the information
offered by neighborhood voxels from orthogonal planes. While
not all groups may use this process, this tends to be a dominant
order-of-operations for those using the Display tool from the
MINC toolkit. This process has been used in many publications
by our group (Chakravarty et al., 2008, 2009; Winterburn
et al., 2013; Park et al., 2014), and serves as intuition for the
development of AWoL-MRF.

The proposed label fusion method attempts to incorporate
these observations into an automated procedure and is
implemented as part of a segmentation pipeline previously
developed by our group (Pipitone et al., 2014). The algorithmic
steps of AWoL-MRF can be summarized as follows. First
based on a given multi-atlas segmentation method, we initialize
the label distribution for a neuroanatomical structure to be
segmented. This initial label-vote distribution is leveraged to
partition the given target volume in two disjoint subsets
comprising regions with high and low confidence label values
based on the vote distribution at the voxels. Next we construct
a set of local 3-dimensional patches comprising a certain ratio
of high and low confidence voxels. The spatial dependencies in
these patches are modeled using independent MRFs. Finally, we
traverse these patches moving from high to low confidence voxels
in a sequential manner and perform the label distribution updates
based on a localized (patch-based) MRF model. We implement a
novel spanning-tree method to build these ordered sequences of
voxels (walks).

We provide a description and extensive validation of our
approach in this manuscript, which is organized as follows.
First, we describe the AWoL-MRF method and the underlying
assumptions in detail. Then, we provide a thorough validation
of the method for the whole hippocampus segmentation by
conducting multi-fold validation over three independent datasets
that span the entire human lifespan. The quantitative accuracy
evaluations are performed on three datasets: (1) a subset of the
Alzheimer’s Disease Neuroimaging Database (ADNI) dataset; (2)
a cohort of First Episode Psychosis (FEP) patients; and (3) a
cohort of preterm neonates scanned early in life and at term-
equivalent age. Additionally we evaluate the diagnostic utility
of the method by analyzing the volume differences per disease
category in the ADNI1: Complete Screening dataset. We assess
the accuracy and robustness of this proposed method (source
code: https://github.com/CobraLab/AWoL-MRF) by comparing
it with three other approaches. Our group has recently validated
the performance of MAGeT-Brain (Pipitone et al., 2014)
pipeline against several other automated methods. Here, we
make use of MAGeT-Brain to generate candidate labels on
which variety of label fusion methods can be implemented.
We first compare the performance of AWoL-MRF with the
default majority-vote based label fusion used in MAGeT-
Brain. In addition, we compare AWoL-MRF with STAPLE
(Warfield et al., 2004) and JLF (Wang et al., 2012) label fusion
methods.

MATERIALS AND METHODS

Baseline Multi-Atlas Segmentation Method
MAGeT-Brain (https://github.com/CobraLab/MAGeTbrain)—a
segmentation pipeline previously developed by our group, is used
as a baseline method for comparison (Pipitone et al., 2014).
MAGeT-Brain uses multiple manually labeled anatomical atlases
and a bootstrapping method to generate a large set of candidate
labels (votes) for each voxel for a given target image to be
segmented. These labels are generated by first randomly selecting
a subset of target images, which is referred as a template library.
Then the atlas segmentations are propagated to the template
library via transformations estimated by nonlinear image
registration. Subsequently, these template library segmentations
are propagated to each target image and these candidate labels
are fused using a label fusion method. The number of candidate
labels is dependent on the number of available atlases and
number of templates. In a default MAGeT-Brain configuration,
the candidate labels are fused by a majority vote. In previous
investigations by our group (Chakravarty et al., 2013; Pipitone
et al., 2014), we observed no improvements when we used
cross correlation and normalized mutual information based
weighted voting (Studholme et al., 1999). For the purposes of this
manuscript, candidate labels generated using MAGeT-Brain will
be used to serve as the input to AWoL-MRF, STAPLE, and the
default majority vote label fusion methods. The use of candidate
labels is non-trivial in the case of label fusion with JLF, as this
method requires coupled atlas image and label pairs as input.
The permutations in MAGeT-Brain pipeline generate candidate
labels totaling to number of atlases × number of templates.
These candidate labels no longer have unique corresponding
intensity images associated with them. The use of identical atlas
(or template) library images as proxies is likely to deteriorate
the performance of JLF, as it models the joint probability of
two atlases making a segmentation error based on intensity
similarity between a pair of atlases and the target image (Wang
et al., 2012). Therefore, no template library is used during JLF
evaluation. Note that even though MAGeT-Brain is used as a
baseline method for the performance validation in this work,
AWoL-MRF is a generic label fusion algorithm that can be used
with any multi-atlas segmentation pipeline that produces a set of
candidate labels.

Proposed Label Fusion Method:
AWoL-MRF
A generic label fusion method involves some sort of voting
technique, such as a simple majority or some variant of
weighted voting, which combines labels from a set of candidate
segmentations derived from a multi-atlas library. These voting
techniques normally yield accurate performance at labeling the
core regions of an anatomical structure; however, the overall
performance is dependent on the structural variability accounted
by the atlas library. Especially in cases where only a small number
of expert atlases are available, the resultant segmentation of
a target image can be split into two distinct regions - areas
with (near) unanimous label votes and areas with divided label
votes. The proposed method incorporates this observation by
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partitioning the given image volume into two subsets based
on the label vote distribution (number of votes per label per
voxel) obtained from candidate segmentations. Subsequently,
these partitions are used to generate a set of patches on which we
construct MRFmodels to impose homogeneity constraints in the
given neighborhood spanned by each patch. Finally, the voxels
in these localized MRFs are updated in a sequential manner
incorporating the intensity values and label information of the
neighboring voxels. A detailed description of this procedure is
provided below.

Image Partitioning
Let S be a set comprising all voxels in a given 3-dimensional
volume. Then an image I comprising gray-scale intensities and
the corresponding label volume are defined as:

I (S) : {x ∈ S} → R (1)

Lj (S) : {x ∈ S} → {0, 1} (2)

Thus, Lj represents the jth candidate segmentation volume
comprising binary label values (background:0 and structure:1)
for a given image. Then with J candidate segmentations,
we can obtain a label-vote distribution through voxel-wise
normalization.

V (S) =
∑

j w
jLj(S)

J
(3)

Where, wj is the weight assigned to the jth candidate
segmentation. Now, V (S) represents the label probability
distribution over all the voxels in the given image. For an
individual voxel, it provides the probability of belonging to a
particular structure:V (xi) = P (L (xi) = 1) = 1−P (L (xi) = 0).
Now, we split set S into two disjoint subsets SH (high-confidence
region) and SL (low-confidence region) such that.

SH = {x ∈ S |V (xi) > L0T ∪V (xi) > L1T}
SL = {x ∈ S | x /∈ SH} (4)

where, L0T and L1T are the voting confidence thresholds for L =
0 and L = 1, respectively. Note that in the generic majority
vote scenario L0T = L1T = 0.5 and SL collapses to an empty
set. In order to identify and separate low-confidence regions,
these thresholds are set at higher values (>0.5) and can be
adjusted based on empirical evidence (see Section Parameter
Selection). As mentioned earlier, voting distributions usually
form a near consensus (uni-modal) toward a particular label
at certain locations, such as the core regions of structures, and
therefore these voxels are assigned to the high-confidence subset.
In contrast, other areas that have split (flat) label distribution are
assigned to low-confidence subset.

Patch Based Graph Generation
From here on, we will refer to voxels as nodes, in keeping with
graph-theory convention. The partitioning operation reduces
the number of nodes to be re-labeled by a significant amount.
However, considering the size of the MR images, selecting a
single MRF model consisting of all SL nodes and their neighbors

is a computationally expensive task. Additionally, the unified
model usually considers global averages over an entire structure
during parameter estimation for choice of prior distributions,
such as P(intensity | label), which may not be ideal in cases where
local signal characteristics show spatial variability. Therefore, we
propose a patch-based approach, which further divides the given
image in smaller subsets (3-dimensional cubes) comprising SH
as well as SL nodes. The subsets are created with a criterion
imposing a minimum number requirement of SH nodes in
a given patch. This criterion essentially dictates the relative
composition of SH and SL nodes in the patch—which is referred
as the “mixing ratio” parameter in this manuscript. The impact of
this heuristic method of patch generation is discussed in Section
Parameter Selection. The basic idea behind this approach is to
utilize the information offered by the SH neighbors via pairwise
interactions (doubleton clique) along with the local intensity
information to update the label-likelihood of SL voxels. The
implemented algorithm to generate these patches is described
below.

First, the SL nodes are sorted based on the number of SH nodes
in their 26-node neighborhood. Next, thresholding on themixing
ratio parameter, top SL nodes from the sorted list are selected as
seeds. Then, the patches are constructed centered at these seeds
with pre-defined length (Lpatch). Figure 1A shows the schematic
representation of the SH , SL partitions based on initial label
distribution (V(S)), as well as the overlaying patch-based subsets
comprising SH and SL nodes. Note that depending on parameter
choice (mixing-ratio and patch-length), these patches may not be
strictly disjoint. In this case, the nodes in overlapping patches
are assigned to a single patch based on a simple metric, such
as its distance from the seed node. Additionally, these patches
may not cover the entire SL region. These unreachable SL nodes
are labeled according to the baseline majority vote. These two
edge cases can be mitigated with sophisticated graph partitioning
methods—nevertheless based on our exploratory investigation,
such methods prove to be computationally expensive, and yield
minimal accuracy improvements.

Localized Markov Random Field Model
As seen from Figures 1A,B, the MRF model is built on nodes in
a given patch (Sp). The probability distribution associated with
the particular field configuration (label values of the voxels in the
patch) can be factorized based on the cliques of the underlying
graph topology. With first-order connectivity assumption, we
get a 3-dimensional grid topology, where each node (excluding
patch edges) has six connected neighbors along the Cartesian
axes. Consequently, this graph topology yields two types of
cliques. The singleton clique (C1) of SP is a set of all the voxels
contained in that patch. Whereas the doubleton clique (C2) is a
set consisting of all the pairs of neighboring voxels in the given
patch. Then, for the MRF model, the total energy (U) of a given
label configuration (y) is given by the sum of all clique potentials
(VC) in this MRF model:

U
(

y
)

=
∑

c∈C
Vc(y) =

∑

i∈C1
VC1(yi)+

∑

i,j∈C2
VC2(yi, yj)

(5)
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FIGURE 1 | (A) The segmentation of a sample hippocampus in sagittal view during various stages of algorithm. Row 1: The target intensity image to be segmented.

Row 2: The voxel-wise label vote distribution map for the target image based on candidate labels. Row 3: Image partitioning comprising two disjoint regions (high

confidence: red, low confidence: white). Row 4: Orange Patches (localized MRFs:) comprising low confidence voxels. Row 5: Fused target labels. (B) Image

partitioning into certain and uncertain regions and generation of patches. (C) Transformation of MRF graph into spanning tree representation. The tree is traversed

starting from the root (seed) node and successively moving toward the leaf nodes.
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where, y : {L (xi) |xi ∈ Sp}. Now, assuming that voxel gray-scale
intensities ( fi = I (xi) ) follow a Gaussian distribution given the
label value, we get the following relation for the singleton clique
potential based on the MRF model.

VC1

(

yi
)

= log(P(fi|yi)) = − log(
√
2πσyi)−

(

f − µyi

)2

2σ 2
yi

(6)

The mean and variance of the Gaussian model can be estimated
for each patch empirically, utilizing the SH nodes in the given
patch as a training set. This approach proves to be advantageous
especially in the context of T1-weighted images of the brain, as
intensity distributions tend to fluctuate spatially. The doubleton
clique potentials are modeled to favor similar labels at the
neighboring nodes and are given by the following relation.

VC2

(

yi, yj
)

= − β d
(

yi, yj
)

=
{

−β if yi = yj
+ β if yi 6= yj

(7)

The β parameter can be estimated empirically using the atlas
library (Sabuncu et al., 2010). As β increases the regions
become more homogeneous. This is discussed further in
Section Parameter Selection. Finally, the posterior probability
distribution of the label configuration can be computed using
Hammersley-Clifford theorem, and is given by:

P
(

y|f
)

=
1

z
exp

(

−U
(

y
))

P
(

y|f
)

∝
∑

i∈C1

(

log
(√

2πσyi

)

+
(

f − µyi

)2

2σ 2
yi

)

+
∑

i,j∈C2
βd
(

yi, yj
)

(8)

where Z is the partition function that normalizes configuration
energy ( U ) into a probability distribution. The maximum a
posteriori (MAP) label distribution is given by:

yMAP = argmaxy P
(

y|f
)

= argminy U(y) (9)

The posterior segmentation can be computed using a variety of
optimization algorithms as described in the next section.

Inference
This section provides the details of the optimization technique
used to compute posterior label distribution. Common iterative
inference and learning methods such as Iterated Conditional
Modes (ICM) and Expectation Maximization (EM) are
computationally intensive, and ICM variants often suffer from
greedy behavior that results in local optima. Here, we present
an alternative approach that computes the posterior label
distribution in a non-iterative, online process, minimizing
computational costs. The intuition behind this approach is to
mimic manual tracing protocols where the delineation process
traverses from higher-confidence regions to lower-confidence
regions in a sequential manner. In order to follow such a process,
we transform the undirected graph structures defined by the

MRF patches into directed spanning trees (see Figure 1C). Then
we compute the posterior label distributions one voxel at a time
as we traverse (walk) through the directed tree exhaustively.
The directed tree structure mitigates the need for iterative
inference over loops within the original undirected graph. The
following is a brief outline of the implementation of the inference
procedure:

1. Initialize all voxels to the labels given by the mode of baseline
label distribution.

2. Transform the graph consisting of SL nodes within an MRF
patch into a directed tree graph, specifically a spanning
tree graph with seed voxels as the root of the tree. This
transformation is computed using a minimum spanning tree
(MST) method (Prim’s Algorithm; Prim, 1957), which finds
the optimal tree structure based on a predefined edge-weight
criterion. In this method, the weights are assigned based on
the node adjacency and voxel intensity gradients.

w
(

xi, xj
)

=
{
(

fi − fj
)2

if d
(

xi, xj
)

= 1
∞ if d

(

xi, xj
)

6= 1
(10)

where d
(

xi, xj
)

is a graph metric representing distance
between two vertices.

3. Traverse through the entire ordered sequence of the MST to
update the label at each voxel using Equation (9).

4. Repeat this process for all MRF patches.

VALIDATION EXPERIMENTS

Datasets
For complete details please refer to the Supplementary Materials.

Experiment I: ADNI Validation
Data used in this experiment were obtained from the Alzheimer’s
Disease Neuroimaging Initiative (ADNI) database (http://adni.
loni.usc.edu/). The dataset consists of 60 baseline scans in the
ADNI1: Complete 1Yr 1.5T standardized dataset (Jack et al.,
2011; Wyman et al., 2013). The demographics of this cohort
are summarized in Table 1. The manual segmentations for the
hippocampus (ADNI-specific) were generated by expert raters
following the Pruessner-protocol (Pruessner et al., 2000). These
manual segmentations were used for validation and performance
comparisons.

Experiment II: First Episode Psychosis (FEP)

Validation
Data used in this experiment were obtained from the Prevention
and Early Intervention Program for Psychoses (PEPP-Montreal),
a specialized early intervention service at the Douglas Mental
Health University Institute in Montreal, Canada (Malla et al.,
2003). The dataset consists of structural MR images (1.5T) of
81 subjects. The demographics of this cohort are summarized
in Table 2. The manual segmentations for the hippocampus
were generated by expert raters following the Pruessner-protocol
(Pruessner et al., 2000).
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TABLE 1 | ADNI1 cross-validation subset demographics.

CN (N = 20) LMCI (N = 20) AD (N = 20) Combined (N = 60)

Age (Years ) 72.2, 75.5, 80.3 70.9, 75.6, 80.4 69.4, 74.9, 80.1 70.9, 75.2, 80.2

Sex (Female) 50% (10) 50% (10) 50% (10) 50% (30)

Education 14.0, 16.0, 18.0 13.8, 16.0, 16.5 12.0, 15.5, 18.0 13.0, 16.0, 18.0

CDR-SB 0.00, 0.00, 0.00 1.00, 2.00, 2.50 3.50, 4.00, 5.00 0.00, 1.75, 3.62

ADAS 13 6.00, 7.67, 11.00 14.92, 20.50, 25.75 24.33, 27.00, 32.09 9.50, 18.84, 26.25

MMSE 28.8, 29.5, 30.0 26.0, 27.5, 28.2 22.8, 23.0, 24.0 24.0, 27.0, 29.0

CN, Cognitively Normal; LMCI, Late-onset Mild Cognitive Impairment; AD, Alzheimer’s Disease; CDR-SB, Clinical Dementia Rating-Sum of Boxes; ADAS, Alzheimer’s Disease Assessment

Scale; MMSE, Mini-Mental State Examination; Values are presented as lower quartile, median, and upper quartile for continuous variables, or as a percentage (frequency) for discrete

variables.

TABLE 2 | First Episode Psychosis subject demographics.

N* FEP (N = 81)

Age 80 21 23 26

Gender: M 81 63% (51)

Handedness: ambi 81 6% (5)

Left 5% (4)

Right 89% (72)

Education 81 11 13 15

SES: Lower 81 31% (25)

Middle 54% (44)

Upper 15% (12)

FSIQ 79 88 102 109

Ambi, ambidextrous; SES, Socioeconomic Status score; FSIQ, Full Scale IQ. Values are

presented as lower quartile, median, and upper quartile for continuous variables, or as a

percentage (frequency) for discrete variables. N* is the number of non-missing values.

Experiment III: Preterm Neonatal Cohort Validation
This cohort consists of 22 premature neonates whose anatomical
images (1.5T) were acquired at two time points, once in the first
weeks after birth when clinically stable and again at the term-
equivalent age (total of 44 images: 22 early-in-life and 22 term-age
equivalent). The whole hippocampus was manually segmented
by an expert rater using a 3-step segmentation protocol. The
protocol adapts histological definitions (Duvernoy et al., 2005),
as well as existing whole hippocampal segmentation protocols
for MR images (Pruessner et al., 2000; Winterburn et al., 2013;
Boccardi et al., 2015) to the preterm infant brain (Guo et al.,
2015).

Experiment IV: Hippocampal Volumetry
The volumetric analysis was performed using the standardized
ADNI1: Complete Screening 1.5T dataset (Wyman et al., 2013)
comprising 811 ADNI T1-weighted screening and baseline MR
images of healthy elderly (227), MCI (394), and AD (190)
patients. The segmentations were produced using 9 atlases
(segmented following the Pruessner-protocol) with each method.
For majority vote, STAPLE, and AWoL-MRF the number of
templates was set to 19. Asmentioned earlier, the use of templates
is not possible with JLF due to coupling between image and
label volumes from the atlas library. In the first part of analysis,
we compared the mean hippocampal volume measurements per
diagnosis (AD: Alzheimer’s disease patients, MCI: subjects with

mild cognitive impairment, CN: cognitively normal). Then in
the second part of analysis, we compared the mean hippocampal
volume measurements of two MCI sub-groups: MCI-converters
(65 subjects converting from MCI to AD diagnosis) and MCI-
stable (285 subjects with stable MCI diagnosis) within 1 year
from the screening time-point. Furthermore, during both parts,
we performed analysis using a linear model predictive of
hippocampal volume based on diagnostic category along with
“age,” “sex,” and “total-brain-volume” as covariates (data used
from ADNIMERGE table from the ADNI database).

Label Fusion Methods Compared
We compared the performance of AWoL-MRF against MAGeT-
Brain majority vote, STAPLE, and JLF. The basic approach of
these label fusion methods is described below.

MAGeT-Brain Majority Vote
As described in Section Proposed Label Fusion Method: AWoL-
MRF, the MAGeT-Brain pipeline uses a template library sampled
from the subject image pool. Consequently, the total number
of candidate labels (votes) prior to label fusion equals number
of atlases × number of templates. In the default MAGeT-Brain
configuration, these candidate labels are fused based on simple
majority vote.

Simultaneous Truth and Performance Level

Estimation (STAPLE)
STAPLE (Simultaneous truth and performance level estimation;
Warfield et al., 2004), is a probabilistic performance model that
tries to estimate underlying ground-truth labels from a set of
manual or automatic segmentations generated by multiple raters
or methods. Note that STAPLE does not consider the intensity
values from the subject image in its model comprising MRF.
STAPLE carries out label fusion in an Expectation-Maximization
framework and estimates performance of a manual rater or
an automatic segmentation method for each label class—which
is then used to find the optimal segmentation for the subject
image. Software implementation of STAPLE was obtained from
the Computational Radiology Laboratory (http://www.crl.med.
harvard.edu/software/STAPLE/index.php).

Joint Label Fusion (JLF)
Among the modern label fusion approaches incorporating
spatially varying weight-distribution, JLF also accounts for the
dependencies within the atlas library (Wang et al., 2012). These
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dependencies are estimated based on an intensity similarity
measure between a pair of atlases and a target image in a
small neighborhood surrounding a voxel. This approach allows
mitigation of bias typically incurred by the presence of similar
atlases. Software implementation of JLF was obtained from the
ANTs repository on Github (https://github.com/stnava/ANTs/
blob/master/Scripts/antsJointLabelFusion.sh).

Evaluation Criteria
For experiments I, II, and III, we performed both quantitative and
qualitative assessment of the results. The segmentation accuracy
was measured using Dice similarity coefficient (DSC), given as
follows:

DSC =
2 |A∩ B|
|A| + |B|

(11)

where A and B are the three dimensional label volumes being
compared. We also evaluated the level of agreement between
automatically computed volumes and manual segmentations
using Bland-Altman plots (Bland and Altman, 1986). Bland-
Altman plots were created with segmentations generated from
5 to 19 templates configuration. For the ADNI and FEP
datasets, we performed three-fold cross validation and obtained
the quantitative scores by averaging over all the validation
rounds, as well as the left and right hippocampal segmentations.

Constrained by the size of the Premature Birth and Neonatal
dataset and the quality of certain images which caused difficulties
in the registration pipeline, we simply performed a single round
of validation to determine if the results that we found in
Experiments I and II were generalizable to brains with radically
different neuroanatomy. Due to incomplete myelination of the
brain, the neonatal MR images have drastically different contrast
levels. The intensity values for the hippocampus are reversed
relative to T1-weighted images of the adolescent or adult human
brains. These distinct attributes make it an excellent “held out
sample” or “independent test-set” for performance evaluation.
Thus, for this dataset, the quantitative scores are averages over
left and right hippocampi over a single validation round.

Additionally, we also verified the segmentation precision
using surface based metric analogous to the Hausdorff distance
(Chakravarty et al., 2009). The details of this evaluation are
reported in the Supplementary Materials.

RESULTS

Experiment I: ADNI Validation
For ADNI dataset, the mean Dice score of AWoL-MRF
maximizes at 0.881 with 9 atlases and 19 templates. As seen
from Figure 2, AWoL-MRF outperforms both majority vote
(0.862), STAPLE (0.858), and JLF label fusion (0.873) methods.

FIGURE 2 | Experiment I DSC: All results show the average performance values of left and right hippocampi over three-fold validation. The top-left

subplot shows mean DSC score performance of all the methods. Remaining subplots show the mean DSC score improvement over compared methods for different

number of templates (bootstrapping parameter of MAGeT-Brain).
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FIGURE 3 | Experiment I DSC: Statistical comparison of the performance of all methods for different atlas library sizes. The statistical significance is

reported for pairwise comparisons (*p < 0.05, **p < 0.01, ***p < 0.001).

FIGURE 4 | Experiment I Bland-Altman Analysis: Comparison between computed and manual volumes (in mm3) for single parameter configuration of 9

atlases and 19 templates. The overall mean difference in volume, and limits of agreement (LA+/LA−: 1.96 SD) are shown by dashed horizontal lines. Linear fit lines

are shown for each method. Note that the points above the mean difference indicate underestimation of the volume with respect to the manual volume, and vice versa.
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Particularly compared to JLF, more improvement is seen with
fewer atlases as AWoL-MRF reaches mean Dice score of 0.880
with only 6 atlases. The improvement diminishes with an
increasing number of atlases and a smaller number of templates
(bootstrapping parameter for generating candidate labels).
Additionally, AWoL-MRF helps reduce the bias introduced by
certain majority vote techniques while arbitrarily breaking vote-
ties in the cases of even number of atlases, as previously described
by our group and others (Heckemann et al., 2006; Pipitone et al.,
2014). We find that AWoL-MRF corrects these decreases in
performance, which is evident by the extra boosts in accuracy for
the cases with an even number of atlases.

DSC distribution comparisons for a four sample
configurations (number of atlases = 3, 5, 7, 9; number of
templates = 11) are shown in Figure 3. These plots reveal that
AWoL-MRF provides statistically significant improvement
over all other methods regardless of size of the atlas library.
As expected, we also notice the reduction in variance with an
increasing number of atlases.

The Bland-Altman plots reveal the biases incurred with the
application of each automatic segmentation method during
volumetric analysis. Figure 4 shows that all four methods have
a proportional bias associated with their volume estimates.

Specifically, we see that in all four methods, the volumes of
the smaller hippocampi are overestimated, whereas the larger
hippocampi are underestimated. Nevertheless, AWoL-MRF
shows the smallest magnitude of mean bias, along with tighter
limits of agreement across the cohort. STAPLE displays similar
mean bias values, but higher variance in volume estimation
compared to AWoL-MRF, which is evident by its steeper line-
slope and wider limits of agreements. Majority vote and JLF show
the highest amount of positive mean bias indicating a tendency
toward underestimation of hippocampal volume.

Qualitatively, improvement in segmentations is seen on the
surface regions of the hippocampus. As seen in Figure 5, spatial
homogeneity is improved as well.

Experiment II: FEP Validation
For the FEP dataset, the mean Dice score of AWoL-MRF
maximizes at 0.897, with 9 atlases and 19 templates. Similar
to Experiment I, the AWoL-MRF consistently outperforms
the majority vote (0.891), STAPLE (0.892), and JLF (0.888)
methods; however, the improvement is comparatively modest.
More improvement is seen with fewer atlases when compared
to JLF, as AWoL-MRF surpasses the mean Dice score of 0.890
with only 3 atlases (see Figure 6). The improvement diminishes

FIGURE 5 | Experiment I Qualitative Analysis: Comparison of manual vs. automatic segmentation methods. The red rectangle illustrates a section where

the superiority of the AWoL-MRF approach is particularly apparent. The segmentations are performed using 3 atlases, and the Dice scores are as follows: Majority

Vote: 0.806 STAPLE: 0.833 JLF: 0.804 AWoL-MRF: 0.854. The segmentation of the left hippocampus is shown in sagittal view.
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FIGURE 6 | Experiment II DSC: All results show the average performance values of left and right hippocampi over three-fold validation. The top-left

subplot shows mean DSC score performance of all the methods. Remaining subplots show the mean DSC score improvement over compared methods for different

number of templates (bootstrapping parameter of MAGeT-Brain).

with an increasing number of atlases and a smaller number of
templates. In addition to a smaller atlas library requirement,
the ability to reduce the bias introduced by the majority vote
technique is also observed in this experiment.

DSC distribution comparisons for four sample configurations
(number of atlases = 3, 5, 7, 9; number of templates = 11) are
shown in Figure 7. These plots reveal that AWoL-MRF provides
statistically significant improvement over all other methods
regardless of the size of the atlas library. Similar to accuracy
gains, the variance of the Dice score distribution is also smaller
compared to ADNI experiment.

The Bland-Altman plots (see Figure 8) show that both
AWoL-MRF and majority vote exhibit the smallest mean
proportional bias. In comparison, STAPLE and JLF show strong
biases characterizing considerable overestimation (negative bias)
and underestimation (positive bias) of hippocampal volume
across the cohort, respectively. Quantitatively, AWoL-MRF still
outperforms the other three methods, as evident from the smaller
line-slope and tighter limits of agreement.

Similar to the ADNI experiment, qualitative improvement is
seen at the surface regions of the hippocampus (see Figure 9).

Experiment III: Preterm Neonatal Cohort
Validation
The mean Dice score of AWoL-MRF maximizes at 0.807, with 9
atlases and 19 templates. Similar to the first two experiments, the

AWoL-MRF consistently outperforms the majority vote (0.775),
STAPLE (0.775), and JLF (0.771) methods by a large amount.
More improvement is seen with fewer atlases when compared to
JLF, as AWoL-MRF surpasses the mean Dice score of 0.800 with
only four atlases (see Figure 10). The improvement diminishes
as the number of atlases increases the number of templates
decreases. Also, due to the single fold experimental design for
this dataset, higher performance variability is observed especially
with a smaller number of templates.

DSC distribution comparisons for four sample configurations
(number of atlases = 3, 5, 7, 9; number of templates = 11) are
shown in Figure 11. These plots reveal that AWoL-MRF provides
statistically significant improvement over all other methods
regardless of the size of the atlas library.

The Bland-Altman plots show that both AWoL-MRF and
JLF can estimate hippocampal volume with an extremely small
proportional bias (see Figure 12). Compared to the ADNI and
FEP datasets, the magnitude of the bias is significantly lower,
with AWoL-MRF producing the best result. In comparison,
majority vote consistently underestimates and STAPLE
consistently overestimates hippocampal volumes across the
cohort.

Similar to the previous two experiments, qualitative
improvement is seen at the surface regions of the hippocampus
(see Figure 13). Note that the intensity values for hippocampus
are reversed due to incomplete myelination.
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FIGURE 7 | Experiment II DSC: Statistical comparison of the performance of all methods for different atlas library sizes. The statistical significance is

reported for pairwise comparisons (*p < 0.05, **p < 0.01, ***p < 0.001).

FIGURE 8 | Experiment II Bland-Altman Analysis: Comparison between computed and manual volumes (in mm3) for single parameter configuration of

9 atlases and 19 templates. The overall mean difference in volume, and limits of agreement (LA+/LA−: 1.96SD) are shown by dashed horizontal lines. Linear fit lines

are shown for each method. Note that the points above the mean difference indicate underestimation of the volume with respect to the manual volume, and vice versa.
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FIGURE 9 | Experiment II Qualitative Analysis: Comparison of manual vs. automatic segmentation methods. The red rectangle illustrates a section where

the superiority of the AWoL-MRF approach is particularly apparent. The segmentations are performed using 3 atlases, and the Dice scores are as follows: majority

vote: 0.875, STAPLE: 0.878, JLF: 0.856 AWoL-MRF: 0.891. The segmentation of the right hippocampus is shown in sagittal view.

Experiment IV: Hippocampal Volumetry
Group Comparisons between CN, MCI, and AD
As seen from Figure 14A, mean volume decreases with the
severity of the disease for all methods. The volumetric statistics
are summarized in Table 3. Based on Cohen’s d metric as a
measure of effect size, we see the largest separation between
“CN vs. AD” diagnostic categories, followed by “CN vs. MCI”
categories, and lastly between “MCI vs. AD” categories. The
results show that the effect sizes are most pronounced in AWoL-
MRF and JLF in all pairwise comparisons. All four methods
show strong volumetric differences (p < 0.001 or p < 0.01)
between “CN vs. AD” categories followed by “CN vs.MCI,” which
show relatively weaker differences. JLF also shows volumetric
differences between “MCI vs. AD” categories with a much weaker
significance level (p < 0.05) compared to the other two pairwise
comparisons. In the linear model analysis, all four methods show
significant differences (p < 0.001 or p < 0.01) only between “CN
vs. AD” and “CN vs. MCI” comparisons.

Group Comparisons between MCI-Converters and

MCI-Stable Cohorts
Figure 14B shows that the MCI-converters have relatively
smaller volumes compared to MCI-stable group. The volumetric
statistics are summarized in Table 3. AWoL-MRF shows
statistically significant (p < 0.05) volumetric differences between
these two groups, with strongest effect size based on Cohen’s d

metric. In the comparison using a linear model, AWoL-MRF
continues to show significant volumetric differences (p < 0.05)
between these two groups.

Parameter Selection
We studied the impact of parameter selection on the performance
of AWoL-MRF with joint consideration of the segmentation
accuracy and computational cost. The four parameters that need
to be chosen a priori are: confidence thresholds (L0T and L1T),
patch-length (Lpatch), mixing-ratio (SH/SL)patch, and the β

parameter of the MRF model. Recall that the Gaussian
distribution parameters in the MRF are estimated for each patch
automatically using the SH nodes in the given patch.

First, the confidence threshold parameters are heuristically
derived from the voting distribution. As mentioned before, both
LT

0 and LT
1 values need to be greater than 0.5 to produce

non-empty low-confidence voxel set. Based on the assumptions
that the high-confidence region (SH) comprises more structural
voxels (L (xi) = 1) than the total number of voxels in the
low-confidence region (SL), we define a following metric:

ρ =
|SL|

|L (xi) = 1|
(12)

Then we choose confidence thresholds (L0T and L1T ), which fall in
the parameter space bounded by ρ ǫ (0.5, 1). Figure 15A shows
an example of these bound values—computed for the ADNI
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FIGURE 10 | Experiment III DSC: Preterm Neonate Cohort Validation: All results show the average performance values of left and right hippocampi

over three-fold validation. The top-left subplot shows mean DSC score performance of all the methods. Remaining subplots show the mean DSC score

improvement over compared methods for different number of templates (bootstrapping parameter of MAGeT-Brain).

dataset in Experiment I (left hippocampus). Note that the larger
threshold values imply larger SL region, and consequently higher
computational time. Based on this heuristic, we chose LT

0 = 0.8
and LT

1 = 0.6 for experiments I, II, and IV; and LT
0 = LT

1 = 0.7
for the experiment III.

As described in Section Validation Experiments, the patch-

length and the mixing ratio parameters are interrelated and

directly affect the coverage of SL region. From a performance

perspective, these have higher impact on the computational time

than the segmentation accuracy (see Figures 15B,C). Higher

Lpatch implies largerMRFmodel on the sub-volume and therefore
requires higher computational time. Conversely, smaller patches
would reduce the computational time; but would run a risk
of insufficient coverage of SL region and consequently offer
poor accuracy improvement. The third parameter choice of
mixing ratio affects the total number of seeds/patches for a
given image. A higher ratio necessitates a search for SL nodes
surrounded with a large number of SH nodes, which reduces
the total number of patches as well as the computational time.
Based on the accuracy vs. computational cost trade-off analysis
with respect to these parameter choices, we selected a patch-
length of 11 voxels and a minimum mixing ratio of 0.0075
which translates into seed nodes surrounded by a minimum of
10 SH nodes in the 26-node neighborhood, for all validation
experiments.

Lastly, the β parameter of MRF model controls the
homogeneity of the segmentation. It is dependent on the
image intensity distribution and the structural properties of
the anatomical structure. The large value of β results in
more homogeneous regions giving a smoothed appearance to a
structure. We selected β = −0.2 based on the results of training
phase where we split the atlas pool into two groups and used one
set to segment the other.

DISCUSSION AND CONCLUSIONS

In this work, we presented a novel label fusion method
that can be incorporated into any multi-atlas segmentation
pipeline for improved accuracy and robustness. We validated
the performance of AWoL-MRF over three independent datasets
spanning a wide range of demographics and anatomical
variations. In Experiment I, we validated AWoL-MRF on an
Alzheimer’s disease cohort (N = 60) with median age of 75.
In Experiment II, validation was performed on first episode
of psychosis cohort (N = 81), with median age of 23. In
Experiment III, we applied AWoL-MRF to a unique cohort
(N = 22 × 2) comprising preterm neonates scanned in the
first weeks after birth and again at term-equivalent age with
distinctly different brain sizes and MR scan characteristics
from our first two datasets. In all of these exceptionally
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FIGURE 11 | Experiment III DSC: Statistical comparison of the performance of all methods for different atlas library sizes. The statistical significance is

reported for pairwise comparisons (*p < 0.05, **p < 0.01, ***p < 0.001).

FIGURE 12 | Experiment III Bland-Altman analysis: Comparison between computed and manual volumes (in mm3) for single parameter configuration

of 9 atlases and 19 templates. The overall mean difference in volume, and limits of agreement (LA+/LA−: 1.96 SD) are shown by dashed horizontal lines. Linear fit

lines are shown for each method. Note that the points above the mean difference indicate underestimation of the volume with respect to the manual volume, and vice

versa.
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FIGURE 13 | Experiment III Qualitative Analysis: Comparison of manual vs. automatic segmentation methods. The red rectangles illustrate sections where

the superiority of the AWoL-MRF approach is particularly apparent. The segmentations are performed using three atlases, and the Dice scores are as follows: majority

vote: 0.748, STAPLE: 0.760, JLF: 0.746, AWoL: 0.807. The segmentation of the left hippocampus is shown in sagittal view. Note that for this particular dataset, the

brain structures are mostly unmyelinated causing a reversal of the intensity values for the hippocampal structure—as shown in the top row.

heterogeneous subject groups, AWoL-MRF provided superior
segmentation results compared to all three competing methods:
majority vote, STAPLE, and JLF, based on DSC metric as
well as proportional bias measurements. In Experiment IV, we
validated the diagnostic utility of AWoL-MRF by analyzing
the standardized ADNI1: Complete Screening 1.5T dataset. We
found significant volumetric differences between “CN vs. AD”
and “CN vs. MCI” groups, as well as, “MCI-converters vs. MCI-
stable” groups.

In the first three experiments, we see that AWoL-MRF offers
superior performance with a remarkably small atlas library, a
very desirable quality in a segmentation pipeline. AWoL-MRF
provides mean DSC scores over 0.880 with only six atlases
(Experiment I), 0.890 with only three atlases (Experiment 2),
and 0.800 with only four atlases (Experiment III) compared to
other methods, which require larger atlas libraries to deliver
similar performance. This is an important benefit as it reduces
the resource expenditure on the manual delineation of MR

images and speeds up the analysis pipelines. From a robustness
perspective, we notice a reduction in the two types of biases. First,
AWoL-MRF mitigates the issue of degenerating accuracy caused
by the vote-ties with a small, even number of atlases. Then, more
importantly, we see a consistent reduction of proportional bias,
as evident by the Bland-Altman analysis.

There are several novel features that distinguish AWoL-
MRF from other label fusion algorithms, particularly due
to its methodological similarities to manual segmentation
procedures. For instance, a manual rater estimates the voxel
intensity distribution conditioned on a label class purely from
the neighborhood of the target image itself and not from
the atlas library. AWoL-MRF translates this into estimating the
intensity distributions based on the statistics collected from the
high-confidence voxels in a given localized patch in the target
image. Thus, one of the key differences between AWoL-MRF
and the existing multi-atlas label fusion techniques includes the
decoupling from the atlas library in the post-registration stages.
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FIGURE 14 | (A) Hippocampal volume (in mm3 ) vs. diagnoses (NL vs. MCI vs. AD). Cohen’s d scores (effect size) and statistical significance is reported for pairwise

comparisons between diagnostic groups. (B) Hippocampal Volume (in mm3 ) vs. MCI subgroups (converters vs. stable). Cohen’s d scores (effect size) and statistical

significance is reported for pairwise comparisons between groups.

Once we obtain the initial label-vote distribution, we completely
rely on the intensity profile of the target image and avoid any
computationally expensive pairwise similarity comparisons with
the atlas-library. Additionally, even though we use a commonly
used MRF approach to model spatial dependencies, the novel
spanning-tree based inference technique that attempts to mimic
the delineation process of a manual rater differentiates AWoL-
MRF from traditional iterative optimization techniques such as
iterative conditional modes or Expectation-Maximization (Van
Leemput et al., 2003; Warfield et al., 2004).

The key benefits of the AWoL-MRF implementation are
two-fold. First we offer state-of-the-art performance using a
small atlas library (<10), whereas most existing segmentation
pipelines typically make use of large atlas libraries comprising
30–80 manually segmented image volumes (Pruessner et al.,
2000; Heckemann et al., 2006) that require specialized knowledge
and experience to generate. Secondly, from a computational
perspective, AWoL-MRF mitigates several expensive operations
common among many multi-atlas label fusion methods. First, by
eliminating the need for pairwise similarity metric estimation,
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TABLE 3 | Hippocampal Volumetry Statistics of ADNI1: Complete Screening 1.5T dataset per diagnosis [subjects with Alzheimer’s disease (AD), subjects

with mild cognitive impairment (MCI), healthy subjects/cognitively normal (CN), as well as, MCI-converters and MCI-stable subgroups].

Volumetric statistics: CN vs. MCI vs. AD Comparisons

CN MCI AD

Method Mean Std. dev Range Mean Std. dev Range Mean Std. dev Range

Majority Vote 2084.7 615.3 [1010.0, 3364.0] 1960.5 599 [901.5, 3685.5] 1897.2 582.3 [940.0, 3422.0]

STAPLE 2236.6 659 [1097.5, 3557.0] 2124.2 649.3 [988.0, 4026.5] 2068.2 655.4 [1008.5, 3936.0]

JLF 1943.6 593.5 [796.0, 3280.5] 1803.3 572.6 [807.0, 3463.0] 1697.3 551.6 [782.0, 3242.5]

AWoL-MRF 2312.9 676.3 [1133.5, 3736.5] 2147.5 652 [991.0, 4094.5] 2047.7 631.3 [982.5, 3731.0]

Cohen’s d Linear Model

CN vs. MCI CN vs. AD MCI vs. AD CN vs. MCI CN vs. AD MCI vs. AD

Majority Vote 0.1727 0.3194 0.123 −3.875*** −3.662*** −0.402

STAPLE 0.1463 0.2688 0.1005 −3.424*** −3.001** −0.101

JLF 0.202 0.4343 0.2155 −4.195*** −4.884*** −1.451

AWoL-MRF 0.2092 0.4111 0.1783 −4.424*** −4.657*** −0.987

Volumetric Statistics: MCI-converters vs. MCI-stable Comparisons

MCI-converters MCI-stable

Method Mean Std. dev Range Mean Std. dev Range

Majority Vote 1846.2 489.6 [1036.0, 2980.0] 1995.7 619.3 [901.5, 3685.5]

STAPLE 2000.7 542.8 [1093.0, 3205.5] 2163.6 668.0 [988.0, 4026.5]

JLF 1686.8 483.9 [932.5, 2831.0] 1842.2 586.3 [807.0, 3463.0]

AWoL-MRF 2007.4 534.6 [1115.0, 3251.0] 2186.6 672.6 [991.0, 4094.5]

MCI-converters vs. MCI-stable: Cohen’s d MCI-converters vs. MCI-stable: Linear Model

Majority Vote 0.185 −1.708

STAPLE 0.181 −1.616

JLF 0.192 −1.844

AWoL-MRF 0.204 −1.965*

Effect sizes of pairwise differences between groups are based on Cohen’s d metric. All t-values and significance levels from a linear model comprising “Age,” “Sex,” and

“total-brain-volume” as covariates. (*p < 0.05, **p < 0.01,***p < 0.001).

we avoid computationally expensive registration operations that
increase rapidly with the size of the atlas library. Furthermore,
several extensions based on patch-based comparisons between
an atlas library and a target image make use of a variant of
a local search algorithm or a supervised learning approach
(Coupé et al., 2011; Rousseau et al., 2011; Wang et al., 2013;
Hao et al., 2014; Wu et al., 2014). For instance, Coupé et al.
(2011) uses a non-local means approach to carry out label
transfer based on multiple patch comparisons; Hao et al. (2014)
uses a supervised machine-learning method to train a classifier
using similar patches from an atlas library. Computationally
these patch-based approaches, especially the implementations
that incorporate non-local means, are expensive (Wang et al.,
2013) and require a considerable number of labeled images
(Hao et al., 2014; Wu et al., 2014). Moreover, compared to the
single unified MRF models, the localized MRF model reduces
the computational complexity while maintaining the spatial
homogeneity constraints in the given neighborhood. It also

allows the label fusion step to capture local characteristics of the
image based on high-confidence regions without requiring the
iterative parameter estimation and inference methods such as
EM. Lastly, other confidence based label fusion methods such as
Zhang et al. (2011) utilize local image appearance based metric
estimated from forward and backward matching procedures
involving computationally expensive k-NN search. In contrast,
AWoL-MRF simply uses label-vote distribution at each voxel to
compute the confidence estimate.

We believe that the performance improvements provided
by AWoL-MRF can be explained by two major factors. First,
we argue that the utilization of intensity values and local
neighborhood constraints act as regularizers, which helps avoid
over-fitting to the hippocampal model represented by the atlas
library. Both majority vote and STAPLE do not consider intensity
values in their label fusion stage and thus are more likely
to ignore minute variations near the surface areas of the
structure, which are not well represented within the atlas library.
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FIGURE 15 | Parameter selection. (A) Effect of confidence threshold values on image partitioning. ρ represents the ratio of low-confidence voxels over

high-confidence structural voxels. The highlighted region denotes the heuristically “good” region for threshold selection. (B) Effect of mixing ratio and Lpatch on DSC

performance. Mixing Ratio* is the minimum required number of SH nodes in the 26-node neighborhood for a given seed voxel. Note that with a larger Lpatch
performance improves. Whereas, with a smaller Lpatch or a higher mixing ratio* the performance worsens due to poor coverage over SL region. (C) Effect of mixing

ratio and Lpatch on computational cost. The light blue line shows the number of patches for given configuration as a reference. Note that the computation time

increases exponentially with a higher Lpatch and a smaller mixing ratio* (Note: mixing ratio* represents the equivalent number of minimum SH node requirement in the

26-node neighborhood for the seed node selections).

JLF, which does take intensity information into account and
implements a patch-based approach, tends to perform better
than majority vote and STAPLE with a relatively higher number
of atlases: >4 in Experiment I and >6 in Experiment III.
Therefore, we speculate that JLF is more likely to deliver superior
performance in cases with larger atlas library availability, which
again comes with the cost of generating manual segmentations.
Second, the spanning tree based inference method tries to mimic
the manual delineation process by starting with regions with
strong neighborhood label information andmoving progressively
toward more uncertain areas. Compared to iterative methods
(e.g., EM) or graph-cut based approaches (Wolz et al., 2009;
Lötjönen et al., 2010) the sequential inference process may not
be optimal in a theoretical sense; i.e., spanning-tree does not
guarantee the global minimum for the MRF energy function.
Nevertheless, we argue that the procedural similarity between the
automatic and manual labeling process provides more accurate
results, since the ground truth is defined by the latter.

Additionally, decoupling of label fusion process from
similarity comparisons with the atlas library allows AWoL-MRF
to utilize bootstrapping techniques that augment the pool of
candidate labels as used by the baseline segmentation pipeline
(MAGeT-Brain) in this work (Pipitone et al., 2014). Use of
such techniques is not trivial with approaches using intensity
information from the atlas library.

From a diagnostics perspective, the volumetric assessment of
all four methods shows significant differences (p < 0.001 or p <

0.01) between “CN vs. AD” and “CN vs. MCI” groups. Consistent
with the Bland-Altman analysis (see Figure 4), JLF and majority
vote underestimate the volume compared to AWoL-MRF and
STAPLE across all diagnostic categories. Even though the direct
volumetric comparisons based on JLF yield significant differences
(p < 0.05) between “MCI vs. AD” groups, these differences
vanish in the linear model that includes “age,” “sex,” and ”total-
brain-volume” as covariates. These findings are consistent with
a variety of studies (Mouiha and Duchesne, 2011; Sabuncu
et al., 2011; La Joie et al., 2013) highlighting the heterogeneity
in hippocampal volume within MCI subjects, which results
in smaller differences between MCI and AD groups. This is
particularly typical in the ADNI-1 cohort MCI subjects used
in this analysis, which were recently re-classified under more
progressed stages of MCI or late-MCI (Aisen et al., 2010). The
volumetric comparison betweenMCI-converters andMCI-stable
groups reveals that the subjects from latter group comprise
relatively larger hippocampal volumes at the screening time-
point. These findings are consistent with a previous study
conducted on the ADNI baseline cohort (Risacher et al., 2009).
We also find that these differences remain statistically significant
in the linear model that includes “age,” “sex,” and “total-brain-
volume” as covariates.
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TABLE 4 | Summary of automated segmentation methods of the hippocampus.

No of atlases DSCmean Reference study Validation Dataset (ground-truth)

9 0.881 AWoL-MRF Three-Fold MCCV on 60 subjects ADNI (Pruessner)

9 0.897 AWoL-MRF Three-Fold MCCV on 81 subjects FEP (Pruessner)

9 0.807 AWoL-MRF One-Fold MCCV on 44 subjects 3-step segmentation protocolb

9 0.869 Pipitone et al., 2014 10-Fold MCCV on 60 subjects ADNI (Pruessner)

9 0.892 Pipitone et al., 2014 Five-Fold MCCV on 81 subjects FEP subjects

9 0.79 Guo et al., 2015 One-Fold MCCV on 44 subjects 3-step segmentation protocolb

30 0.82 Heckemann et al., 2006 LOOCV Controls

21 0.862 Morra et al., 2008 LOOCV ADNI (SNT)

55 0.86 Barnes et al., 2007 LOOCV Controls and AD

275 0.835 Aljabar et al., 2009 LOOCV Controls

80 0.89 Collins and Pruessner, 2010 LOOCV Controls

30 0.885 Lötjönen et al., 2010 Segmentation of 60 subjects ADNI (SNT)

55 0.89 Leung et al., 2010 Segmentation of 30 subjects ADNI (SNT)

30 0.848 Wolz et al., 2010 Segmentation of 182 subjects ADNI (SNT)

16 0.861 Coupé et al., 2011a LOOCV ADNI (Pruessner)

20 0.897 (L–HC) Wang et al., 2012 10-Fold MCCV on 20 of 139 subjects Landmark based semi-automatic

segmentation + manual correction

0.888 (R–HC)

15 0.862(L–HC) Wang et al., 2013c Segmentation of 20 subjects (JLF) BrainCOLOR

0.861(R–HC)

15 0.872(L–HC) Wang et al., 2013c Segmentation of 20 subjects (With corrective

learning)

BrainCOLOR

0.871(R–HC)

9 0.841 Pipitone et al., 2014 10-Fold MCCV on 69 subjects ADNI (SNT)

AD, Alzheimer’s Disease; MCI, Mild Cognitive Impairment; CN, Cognitively Normal; FEP, First Episode of Psychosis; LOOCV, Leave-one-out cross-validation; MCCV, Monte Carlo cross-

validation; SNT, Surgical Medtronic Navigation Technologies semi-automated labels; L–HC, Left hippocampus; R–HC, Right hippocampus.
aAD: 0.838, MCI: n/a, CN: 0.883.
bSee Guo et al. (2015) for manual segmentation protocol details.
cThe method were applied in the 2012 MICCAI Multi-Atlas Labeling Challenge.

A direct comparison against other methods from the
current literature is difficult due to differences in the choices
for gold standards, evaluation metrics, and hyper-parameter
configuration, among other variables. Nevertheless, Table 4

shows a brief survey of several segmentation studies. Note that
many of these studies have relied on SNT—labels provided
by ADNI—for the ground-truth (manual) segmentations. A
performance comparison of the baseline method based on SNT
labels is discussed in our previous work (Pipitone et al., 2014),
where we noticed several shortcomings of the SNT protocol
(Winterburn et al., 2013; Pipitone et al., 2014), and therefore
we have evaluated the presented method against the manual
label based on the Pruessner protocol (Pruessner et al., 2000).
Moreover, we would like to emphasize that the quality and
consistency of an anatomical gold-standard is an important
consideration when assessing the accuracy of an automated
segmentation methodology. The Pruessner protocol used in
this work reports reliabilities (Dice kappa) of 0.94 for both
intra- and inter-rater over 40 subjects. Other methods (Winston
et al., 2013) report the intra- and inter-rater reliability for
manual segmentations to be 0.891 and between 0.82 and 0.84,
respectively, using 18 subjects. Thus, depending on the choice of
gold-standard for assessment of automatic methods, the expected

upper bound for performance measures is likely to be different.
However, the inter-rater reliabilities in Winston et al. (2013)
underscore the need for a reliable segmentation methodology
that is not subject to the same confounds as a manual rater
in terms of consistency across raters. Our method, like many
others, will always provide the same output for the automated
segmentation given the same input and parameter configuration.

Despite the differences in the experimental designs,
comparisons with the other methods show that AWoL-
MRF delivers superior performance with a significantly smaller
atlas library requirement. For ADNI cohort validation, barring
the ground-truth label dissimilarities, methods presented by
Leung et al. (2010), Lötjönen et al. (2010) have equivalent DSC
scores; however, the atlas library sizes for these methods are 30
and 55, respectively. Moreover, Lötjönen et al. (2010) use atlas
selection procedure that adds another computational step to
their pipeline. It may be possible that using similar number of
atlases would improve our automated segmentation procedure.
However, this is unlikely given the plateau effect on the number
of atlases used. Moreover, to the best of our knowledge, no other
study has used three drastically different datasets spanning the
entire human lifespan to validate the robustness of its method.
Other recent approaches (Tong et al., 2013; Zikic et al., 2014)
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make use of machine-learning based techniques also report
similar performances. Specifically, Tong et al. (2013) make use
of sparse coding and dictionary learning techniques that yield
Dice scores of 0.864–0.879 depending on atlas library sizes
(10–30), atlas selection, and offline training configurations.
More recently, similar learning based approaches comprising
sparse multimodal representations and random forests have
been proposed for infant brain segmentation (Wang et al., 2014,
2015) for tissue-based classification. Nevertheless, the training
phases of these methods are computationally involved requiring
substantial number of atlases, making them more suitable in the
context of large-scale or multimodal studies.

The computational cost of the algorithm implementation, as
described in the previous section, depends on the parameter
selection. From a theoretical perspective, MST transformation
is the most expensive task in this method. The current
implementation of MST uses Prim’s algorithm with simple
adjacency matrix graph representation, which requires O(|V|2)
running time (|V|: number of uncertain voxels in the patch).
However, this can be reduced down to O(|E|log|V|) or O(|E|
+ |V|log|V|) using a binary heap or Fibonacci heap data
structures, respectively, (|E|: number of edges in the patch).
The computational times for Experiment I with current
implementation for different parameter configurations are shown
in Figure 15C. The code was implemented in Matlab R2013b
and run on a single CPU (Intel x86_64, 3.59 GHz). A
direct computational time comparison with other methods is
not practical due to hardware and software implementation
differences. However, the non-iterative nature of AWoL-MRF
provides considerably faster run times compared to EM based
approaches, where the convergence of the algorithm is dependent
on the agreement between candidate labels and can be highly
variable (Van Leemput et al., 2003; Warfield et al., 2004).

In conclusion, AWoL-MRF attempts to mimic the behavior
of a manual segmentation protocol in a multi-atlas segmentation
framework.We validated its performance over three independent
datasets comprising significantly different subject cohorts. Even
though this work focuses on hippocampal segmentations,
AWoL-MRF can be easily applied to other structures and
scenarios with multiple label classes, which will be a part of
future studies. Moreover as per the scope of this work, we
only performed volumetric comparisons across groups in ADNI.
While we do not perform homologous comparisons in FEP and
preterm neonate cohorts, we believe the increased accuracy and
precision of our method will allow us to better characterize
the neuroanatomy of these groups in subsequent studies. Our
validations indicate that the method delivers the state-of-the-
art performance with a remarkably small library of manually
labeled atlases, which motivates its use as a highly efficient label
fusion method for rapid deployment of automatic segmentation
pipelines.
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