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Large efforts are currently under way to systematically map functional connectivity

between all pairs of millimeter-scale brain regions based on large neuroimaging

databases. The exploratory unraveling of this “functional connectome” based on

functional Magnetic Resonance Imaging (fMRI) can benefit from a better understanding

of the contributors to resting state functional connectivity. In this work, we introduce a

sparse representation of fMRI data in the form of a discrete point-process encoding

high-amplitude events in the blood oxygenation level-dependent (BOLD) signal and

we show it contains sufficient information for the estimation of functional connectivity

between all pairs of voxels. We validate this method by replicating results obtained

with standard whole-brain voxel-wise linear correlation matrices in two datasets. In

the first one (n = 71), we study the changes in node strength (a measure of network

centrality) during deep sleep. The second is a large database (n = 1147) of subjects in

which we look at the age-related reorganization of the voxel-wise network of functional

connections. In both cases it is shown that the proposed method compares well with

standard techniques, despite requiring only data on the order of 1% of the original BOLD

signal time series. Furthermore, we establish that the point-process approach does not

reduce (and in one case increases) classification accuracy compared to standard linear

correlations. Our results show how large fMRI datasets can be drastically simplified to

include only the timings of large-amplitude events, while still allowing the recovery of all

pair-wise interactions between voxels. The practical importance of this dimensionality

reduction is manifest in the increasing number of collaborative efforts aiming to study

large cohorts of healthy subjects as well as patients suffering from brain disease. Our

method also suggests that the electrophysiological signals underlying the dynamics of

fMRI time series consist of all-or-none temporally localized events, analogous to the

avalanches of neural activity observed in recordings of local field potentials (LFP), an

observation of potentially high neurobiological relevance.
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INTRODUCTION

The human brain comprises an interconnected network
of cortical and sub-cortical regions globally linked by
anatomical long-range tracts of connections. The mapping
of the corresponding functional connections at a particular
spatial scale (termed connectome in contemporary neuroscience;
Sporns et al., 2004; Sporns, 2011) is an important ingredient in
the process of understanding how the human brain can perform
diverse cognitive functions. Furthermore, many neurological
and psychiatric diseases can be understood in terms of deviations
from a healthy connectome (Fox and Greicius, 2010; Kelly et al.,
2012).

Advances in neuroimaging methods, such as Diffusion Tensor
Imaging (DTI) and Diffusion Spectrum Imaging (DSI) allow the
in vivo mapping of the human structural connectome at a large-
scale (Hagmann et al., 2008). Blood oxygenation level-dependent
(BOLD) functional Magnetic Resonance Imaging (fMRI) allows
for a functional counterpart of the anatomical connectome, a
notion first introduced about a decade ago (Sporns et al., 2004;
Eguiluz et al., 2005; Salvador et al., 2005) by computing the
statistical covariance between all pairs of BOLD signals. This
functional connectome contains information on how all pairs
of regions (at a certain spatial scale) relate dynamically and
collectively with each other.

These two approaches are being applied by international
coordinated efforts to systematically map connectomes in very
large populations of subjects and at the highest temporal and
spatial resolution currently available (see for instance Biswal
et al., 2010; Smith et al., 2013; Van Essen et al., 2013). These
efforts will eventually lead to the availability of large-scale
databases useful to account for potential inter-subject variability
caused by different demographical variables, as well as to
reduce the harmful effect of noise and artifacts through massive
averaging.

These collaborative efforts need to be paralleled by
methodological developments facilitating efficient extraction
of relevant information from the data. Common strategies
are based on averaging BOLD signals over brain parcellations
comprising extended regions, thus reducing the dimensionality
of the problem as well as the number of required computations.
However, there are several problems inherent to this approach.
First, all detail of the functional connectome inside each region
of the parcellation is lost. Second, partitions are usually arbitrary
and therefore might sub-divide a functionally coherent region
into many regions. Different studies have addressed how the
properties of parcellation-based networks can change depending
on region selection (Wang et al., 2009; Zalesky et al., 2010).
Third, efforts to increase the spatial resolution of fMRI sequences
are pointless if data will be down-sampled after acquisition by
averaging BOLD signals inside a small number of regions in a
parcellation.

The objective of this paper is to show how a very sparse
representation of brain activity, namely a discrete spatio-
temporal point-process, is able to estimate the whole brain voxel-
wise functional connectome. This point-process is derived from
the times at which the BOLD signals reach some maximum

level of activity, either by detecting crossings of an arbitrary
threshold, or by the identification of local peaks, i.e., the point-
process comprises large amplitude events in the data. At its
core, our proposed method is based on identifying a basis of
discrete contributions to resting state fMRI signals, in analogy
to other neural recording modalities (such as spikes in intra-
and extra- cellular recordings). Following this analogy, once
the relevant events are identified, much of the signal (i.e., the
stereotypical response associated with a discrete event) can
be disregarded without reducing their information content,
facilitating data storage, manipulation and interpretation (this
analogy is limited, however, since neural recordings providemore
sampling points than fMRI recordings and hence a larger number
of discrete events). The main merit of this method is to reduce
the continuous representation of BOLD signals into a series of
timings associated with events of interest, thus (1) drastically
reducing the dimensionality of the data, (2) abstracting the
relevant information from sources of noise.

It has been shown previously that this method suffices
to reproduce large-scale patterns of coordinated activity
(Tagliazucchi et al., 2011, 2012a) termed Resting State Networks
(RSN; Beckmann et al., 2005) and is essentially identical to the
de-convolution of the signals as a series of discrete impulse
functions (Petridou et al., 2013). Furthermore, de-convolution
into a point-process can lessen the impact of hemodynamic lags
for the estimation of causality between BOLD signals (Wu et al.,
2013). Here we contribute a systematic evaluation of the capacity
of this method to reproduce all bivariate relationships between
signals (i.e., whole-brain correlation matrices). This validation is
obtained, for the first time, from a large database of subjects n
= 1147) scanned with different parameters at different locations,
thus supporting its universal validity.

We also investigated whether abstracting the signal into
a point-process could yield benefits from the perspective of
reducing confounds and noise in the data. For this we adopted
a practical, classification-based approach, investigating how
accurately connectivity matrices derived from the point-process
and from linear correlations could distinguish two groups of
subjects (younger and older subjects from the n= 1147 database).
We hypothesized that keeping high-amplitude events in the
data could disregard low-amplitude noise and result in a better
classification accuracy than the one obtained using full BOLD
signals.

MATERIALS AND METHODS

We will first describe all steps of the proposed method and then
introduce different datasets used for validation as well as to show
possible applications. The general procedure followed to estimate
correlation networks via the point-process analysis is graphically
outlined in Figure 1.

Voxel-Wise Correlation Matrix
Consider an fMRImeasure consisting of N voxels and T volumes,
represented as Fn(t), with 0 ≤ n ≤ N and 0 ≤ t ≤ T. Thus, Fn(t)
represents the BOLD signal at voxel n and time t. The common
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FIGURE 1 | Procedure to construct the point-process and to estimate functional connectomes. For every voxel, signals are converted to z-scores and a

discrete event marked after every threshold crossing (in this example the threshold was set to 1 standard deviation, crossings are marked with a red dot). For every

volume a whole brain co-activation matrix is derived, and the sum of all co-activation matrices estimates the functional connectivity matrix or correlation matrix (only a

fraction of the matrices are shown in this example).

definition of voxel-wise correlation matrix (Eguiluz et al., 2005)
is as follows,

Rij =
< (Fi − < Fi >)(Fj− < Fj >) >

σ (Fi)σ (Fj)
(1)

where < Fi > and σ (Fi) represent the mean value and the
standard deviation of the BOLD signal at the voxel i, respectively.
Note that according to this definition, for the computation of Rij,
Equation (1) must be evaluated N(N − 1)/2 times (although not
serially in efficient implementations). Often these calculations are
used to define functional connectivity networks which in turn
allow for further analysis of the resulting graphs.

Constructing the Point-Process
The approach here proposed starts with converting the BOLD
signal at every voxel into its z-score, F̃i = Fi − <Fi>

σ (Fi)
. This is

done under the assumption that, according to our formalism, the
absolute amplitude of the BOLD signal carries less information
than its temporal evolution (for the biological underpinnings of
this assumption please see the Discussion section). To define the
point-process, the a priori arbitrary threshold γ is selected and
the spatio-temporal process PPi(t) is defined as follows:

PPi(t) =

{

1 if F̃i (t) < γ and F̃i (t+ 1) > γ

0 otherwise
(2)

This point-process was introduced in a previous publication
(Tagliazucchi et al., 2012a) where we showed that it suffices to

replicate the topographical features of the major canonical RSN,
even though formost values of t and i, PPi (t)will be zero (indeed,
taking γ = 1, for a signal of T = 240 on average the point-
process is non-zero for 15 ± 3 time points, or approximately 6%
of the data—see Tagliazucchi et al., 2012a). Note that once the
point-process is constructed much of the data can be discarded.
From a signal comprising 240 values, only a series of (on average)
15 numbers needs to be retained, namely, the timings of the
events in the point-process. Clearly, this results in a considerable
compression of the fMRI data.

Alternatively, PPi(t) can be defined by the (high amplitude)
local peaks of the BOLD signal. For this, BOLD signals are also
converted to z-scores and all sufficiently large peaks (for instance,
those above an arbitrary threshold) are the points represented in
PPi(t). The formal definition is as follows,

PPi(t) =











1 if F̃i(t) > F̃i (t− 1) and F̃i (t)> F̃i (t+ 1) and

F̃i (t)> γ

0 otherwise

(3)

Although formally both methods are justified, it will be shown
later that either definition of the point-process leads to similar
results.

Estimating Correlations from the
Point-Process
After converting Fi into PPi (t) we introduce the following
framework to generalize the methods introduced in Tagliazucchi
et al. (2012a), from the estimation of seed based correlations
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to the efficient computation of all pairs of correlations between
voxels. We first define the co-activation matrices Aij(t) as follows:

Aij (t) = PPi (t)PPj(t) (4)

Note that according to this definition, Aij(t) only has two possible
values: Aij (t) = 1 if at time t the point-process is non-zero both
at voxels i and j, and Aij (t) = 0 otherwise.

The co-activationmatrices defined in Equation (4) can be used
to estimate the functional connectivity between all pairs of voxels
in the brain by performing a simple matrix addition. Two highly
synchronized signals will cross the threshold together most of
the time, thus a measure of coupling between the signals can be
obtained by counting the number of times the signals crossed the
threshold together. This is formalized simply by,

Cij =

T
∑

t=1

Aij (t) =

T
∑

t=1

PPi (t)PPj(t) (5)

In matrix notation, this can be succinctly summarized as C =

PP PPT, considering PP as a matrix with voxels as rows and
time as columns and containing the point-process. The matrix
Cij contains in its i, j entry the number of shared co-activations
between BOLD signals at voxels i and j. Note that since all
Aij are symmetrical matrices, then Cij is also symmetrical.
Note also that the matrices Aij(t) contain valuable information
about instantaneous co-activations between voxels and as such
their analysis might be important to understand the temporal
evolution of large-scale synchronization between brain regions
(Tagliazucchi et al., 2012b; Hutchison et al., 2013).

The main issue with this matrix as a measure of functional
connectivity is that it is not normalized, therefore there is no
way to directly decide (for instance) if a perfect synchronization
between signals has been reached. An appropriate normalization
for this matrix would be as follows,

C̃ij =
Cij

max
(

∑T
t= 0 PPi,

∑T
t= 0 PPj

) =
Cij

max
(

Cii,Cjj

) (6)

This definition of C̃ij is reasonable since Cij achieves its highest
possible value if all threshold crossings are also shared between
both voxels. However, one voxel could have all its threshold
crossings in common with the other, whereas the opposite might
not be true (since the other voxel could have a larger number
of crossings in total (this can be the case only if Cii 6= Cjj),
thus normalizing using the maximum between the number of
crossings at both voxels is required. Also, C̃ij is symmetrical with
this normalization.

The normalization presented in Equation (6) requires the
maximum value between the numbers of threshold crossings
at all pairs of voxels. If normalization is needed, then a more
efficient approximate solution is to divide by the number of
threshold crossings without taking the maximum value, for
instance, across rows or columns of the matrix, and then

symmetrizing (if needed) the result by averaging with the
transpose:

C̃ij =
1

2

[

Cij

Cii
+

Cji

Cii

]

(7)

Note that
Cij

Cii
deviates from a symmetrical matrix only in the

case of different numbers of threshold crossing between voxels
(Cii 6= Cjj). Note also that normalization might not be necessary
if comparing fixed-length recordings between two populations,
under the assumption that the rate of events in the point-process
is not different between groups.

For the computation of C̃ij all steps can be performed
efficiently in vectorized form in any language with matrix
manipulation capabilities (for instance, MATLAB or Python
with NumPy), in particular, after constructing the point-process
in Equation (2), the operations involved consist of a single
matrix multiplication (Equations 4 and 5), multiplication by
scalars and matrix symmetrization (Equation 7). In this work,
all computations were performed using a 8 core CPU running
at 2400 MHz with a total of 128 GB built-in memory.

After introducing the core methods, we now discuss the
methodology for the validation of our results.

Measures Derived Whole Brain Voxel-Wise
Correlations Used for Method Validation
The number of connections derived in a voxel-wise analysis
complicates easy visualization of networks and their changes
across conditions. Thus, in the many applications of functional
connectomes found in the literature, rarely whole-brain voxel-
wise networks are directly visualized. Instead, lower-dimensional
metrics are to be derived, which are easy to visualize as 3D
maps overlaid on brain anatomy. One possible choice is to assess
measures of network centrality, this is, how important nodes are
in the network, thus collapsing all connections attached to a node
into a single number. A straightforward definition in a weighted
network is the strength (Barthelemy et al., 2005), defined as:

Si =

N
∑

j=1

Rij (8)

In the present case, using the point-process to estimate
correlations, Rij is replaced by C̃ij. Nodes with the highest
strength values are termed hubs and their reorganization has
been repeatedly linked to different brain pathologies (Crossley
et al., 2014), such as coma (Achard et al., 2012) or Alzheimer’s
disease (Buckner et al., 2009).

Note that the evaluation of Equation (8) requires the whole
brain correlation network. In the case of a voxel-wise network,
centrality of nodes (i.e., voxels) can be easily visualized as a 3D
map overlaid on an anatomical image.

Another measure employed for validation of our method is
the interhemispheric or homotopic connectivity. This is defined
as the correlation between the BOLD signal of every voxel and the
contralateral voxel. Interhemispheric connectivity is in particular
useful to quantify re-organization of functional connectomes for
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which left-right asymmetries are expected (as in the case of aging,
see Dolcos et al., 2002).

Datasets
To demonstrate the validity of our proposal two different
datasets from previously published studies will be used. The
first dataset comprises BOLD fMRI recordings from the 1000
Functional Connectomes database, and the second dataset
comprises recordings from a recently published study in which
combined EEG, EMG, BOLD-fMRI, and physiological data were
obtained from 71 subjects.

The Connectome dataset was downloaded from the
1000 Functional Connectome Project online database
(http://fcon_1000.projects.nitrc.org). Demographics, scanning
parameters, and experimental conditions are described in the
database website as well as in Tagliazucchi and Laufs (2014). Only
epochs of wakefulness were employed in the present analysis. For
more information on sleep vs. wakefulness classification in this
dataset (see Tagliazucchi et al., 2012c; Tagliazucchi and Laufs,
2014). Since individual data presents variable length in this data
set, normalization (Equation 7) was always required.

Data from a previously published study (Tagliazucchi and
Laufs, 2014) was used for the sleep dataset. A total of 71
subjects were selected from a larger dataset on the basis of
successful multimodal polysomnographic data recording and
quality (written informed consent, approval by the local ethics
committee). All subjects were scanned during the evening and
instructed to close their eyes and lie still and relaxed. A group of
55 subjects was formed out of the original dataset of 71 subjects by
excluding subjects who did not fall asleep. Hypnograms obtained
via expert sleep staging based on AASM rules (American
Academy of Sleep Medicine, 2007) were scanned for contiguous
epochs of wakefulness, N1, N2, and N3 sleep lasting 250 volumes
(∼ 2min), resulting in 84 epochs of wakefulness, 16 epochs of N1
sleep, 19 epochs of N2 sleep, and 20 epochs of N3 sleep. Sleep
epochs are present (by construction) fixed length in this data
set (250 volumes), therefore normalization (Equation 7) was not
required under the assumption that sleep does not modify the
rate of points in the data.

EEG was recorded via a cap (modified BrainCapMR, Easycap,
Herrsching, Germany) during fMRI acquisition (1505 volumes of
T2∗-weighted echo planar images, TR/TE = 2080/30 ms, matrix
64 × 64, voxel size 3 × 3 × 2 mm3, distance factor 50%; FOV
192 mm2) at 3 T (Siemens Trio, Erlangen, Germany) with an
optimized polysomnographic setting [chin and tibial EMG, ECG,
EOG recorded bipolarly (sampling rate 5 kHz, low pass filter
1 kHz), 30 EEG channels recorded with FCz as the reference
(sampling rate 5 kHz, low pass filter 250 Hz), and pulse oxymetry,
respiration recorded via sensors from the Trio (sampling rate
50 Hz)] and MR scanner compatible devices (BrainAmp MR+,
BrainAmp ExG; Brain Products, Gilching, Germany).

MRI and pulse artifact correction were performed based on
the average artifact subtraction (AAS) method (Allen et al., 1998)
as implemented in Vision Analyzer2 (Brain Products, Germany)
followed by objective (CBC parameters, Vision Analyzer) ICA-
based rejection of residual artifact-laden components after AAS
resulting in EEG with a sampling rate of 250 Hz. Good quality

EEG was obtained, which allowed sleep staging by an expert
according to the AASM criteria (American Academy of Sleep
Medicine, 2007).

fMRI Preprocessing
Using Statistical Parametric Mapping (SPM8) EPI data were
realigned, normalized (MNI space) and spatially smoothed
(Gaussian kernel, 8 mm3 full width at half maximum). The data
were band-pass filtered in the range 0.01–0.1Hz using a sixth
order Butterworth filter. The same procedure was applied to the
sleep dataset and to the 1000 Functional Connectomes dataset.

Multivariate Classification
We compared the accuracy of a Random Forest classifier with 100
estimators (implemented in scikit-learn, http://scikit-learn.org/
stable/) to distinguish younger (<20 years) and older (>40 years)
subjects from the 1000 Functional Connectomes dataset. This
was based both on strength and interhemispheric connectivity
maps obtained via normalized co-activation matrices (derived
from the point-process) and standard linear correlation matrices.
We applied a 5-fold cross validation procedure combined with
feature selection (F-test to retain the top 10, 25, 50, 75% features),
as well as with all features. Accuracy was reported as the area
under the receiver operator characteristic (ROC) curve (AUC).

RESULTS

Correlations between C̃ij and Rij
We obtained the point-process for both datasets following the
procedure illustrated in Figure 1 and in the methods section. In
the case of the 1000 Functional Connectomes dataset we repeated
calculations both for voxel-wise networks and for networks based
on time series extracted from the AAL template. Using this
data, we first evaluated the similitude in the estimation of the
connectivity matrix by both methods (point-process analysis
with normalization and linear correlations) as a function of the
threshold γ used to define the point-process (see Equation 2).
Results are shown in Figure 2 (left) for the average correlation
between connectivity networks estimated by both methods as a
function of γ. Correlations peaked at 0.6 and were highest for ≈
0.7. The histogram of all 1147 correlations obtained using γ = 1
(Figure 2, center) revealed a sharp peak around the mean value.
The plot of the entries of the estimated correlation (values of C̃ij)
and the linear correlation (entries of Rij) is shown in Figure 2

(right). A monotonously increasing relationship was present
between both quantities, even though the functional dependency
between them was not linear. For low linear correlation values,
the point-process co-activation increased slowly and did so more
quickly for larger linear correlation values.

We compared the performance of computing voxel-wise
functional connectivity matrices using the proposed point-
process based method vs. standard linear correlations. In
Figure 2B, left, the percentage of the time required using
linear correlations (corrcoef.m MATLAB function, average time
131.48 s on a reference system) was plotted as a function of the
threshold. At every threshold value a total of 100 iterations were
performed for a single subject and results were then averaged. For
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FIGURE 2 | (A) Left: Correlation between Rij and C̃ij as a function of the threshold [γ in Equation (2); mean ± SEM]. Connectivity networks were derived from 116 time

series extracted from the AAL template in all subjects from the 1000 Functional Connectomes dataset (n = 1147). Center: Histogram of all correlation values at γ = 1,

P = probability. Right: Average (mean ± SEM) plot of the linear correlation coefficient between brain regions (entries of Rij) and the estimate from the point-process

analysis (entries of C̃ij). The inset shows the plot for each one of the 1147 subjects. (B) Left: Performance of the point-process based estimation of functional

connectivity as a function of the threshold γ (mean ± SD). Elapsed computation times were obtained for a single subject across 100 repetitions and compared with

the performance using linear correlations. Right: Percentage of the original number of data points retained after converting the data to a sparse point-process with

γ = 1, plotted as a function of the threshold (for all subjects in the 1000 Functional Connectomes dataset). (C) Left: Cumulative computation time required to compute

whole-brain voxel-wise connectivity matrices from 1000 subjects extracted from the Functional Connectomes dataset. An un-normalized point-process with γ = 1

was used. Right: Cumulative space required to store 1000 subjects from the Functional Connectomes dataset, both for the full data and for a sparse representation

based on a point-process with γ = 1.

thresholds larger than approximately 1 standard deviation, the
point-process based method slightly outperformed the standard
computation, with performance becoming increasingly better
as the threshold was increased and less points were included

in the analysis. However, more evidence needs to be gathered
to confirm that the method outperforms the standard linear
correlation approach, considering that the routines have not been
properly optimized. In Figure 2B (right) we plot the percentage
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of data points retained after conversion to the point-process.
Even for the smallest threshold values, only about 6% of the data
was retained. Thus, this very sparse representation of fMRI data
contained sufficient information to capture all the differences
during deep sleep and in the 1000 Functional Connectomes
dataset (see below), requiring but a small fraction of the original
time series. Specifically, the required information consists of the
(discrete) timings of the events in the point-process (i.e., at which
volumes the “points” appear).

To gauge the usefulness of our approach in a real setting, we
computed the cumulative time and space required to process
(i.e., obtain whole-brain voxel-wise connectivity matrices) and
store 1000 subjects extracted from the Functional Connectomes
dataset. Results are shown in Figure 2C. An un-normalized
point-process with a threshold of γ = 1 resulted in a reduction
of computation time (reference system) from a total of ≈30 h
to ≈19 h. However, we note again that more careful experiments
need to be performed to compare the time performance of both
methods.

We also investigated the sparseness (defined as the percentage
of zeros) in the point-process time series and in the associated
normalized connectivity matrices (derived via point-process

co-activations). The results are shown in Figure 3A. Not only
the time series are very sparse (≈95% zeros for a threshold of 1
S.D.) but also the connectivity matrices (≈50% zeros for the same
threshold). This results in dramatically smaller file sizes when
both the time series and the connectivity matrices are stored
(Figure 3B).

Strength Maps in Wakefulness vs. Deep
Sleep
To compare results obtained by both methods, we applied them
to derive the strength maps (Equation 8) from the estimated
whole brain voxel-wise correlations in the sleep dataset and to
reveal changes between wakefulness and deep sleep. A total of 20
2-min epochs of deep sleep and 84 epochs of wakefulness could
be extracted. After deriving the correlation networks, Equation
(8) was applied to obtain the voxel-wise spatial distribution of
strengths. Results for the contrast wakefulness > deep sleep are
shown in Figure 4A, both for normalized and un-normalized
co-activation matrices, as well as for the point-process derived
from BOLD signal peaks instead of threshold crossings. Spatial
patterns of decreased strength in deep sleep (comprising frontal,
cingulate, primary visual, motor, and auditory cortices) were

FIGURE 3 | (A) Sparseness (% of zero entries) in the time series (left) and connectivity matrices (right) derived using the point-process for a range of thresholds.

(B) Cumulative file size (in bytes) of fMRI time series (left) and pair-wise connectivity matrices (right) derived using linear correlations (from the full data) and

co-activations (from the point-process with threshold equal to 1).
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FIGURE 4 | Voxel-wise changes in node strength can be equally observed from Rij and from C̃ij. (A) Spatial maps showing voxels with decreased strength in

deep sleep (N3 sleep) vs. wakefulness, both for the point-process analysis (un-normalized and normalized), for the peak-based point-process and for linear

correlations (display at p < 0.05, FWE cluster corrected). (B) 3D rendering of the maps in (A): Node strength based on the normalized point-process (red), on linear

correlations (green), and their intersection (brown). (C) Plot of the node strength values derived from the point-process vs. those derived from the linear correlation

(mean ± SEM), for wakefulness (left) and for deep sleep (right). Insets show the results for individual sleep epochs.

captured equally well by both methods, as well as by the peak-
based point-process. In particular, since fixed epoch lengths were
used (250 volumes) results were reproduced with and without
normalization of connectivity matrices as derived from the point-
process. This similitude can also be seen in Figure 4B, in which
a joint 3D rendering of both maps shows their spatial agreement.
The main plots in Figure 4C show node strength values at all
voxels computed using the point-process method (entries of C̃ij)
vs. those computed using linear correlations (entries of Rij). The
functional dependency was clearly monotonously increasing on
average, both for wakefulness and sleep, although two individual
epochs of sleep displayed an opposite trend.

Strength Maps in Young vs. Older Subjects
We then studied changes in node strength in the 1000 Functional
Connectomes dataset, in particular, we compared a group of
subjects younger than 20 years with an older group of subjects
older than 40 years. Results can be found in Figure 5A. For both
methods an increase of (normalized) functional connectivity
strength in the older group was observed, comprising a network
of regions that included the right parietal cortex, inferior frontal
cortex, insula, and the precentral and postcentral gyrus.

Driven by the asymmetry observed in the strength differences
between age groups, and by the proposal that the right
hemisphere shows accelerated functional decline with aging
(Dolcos et al., 2002), we applied linear correlations and the point-
process analysis to quantify interhemispheric or homotopic
connectivity between groups and compared the respective values.
Results are shown in Figure 5B. Increased interhemispheric
connectivity was observed for the older group of subjects by both
methods, comprising areas in the parietal and temporal cortex, as
well as in the precentral gyrus.

Finally, an additional calculation was performed to allow for
further evaluation of our method. We regressed subject age
vs. strength values in two regions of interest extracted from
the analysis of young vs. older subjects (right Inferior Parietal
Cortex—IPC, right and insular cortex). Strength values were
obtained both from connectivity matrices obtained with linear
correlations and with the point-process. Results are shown in
Figure 5C. The plots show a moderate increase in strength with
age, which suddenly increased for more mature subjects (age >

40 years approximately). Spearman’s rank correlation coefficients
were higher for the strength values computed using the point-
process.
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FIGURE 5 | Voxel-wise changes in node strength and interhemispheric connectivity between two age groups, <20 years (n = 140) and >40 years

(n = 46) observed from Rij and from C̃ij. (A) Spatial maps showing voxels with increased strength in the older group when compared to the younger group, both

for the normalized point-process (C̃ij, top) and for linear correlation (Rij, bottom). Only voxels passing a threshold of p < 0.05 (FWE corrected) are shown. (B) Spatial

maps showing voxels with increased interhemispheric connectivity in the older group when compared with the younger group, both for results obtained from the

normalized point-process (C̃ij, top) and for linear correlation (Rij, bottom). Only clusters passing a threshold of p < 0.05 (FWE corrected) are shown. (C) Plots subject

of age (in years) vs. strength values (derived from linear correlations and the normalized point-process) extracted from two regions of interest (right Inferior Parietal

Cortex—IPC, and right insular cortex; mean ± SEM). An almost monotonous (but clearly non-linear) relationship between age and network centrality is observed.

Classification of Young vs. Older Subjects
We implemented the classifier described in the methods to
investigate how accurately subjects could be classified by
age using strength and interhemispheric connectivity maps,
computed with both linear correlations and normalized
point-process co-activations. Results are presented in
Figure 6. We observed similar classification accuracy for
the computation based on inter-hemispheric connectivity, and

higher classification accuracy for point-process co-activations vs.
linear correlations for the computation based on strength maps.

DISCUSSION

We are witnessing in recent times how neuroscience, and in
particular neuroimaging, is moving at a fast pace toward the
accumulation and analysis of very large volumes of data. A
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FIGURE 6 | Classification accuracy of young vs. older subjects based on strength maps and interhemispheric connectivity maps computed using

standard linear correlations (blue) and the point-process approach (red).

number of international collaborations is aiming to break new
ground in the scale and speed of data collection, including the
1000 Functional Connectomes Project (Biswal et al., 2010), the
NIH BRAIN Initiative (Insel et al., 2013), as well as the Human
Connectome Project (Van Essen et al., 2013). These studies
span hundreds of subjects scanned at high temporal resolution,
resulting in very large datasets. Exploratory analyses of this data
may thus benefit from biologically principled dimensionality
reduction.

While it is obvious that having large volumes of data
reduces the negative effect of noise, artifacts and the relative
importance of the mathematical models employed to analyze it
[a position eloquently defended by Halevy et al. (2009) in their
seminal article “The Unreasonable Effectiveness of Data”], it is
also true that the handling of redundant data might may be
inefficient, both from a computational perspective and in terms of
distinguishing the real contributors to the signal from sources of
noise. In this line of thought, we have shown that the introduction
of a sparse representation of fMRI datasets can reproduce
findings obtained from full time series while keeping on the
order of 1% of the original data. With respect to vulnerability to
noise, sudden head movements can induce spurious points in the
process, however, these can be identified from the realignment
parameters and erased, following the strategy of scan censoring
(Siegel et al., 2014) but eliminating single points (instead of
continuous segments of data) from the analyses (see Tagliazucchi
et al., 2014 for an application). A consequence of defining the
point-process based on high amplitude excursions of the signal
is that the impact of physiological noise sources affecting low
amplitude fluctuations (Cordes et al., 2002) will be lessened.

Sleep Validation Dataset: Loss of
Connectivity in the Thalamus, Frontal,
Midline, and Auditory Cortices
We validated our method by first computing correlation between
connectivity matrices as obtained by both methods over >

1000 subjects in the Functional Connectomes dataset, as well

as by comparing voxel-wise network strength (a measure of
centrality computed from the voxel-wise network of functional
connections) between wakefulness and deep sleep and between
two age groups extracted from the 1000 Functional Connectomes
dataset. In this latter dataset we also obtained the distribution of
voxel-wise inter-hemispheric connectivity. The maps of altered
network strength in deep sleep and the age-dependent effect
observed in the 1000 Functional Connectomes dataset are
of biological relevance themselves, as we are not aware of
prior reports of these results. Deep sleep resulted in a loss of
connectivity across all voxels located in frontal and cingulate
cortices, as well as in the primary auditory cortex (Heschl’s
gyrus) and the thalamus. These are plausible correlates of reduced
awareness (frontal and cingulate cortex) and loss of sensory
engagement with the environment (primary auditory cortex and
thalamus) resulting in increased arousal thresholds (Tagliazucchi
et al., 2013).

Age Groups Validation Dataset: Increased
Connectivity with Age in Inferior Parietal
and (Pre-)Frontal Cortices
With respect to the two different age groups extracted from
the 1000 Functional Connectomes database, regions central
to working memory processes (inferior parietal and frontal
cortices, prefrontal cortex) showed “over-connectivity” in the
older group of subjects. The meaning of this result is less clear,
especially in the light of reports showing an inverse relationship
between seed-based functional connectivity and age (Sambataro
et al., 2010). However, voxel-based strength maps do not
require any a priori anatomical hypotheses (i.e., seed selection)
and thus might be capable of capturing more global changes
in connectivity as opposed to the aforementioned approach.
Interestingly, changes in the node strength values were mostly
located in the right hemisphere. It has been noted by Dolcos et al.
(2002) that the right hemisphere shows a more marked decline
with aging, a fact supported so far by evidence from working
memory neuroimaging experiments. The changes observed
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by the authors were hypothesized to be of compensatory
origin, which is compatible with the outcome of our analyses
(increased overall connectivity in the right hemisphere of
older subjects). Prompted by this observation, we also found
differences in interhemispheric connectivity located in a set of
regions overlapping with those involved with changes in node
strength.

Why Few Points Are Sufficient to
Reproduce Functional Connectomes
It is worthwhile discussing the reasons underlying the
effectiveness of our approach, since it might be surprising
that a small fraction of the data suffices to capture all bivariate
relationships between BOLD signals (functional connectome)
without sacrificing (and even enhancing) classification accuracy.

From a signal processing perspective the answer is relatively
straightforward: keeping large amplitude events can increase
the signal-to-noise ratio, since it discards low-amplitude activity
containing a larger noise component. This non-linear filtering
selectively amplifies the importance of those time points at
which the signal amplitude becomes relatively large and therefore
the signal-to-noise ratio increases. Physiological artifacts have
been shown to affect BOLD signals at low frequencies and
low amplitudes (Cordes et al., 2002) and signals measured
in white matter and cerebrospinal fluid (which do not reflect
activity of neural origin and are commonly employed as
proxies for physiological confound time series) present smaller
amplitude fluctuations compared to those in gray matter
(see for instance Tagliazucchi et al., 2013). This situation
can result in selective down-weighting of physiological noise
when only large-amplitude excursions of the signals are
considered.

From a biological point of view, the challenge is to understand
why the fMRI time series can be effectively represented as
a train of discrete impulses, a view of BOLD time series
also supported by studies performing blind de-convolution of
spontaneous activity (Petridou et al., 2013). Electrophysiological
experiments reveal that Local Field Potentials (LFP) are spatio-
temporally distributed as power law avalanches (Beggs and
Plenz, 2003): most frequently, spontaneous LFP increases span
a limited spatial area, however, at certain (discrete) points in
time, LFP might extend up to the size of the tissue under study
(an event termed avalanche). If LFP avalanches are, indeed,
distributed following a scale-free power law, then macroscopic
events (i.e., in the centimeter scale) should be observed, which
would be sufficient to elicit a measurable hemodynamic response
(considering the correlation observed between LFP and BOLD
signals, see Logothetis et al., 2001). Indeed, spatio-temporal
avalanches of activity can also be observed with fMRI, following
the same statistical laws as the electrophysiological avalanches
(Tagliazucchi et al., 2012a). Large amplitude macroscopic LFP
increases were reported in the monkey cortex (Thiagarajan
et al., 2010) and termed coherence potentials. These large-
scale events are also stereotypical (in the words of the authors,
much like action potentials at the single-cell level) and thus
fulfill all the theoretical requirements for the electrophysiological

underpinnings of the events in the spatio-temporal fMRI point-
process.

Contributors to the Resting State fMRI
Signal
One of the main limitations of fMRI compared to other non-
invasive neuroimaging techniques (EEG, MEG) is its limited
temporal resolution. This limitation not only stems from the
relatively slow acquisition of whole-brain volumes (i.e., long TRs,
in the order of seconds) but also from the coupling between
neural activity and the signal measured by fMRI. This coupling
blurs temporally localized activity into a temporally extended
response (given by the HRF). Therefore, improvement in fMRI
sampling rates will only result in a better-sampled HRF, with no
gain in the measurement of underlying neural activity, unless the
distortion caused by the HRF can be inverted.

Our results suggest that the fMRI resting state signal
comprises a temporal succession of well-localized events. The
identification of these events has been shown to match a formal
de-convolution of fMRI time series (Tagliazucchi et al., 2012a;
Petridou et al., 2013). This inversion of the HRF blurring can
allow to capitalize on improvements in fMRI acquisition rates.
While the contributors to the task-evoked fMRI signal have
been thoroughly investigated, this remains to be done in the
context of spontaneous brain activity; the possibility of reducing
resting state fMRI signals to a few high-amplitude events and still
estimate all pair-wise interactions represents an important first
step in this direction, and suggests a focus for future studies on
the electrophysiological basis of spontaneous fMRI fluctuations.

Caveats and Limitations
Generally, this procedure should yield equivalent results for any
dataset in which high amplitude events do not arise spuriously
as artifacts and represent important information in the data.
From a neurophysiological perspective, the fulfillment of these
conditions has been already demonstrated for BOLD time series
by means of inverting the Hemodynamic Response Function
(HRF) convolution of neuronal sources (de-convolution). As
discussed in the previous sections, LFP giving rise to metabolic
changes reflected in the BOLD signal are temporally cluttered
into avalanches of activity (Beggs and Plenz, 2003; Tagliazucchi
et al., 2012a; Shriki et al., 2013), presumably underlying the high
information content of BOLD signal high amplitude events.

The main drawbacks of the proposed method are: (1) the non-
linear relationship between linear correlation and its estimated
value using the point-process (i.e., point-process co-activation,
Figure 2C) and (2) the slowing down of the computation time
when following the normalization given by Equation (6), unless
properly optimized. With respect to the first concern, while not
linear, the relationship is clearly monotonic and by extracting its
functional form, connectivity estimated using the point-process
can be properly normalized to have a linear co-variation with
standard functional connectivity. This non-linear shape can be
explained by the dismissal of low amplitude events in the point-
process and their associated contributions to linear correlations.
Therefore, correlations can increase faster than point-process co-
activations, giving rise to the convex shape seen in Figure 2A,
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right panel. The second concern (normalization) does not affect
the results unless performing comparisons between time series
of different length, thus having a different number of points.
Normalizing by the length of the time series offers a solution to
this issue.

Related Findings
Given the relative novelty of the present approach, caution
should be exercised concerning the interpretation of the results to
avoid making exaggerated claims. Nevertheless, it is encouraging
and reassuring to see a body of publications consistent with
the main idea of the present paper. Indeed, since the first
observation (Tagliazucchi et al., 2012a) that the timing of high-
activity events in BOLD signals allows the reconstruction of
major RSN, different research groups have reproduced and built
on this result (Davis et al., 2013; Liu and Duyn, 2013; Liu et al.,
2013; Amico et al., 2014; Jiang et al., 2014; Li et al., 2014).
The analysis of spontaneous voxel co-activation is a natural
continuation of functional connectivity studies: instead of asking
whether two voxels are engaged in synchronized fluctuations
over a relatively long period of time, the question is shifted to
whether two voxels become jointly activated (i.e., present high
activity above their baseline levels) and what are the timings
and properties of these co-activations. Interestingly, it has been
shown that co-activation patterns contain additional information
not available to standard functional connectivity analyses (Liu
et al., 2013) and has also been used to characterize the dynamics
of different brain states (Amico et al., 2014; Chen et al., 2015).
In the present report we show that the spatio-temporal point-
process extracted from whole-brain BOLD signals suffices to
estimate all pairs of functional connections (i.e., the functional
connectomes) with reasonable accuracy (as demonstrated by its
usefulness to capture differences in connectivity between brain
states/groups of subjects) with a very small fraction of the data

(on the order of 1%), and thus can be taken as an equivalent
(but sparser) representation of the data. We believe these results
should prompt an in-depth exploration of high amplitude events
in BOLD time series, in particular, their neural correlates and
potential relationship to LFP neural avalanches, a signature of
self-organized criticality in the human brain (Chialvo, 2010).

In conclusion, as fMRI datasets grow larger, tools to rapidly
store, process, and explore them become increasingly valuable.
The present report validates a strategy defining a sparse
representation of these complex four-dimensional datasets,
which keeps only the timing of large BOLD events and
thus allows for reasonable fMRI compression. This technique
both empowers neuroimaging collaborative projects aimed at
gathering and understanding vast amounts of data, and suggests
a temporally intermittent organization for brain hemodynamic
activity, likely reflecting discrete electrophysiological events
spreading throughout the cerebral cortex. Vice versa, if we
assume that the sub-threshold BOLD activity is not mere noise
nor redundant, this reminds us that with functional connectivity
analyses we take but a peek through a keyhole onto the wealth of
brain function.
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