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Gilles de la Tourette Syndrome (GTS) is characterized by the presence of multiple

motor and phonic tics with a fluctuating course of intensity, frequency, and severity.

Up to 90% of patients with GTS present with comorbid conditions, most commonly

attention-deficit/hyperactivity disorder (ADHD), and obsessive-compulsive disorder

(OCD), thus providing an excellent model for the exploration of shared etiology across

disorders. TS-EUROTRAIN (FP7-PEOPLE-2012-ITN, Grant Agr.No. 316978) is a Marie

Curie Initial Training Network (http://ts-eurotrain.eu) that aims to elucidate the complex
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etiology of the onset and clinical course of GTS, investigate the neurobiological

underpinnings of GTS and related disorders, translate research findings into clinical

applications, and establish a pan-European infrastructure for the study of GTS.

This includes the challenges of (i) assembling a large genetic database for the

evaluation of the genetic architecture with high statistical power; (ii) exploring the

role of gene-environment interactions including the effects of epigenetic phenomena;

(iii) employing endophenotype-based approaches to understand the shared etiology

between GTS, OCD, and ADHD; (iv) establishing a developmental animal model for GTS;

(v) gaining new insights into the neurobiological mechanisms of GTS via cross-sectional

and longitudinal neuroimaging studies; and (vi) partaking in outreach activities including

the dissemination of scientific knowledge about GTS to the public. Fifteen partners from

academia and industry and 12 PhD candidates pursue the project. Here, we aim to

share the design of an interdisciplinary project, showcasing the potential of large-scale

collaborative efforts in the field of GTS. Our ultimate aims are to elucidate the complex

etiology and neurobiological underpinnings of GTS, translate research findings into

clinical applications, and establish Pan-European infrastructure for the study of GTS and

associated disorders.

Keywords: Initial Training Network, Gilles de la Tourette Syndrome, tourette disorder, etiology, genetics,

neuroimaging, animal models

INTRODUCTION

Gilles de la Tourette Syndrome (GTS) is a frequent disorder
(0.4–1%; Robertson, 2008, 2015b), characterized by multiple
motor and phonic tics and high comorbidity with attention-
deficit/hyperactivity disorder (ADHD; 50%) and obsessive-
compulsive disorder (OCD; 20–60%) (Leckman et al., 1998;
Robertson, 2000; Bloch and Leckman, 2009; Debes et al.,
2010; American Psychiatric Association, 2013; Hirschtritt et al.,
2015). The need to overcome fragmentation and accelerate
research into the etiology of GTS and its related conditions
has motivated the establishment of TS-EUROTRAIN (http://
ts-eurotrain.eu), a Marie Curie Initial Training Network (ITN,
2012–2016) that focuses on the investigation of the genetic
etiology and pathophysiology of GTS while aiming to translate
findings into clinical research. The network spans 13 academic
and two industrial partners as well as two patient groups.
Twelve individual, yet complementary, PhD projects interact
to form a comprehensive study of GTS and comorbidities
from genetics, and epigenetics through to physiology, brain
anatomy, and function. These projects are all currently underway
and can roughly be divided into three groups by their main
approach; genetic (and epigenetic), animal models, and human
neuroimaging, respectively. Research into the neurobiology of
GTS stands at the precipice of discovery thanks to collaborative
efforts (Georgitsi et al., 2016). With this report, we would like
to share our efforts as an example of how, taking advantage
of expertise across different disciplines, and resources across
the GTS scientific and patient community we aimed to build a
project that would achieve goals beyond and above the reach
of individual labs. At the same time we provide an overview
of some of the largest-scale projects aiming to understand the

etiology of GTS. These projects may be expected to impact the
field considerably in the coming years.

GENETICS, EPIGENETICS, AND GENE
EXPRESSION

The first Genome-wide Association Study (GWAS) to investigate
the role of single nucleotide polymorphisms (SNPs) in GTS
did not manage to identify SNPs that meet the genome-wide
significance level for association to GTS, however, four additional
GWAS for GTS are currently underway [coordinated by the
Tourette Association International Consortium for Genetics
(TSAICG), European Multicentre Tics in Children Studies
(EMTICS), Netherlands twin register (NTR) and deCODE] and
the future meta-analysis of these datasets is expected to provide
important insights into the etiology of the disorder (Figure 1;
Paschou, 2013; Scharf et al., 2013). Furthermore, in recent years,
four independent GTS cohorts have been examined, studying
the role of Copy Number Variants (CNVs) in GTS (Sundaram
et al., 2010; Fernandez et al., 2012; Nag et al., 2013; McGrath
et al., 2014). Regarding gene expression investigations, so far,
most studies were carried out on samples of small number
(Tang et al., 2005; Lit et al., 2007, 2009; Liao et al., 2010;
Tian et al., 2011a,b, 2012; Gunther et al., 2012; Gomez et al.,
2014; Lennington et al., 2016) and need to be verified in large
GTS cohorts. On the other hand, studies on the epigenetics
of GTS (such as DNA methylation, histone modification, and
micro-RNA (miRNA) alteration Goldberg et al., 2007; Pagliaroli
et al., 2016) remain scarce (Abelson et al., 2005; Delgado et al.,
2014) and in fact, the first ever epigenome-wide study for
GTS was only recently published through TS-EUROTRAIN
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FIGURE 1 | Network of reported candidate genes associated with GTS. This image was produced (by JW) with Ingenuity pathway analysis software and shows

how the proteins encoded by the candidate genes reported to be associated with GTS are linked with each other. Please see legend for description of what each

symbol and color represents. ADRA1A, adrenoceptor alpha 1A; ADRA2A, adrenoceptor alpha 2A; ADRA2C, adrenoceptor alpha 2C; BTBD9, BTB (POZ) domain

containing 9; CaMKII, calcium/calmodulin-dependent protein kinase II; CCT8, chaperonin containing TCP1, subunit 8 (theta); CNTNAP2, contactin-associated

protein-like 2; COMT, catechol-O-methyltransferase; CTNNA3, catenin (cadherin-associated protein), alpha 3; CTTNBP2, contactin binding protein 2; CUL3, cullin 3;

DBH, dopamine beta-hydroxylase (dopamine beta-monooxygenase); DLGAP3, discs; large (Drosophila) homolog-associated protein 3; DRD1, dopamine receptor

D1, DRD2, dopamine receptor D2, DRD3, dopamine receptor D3, DRD4, dopamine receptor D4, ERK 1/2, extracellular signal-regulated kinases 1/2; HDC, histidine

decarboxylase, HNF4A, hepatocyte nuclear factor 4 alpha; HTR2A, 5-hydroxytryptamine (serotonin) receptor 2A; G protein-coupled; HTR2C, 5-hydroxytryptamine

(serotonin) receptor 2C; G protein-coupled; IL1RN, interleukin 1 receptor antagonist; KCNE1, potassium channel voltage gated subfamily E regulatory beta subunit 1;

KCNE2, potassium channel, voltage gated subfamily E regulatory beta subunit 2; LHX6, LIM homeobox 6; MAOA, monoamine oxidase A; MRPL21, mitochondrial

ribosomal protein L21; MRPL3, mitochondrial ribosomal protein L3; MYC, v-myc avian myelocytomatosis viral oncogene homolog; NLGN4X, neuroligin 4, X-linked;

NRXN1, neurexin 1; OFCC1, orofacial cleft 1 candidate 1; PPARA, peroxisome proliferator-activated receptor alpha; RCAN1, regulator of calcineurin 1; PSEN1/2,

presenilin 1/2; SLC1A3, solute carrier family 1 (glial high affinity glutamate transporter), member 3; SLC6A3, solute carrier family 6 (neurotransmitter transporter);

member 3; SLC6A4, solute carrier family 6 (neurotransmitter transporter), member 4, SLITRK1, SLIT, and NTRK-like family, member 1; TPH2, tryptophan hydroxylase

2; YWHAB, tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein, beta.

efforts (Zilhão et al., 2015). We address the whole spectrum
of GTS genetics from various angles; genetic, epigenetic,
gene expression, and their interaction with environmental
factors.

Project 1 Genome-Wide Search for Genes
Conferring Risk of GTS (Muhammad
Sulaman Nawaz and Hreinn Steffanson,
Decode Genetics)
This project makes use of the extensive Icelandic population
genotyping done by deCODE genetics. Approximately one third

of the population (100,000) has been genotyped into which
20,000,000 SNPs from the Icelandic sequencing project have
been imputed. Tasks include (i) a genome-wide search for
genetic variants conferring risk of GTS. This consists of a
search for common and rare variants in more than 500 chip
typed subjects diagnosed with GTS, (ii) a genome wide search
for CNVs associated with GTS, (iii) a test for association
of identified variants with phenotypic measures as well as
performance on neuropsychological tests, (iv) an investigation of
how implicated variantsmay lead to alteration of gene-expression
pathways through analysis of already generated expression
cohorts.
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Project 2 Investigation of the Role of CNVs
as Genetic Susceptibility Factors Involved
in the Pathogenesis of GTS and Co-morbid
Disorders (Rayan Houssari, Juan Ignacio
Rodriguez Arranz, Mehar Arumilli, and
Zeynep Tümer, Kennedy Center,
Copenhagen University Hospital,
Rigshospitalet)
The aim of this project is to untangle novel molecular
genetic mechanisms underlying GTS and related disorders, by
using bioinformatic network analysis of CNVs combined with
phenotype data of 261 GTS-patients residing in Denmark. All the
patients were assessed by experienced clinicians at the Tourette
Clinic, Copenhagen University Hospital for GTS, OCD, and
ADHD using validated diagnostic instruments (Mol Debes et al.,
2008). Furthermore, information about other family members
was collected through interviews revealing approximately 77%
of the families to be multiplex with at least two family
members affected by GTS or one of the common comorbidities.
A biobank consisting of cell-lines, DNA, RNA, and serum
has been established. All the patients have been screened
using the Affymetrix CytoScan HD chromosome microarray
platform with more than 2.6 million copy number markers and
the bioinformatic data analysis is under way. This study, in
collaboration with other members of the network, has already
enabled identification of the AADAC gene as a susceptibility
factor for GTS when deleted (Bertelsen et al., 2016).

Project 3 Gene-Environment Interactions
Defining the Onset and Clinical Course of
Tics and Obsessive-Compulsive
Symptoms (Shanmukha Sampath
Padmanabhuni and Peristera Paschou,
Democritus University of Thrace)
The aim of this project is to investigate the interaction
between genetic and environmental factors that may lead
to the onset of tics. Following a systems biology approach
information from multiple sources are integrated; including
genome-wide genotyping, gene expression patterns, epigenetics,
and longitudinal clinical observations. Through collaboration
with the FP7-HEALTH project EMTICS, a special focus is
placed on group A streptococcal infections and stress as a
possible trigger for tic onset. EMTICS also offers us access to
genome-wide genotype data of 1000 patients (followed up on a
monthly basis for 12 months) as well as gene expression data on
200 GTS patients that are followed up for tic exacerbation and
remission in an attempt to correlate with environmental factors.
Gene-expression and correlation with environmental triggers is
also investigated in a cohort of first degree relatives of patients
with GTS that develop tic symptomatology within a 3-year
follow-up period. Furthermore, the first ever epigenome-wide
association study for tics, analysing data from the NTR, has been
carried out [55]. This study comprised the largest epigenetic data
collection so far undertaken (411,469 autosomal methylation

sites, assessed in 1678 individuals). Although no site reached
genomewide significance, the top hits include several genes, and
regions previously associated with neurological disorders and
warrant further investigation (Zilhão et al., 2015).

Project 4 Epigenetic and Functional
Characterization of Proposed Genetic
Variants and Regions Implicated in the
Pathogenesis of GTS and Related
Phenotypes (Luca Pagliaroli and Csaba
Barta, Semmelweis University)
The aim of this project is to shed light on the main epigenetic
mechanisms, such as DNA methylation, histone modification
and miRNA, and their possible role in GTS. Tasks include
(i) the study of candidate miRNAs which are predicted to be
in the control of tissue-specific gene expression by in vivo
target validation of in silico proposed miRNA target genes, (ii)
screening of cell lines and GTS animal models treated with
dopaminergic and glutamatergic modulating compounds for
epigenetic regulatory markers, (iii) investigation of brain tissue
samples from treated and untreated animal models developed
within the TS-EUROTRAIN consortium to determine DNA
methylation profiles and histone modification changes, and (iv)
investigation of blood samples from patients with GTS for whole
genome DNA methylation profiling (Zilhão et al., 2015), as
mentioned in project 3.

Project 5 Integrated Genetic Networks
Underlying Comorbid GTS and OCD
(Joanna Widomska, Jan Buitelaar, Geert
Poelmans, and Jeffrey Glennon, Radboud
University Medical Center, Nijmegen)
The aim of this project is to determine the extent of “genetic
overlap” in terms of shared underlying gene pathways and
molecular signaling cascades between GTS and OCD and to
provide further insights into how aberrant processes underlie
these genetically related, clinically overlapping but still distinct
neurodevelopmental disorders. Combining literature search
approaches with diverse bioinformatics analytic tools (e.g.,
Ingenuity Pathway Analysis), top candidate genes emerging
from GWASs of GTS (Scharf et al., 2013), OCD (Stewart
et al., 2013; Mattheisen et al., 2015), and corroborating genetic
evidence including data from recurrent and “genome-wide”
CNV studies, candidate gene studies, miRNA expression data,
animal models, and gene expression studies are selected and
evaluated. The genes presenting overlap between GTS and OCD
are ranked and used to construct integrated genetic networks
that represent the “molecular landscape” of the overlapping traits
between GTS and OCD, as well as GTS itself. The molecular
landscape of OCD alone has recently been published (van de
Vondervoort et al., 2016). This approach will be instrumental to
discover unknown causative genes, pathways, and mechanisms
and identify common pleiotropic genetic risk variants as possible
therapeutic targets.
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Project 6 The Genetic Epidemiology of
GTS, tics and Related Phenotypes (Nuno
Rodrigues Zilhäo Nogueira, Dorret i.
Boomsma and Danielle Cath, Utrecht
University and Vu University Medical
Center)
This study uses data that has been gathered by the NTR
over the last 25 years, on twins, and family members
(n = 16,896 individuals with SNP, epigenetic and expression
data in subsamples), including a range of phenotypic data
from questionnaires and genetic data. Structure equation model
fitting procedures are used to model the phenotypic resemblance
between family members and the relative contribution of genetic
and environmental factors to variation and covariation among
traits. Also, genome-wide association methodologies are being
used to disentangle the genetic architecture underlying the
etiology of GTS traits by estimating SNP heritability and
polygenic risk scores for example.

Project 7 Developing Algorithmic
Prediction Models for GTS and Related
Disorders (John Alexander and Peristera
Paschou, Democritus University of Thrace)
With the continuous development of state of the art technologies
for generating large amounts of genomic data, there is a need
to develop new methodologies in order to identify promising
SNPs, and candidate genes for further experimental validation.
Using genetic data available for GTS and related disorders,
this project develops, and applies new methodologies to scan
high throughput genomic data (Genome Wide Association data,
next generation sequence data, and microarrays). For example,
using meta-analysis data comprised of 1285 GTS cases, and
4964 controls ancestry-matched to the GTS sample from the
first GWAS (Scharf et al., 2013), we perform pathway, protein-
protein interaction and gene-ontology analysis in order to
dissect themolecularmechanisms underlying GTS. Furthermore,
using novel bioinformatics tools for SNP based and gene based
functional analysis, we perform candidate gene prioritization,
gene set enrichment, and tissue enrichment analysis. We
also construct functional interaction networks using combined
information from the enriched functional and pathway results.
This project will aid in highlighting pathways involved in the
susceptibility of GTS and will bring out susceptibility factors that
interact in order to confer risk for GTS.

ANIMAL MODELS

Animal models of disease are an integral part of disease
investigation and drug testing. However, ill-suited or
inappropriate models are often used for these purposes. While
multiple useful animal models for tic disorders exist, not all of
these adequatelymimic the syndrome, and crucially there is a lack
of a juvenile model for GTS, despite it being a childhood onset
disorder. Two animal model projects within TS-EUROTRAIN
work to remedy these shortcomings, by developing a new juvenile

GTS model within which the cortico-striato-thalamo-cortical
(CSTC) circuitry and in particular the role of the glutamatergic
system are being investigated. Furthermore, the effect of
older and newer psychotropic compounds (e.g., riluzole and
aripiprazole) are tested and novel targets identified. Similarly
to the genetics and human neuroimaging projects a wide field
of investigation is taken to include common comorbidities.
Furthermore, samples from these projects undergo epigenetic
testing as mentioned in project 4.

Project 8 Finding Developmental Aspects
and Possible Drug Targets of GTS and
OCD: Metabotropic Glutamatergic
Mechanisms in a Neurodevelopmental Rat
Model of Repetitive Behaviors (Ester
Nespoli and Bastian Hengerer, Boehringer
Ingelheim pharma GmBH and Co. KG)
The unilaterally lesioned 6-hydroxidopamine (6-OHDA) adult
rat is a well-established model used in Levodopa-induced
Dyskinesia research. In this model a rapid degeneration of
nigrostriatal neurons is chemically induced by the intrastriatal
or intranigral administration of 6-OHDA, which selectively
targets monoaminergic neurons. Chronic application of L-
dopa to 6-OHDA lesioned rats leads to the development of
repetitive involuntary movements, mainly involving the forepaw,
neck, and mouth (Cenci et al., 1998). This appears as a
consequence of the striatal super sensitivity to dopamine,
caused by higher surface expression of dopamine receptors,
which is a putative pathological mechanism of GTS and is
induced in this model via previous dopamine deprivation
(Buse et al., 2013). Here this model is translated to juvenile
rats, inducing the lesion in postnatal days and monitoring
its neurodevelopmental consequences. This provides new
insights into the pathological mechanism of tics during
development and a new tool to test therapeutic options for this
disease.

Project 9 Investigation of the Effect of
Classical and New Psychotherapeutic
Approach in a Rat Model for GTS—a
Magnetic Resonance Spectroscopy (MRS)
Study (Francesca Rizzo and Andrea
Ludolph, University of ULM)
This study compares the in vivo efficacy of a classical and a new
therapeutic approach on tic management and their respective
neurochemical effect in a rat model of GTS (Bronfeld et al., 2013).
Aripiprazole is a second generation antipsychotic drug (classical
approach) that has been found to be effective on tic management
and to have a well-tolerated side effect profile (Kawohl et al.,
2009). It is known that dopamine metabolism is dysfunctional
in GTS, but neuroimaging research, and genetic studies also
implicate other neurotransmitters in tic generation: histamine,
serotonin, noradrenaline, endocannabinoids, glutamate, and
GABA (Buse et al., 2013; Udvardi et al., 2013). Since the
glutamate and dopamine systems are closely connected, a
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newly proposed approach for GTS treatment consists of the
glutamatergic modulator riluzole, which is known to exert
neuroprotection from glutamate excito-toxicity both in vitro and
in vivo (Risterucci et al., 2006). Magnetic resonance spectroscopy
(MRS) is used in an animal model to longitudinally analyse
glutamate metabolites in the brain over a critical period of
time in GTS; childhood through to early adulthood when tics
appear and reach their maximum severity. The discovery of
new pharmacological targets can provide new direction in drug
development for GTS.

NEUROIMAGING

Our three (human) neuroimaging projects are highly
complementary with similar techniques used across all sites
so as to allow for the cross-comparison of findings with limited
methodological confounding factors. Projects 11 and 12 even
pool data for certain comparisons. Each project utilizes MRS
to evaluate the role of the glutamatergic system; T1-weighted
structural magnetic resonance imaging (MRI) to examine
structural brain differences; functional MRI (fMRI; resting
state and task specific) data to interrogate the functional
coupling between cognitive, limbic, and sensory-motor CSTC
networks; and diffusion-weighted MRI (dMRI) data to inspect
the structural connectivity. Each project does, however, differ in
the populations under investigation and aims to address different
unknown areas regarding GTS neurobiology. Together these
works, along with the animal MRI study, may have implications
on future glutamatergic modulatory therapies for tic suppression
and could potentially extend the current pathophysiological
model of GTS and related circuits beyond CSTC circuitry
(Figure 2).

Project 10 Structural and Functional Neural
Correlates of Pediatric GTS and ADHD
(Natalie Forde, Jan Buitelaar, and Pieter
Hoekstra, University Medical Center
Groningen)
Few neuroimaging studies of GTS have investigated brain
structure and function in children with even fewer longitudinal
studies tracking the development of GTS (Ganos et al., 2013).
Furthermore, the similarities and differences between ADHD
and GTS have yet to be explicitly tested (Plessen et al., 2007). For
this study structural, functional (resting state and task-dependent
stop-signal and reward tasks) and dMRI data are acquired
alongside MRS for glutamate and glutamine concentrations,
neuropsychological, and phenotypic data from 180 children
between 8–12 years of age (60 GTS with or without ADHD, 60
ADHD only, and 60 healthy controls). Common and unique
neural correlates of GTS and ADHD are elucidated. Furthermore
genetic data is acquired and will be analyzed as part of the EU-
funded TACTICs project. Lastly a 3 year follow-up has been
granted where the same battery of tests, including MRI, will
be undertaken to allow the course of GTS and ADHD to be
investigated.

Project 11 Studying the Role of Glutamate
in CSTC Circuit Function and Structure in
Adult GTS and OCD (Siyan Fan, Dick
Veltman, Odile Van Den Heuvel, Petra
Pouwels, Ysbrand Van Der Werf, and
Danielle Cath, Department of Clinical and
Health Psychology, Utrecht University and
Vu University Medical Center)
The neural correlates of GTS and OCD have scarcely been
compared and contrasted despite the high rate of co-occurrence
(Freeman et al., 2000). This project is to investigate how
altered glutamatergic function (as measured with MRS) is
related to changes in structure (T1- and diffusion- weighted)
and function (resting state and task-dependent stop-signal
task) of the CSTC circuits in adult patients with GTS and
OCD in comparison to healthy individuals. A similar range of
neuroimaging, neuropsychological and phenotypic data to the
above is acquired from adults with GTS, OCD and healthy
controls (n = 20 per group). The participants with OCD
as well as the controls have been chosen from a previous
local OCD study while those with GTS are newly recruited.
Genetic data is collected to contribute to genetic analysis within
other projects of the network and to perform imaging-genetic
analyses.

Project 12 Elemental, Neurochemical, and
Network Based Analysis of the
Pathophysiological Mechanisms of GTS
(Ahmad Seif Kanaan, Harald Möller, and
Kirsten Müller-Vahl, Hannover Medical
School and Max Planck Institute For
Human Cognitive And Brain Sciences)
Neuroimaging and behavioral data are acquired from up
to 40 adult patients before and after treatment with the
pharmacological agent aripiprazole, an atypical antipsychotic
agent which is commonly used to treat GTS. At the elemental
level, we use Quantitative Susceptibility Mapping (QSM)
techniques to investigate whether patients exhibit an altered
distribution of iron concentrations within basal ganglia nuclei in
comparison to 40 healthy controls. At the neurochemical level,
we investigate the role of the glutamatergic systemwithin cortico-
striatal regions using MRS at baseline and following treatment.
At the network level, we use resting-state fMRI to investigate the
interaction between large scale networks and their relationship to
clinical status.

ANTICIPATED OUTCOMES OF
TS-EUROTRAIN

TS-EUROTRAIN is a showcase of the potential impact of
large-scale interdisciplinary and collaborative efforts aiming
to understand GTS. Our basic science research combined
with clinical neuroimaging studies will greatly increase
our knowledge of the biological underpinnings of GTS

Frontiers in Neuroscience | www.frontiersin.org 6 August 2016 | Volume 10 | Article 384

http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Neuroscience/archive


Forde et al. TS-EUROTRAIN: A European-Wide GTS Network

FIGURE 2 | Major neurotransmitter pathways related to GTS pathophysiology. Simplified schematic illustration of the major neurotransmitter systems reported

and hypothesized to be involved in GTS pathophysiology. Other neuromodulatory systems that have been implicated include the cholinergic, histaminergic, and

endocannabinoid systems. The figure was adapted based on information from Singer (2013) and Schumann et al. (2010). (5-HT, serotonergic; ACC, anterior cingulate

cortex; Amygd, amygdala; Caud, Caudate nucleus; DA, dopaminergic; DR, dorsal raphe nucleus; GABA, gamma-aminobutyric acid; Glu, glutamatergic; GP, globus

pallidus; MCC, mid cingulate cortex; NAcc, nucleus accumbens; OFC, orbitofrontal cortex; PCC, posterior cingulate cortex; PFC, prefrontal cortex; Put, putamen; RN,

raphe nucleus; SMA, supplementary motor area; SN, substantia nigra; Tha, thalamus; VM-PFC, ventromedial prefrontal cortex; VTA: ventral tegmental area).

and related disorders and allow a suitable biological model
for these disorders to be established. The benefits of our
research will include the potential identification of novel
treatment targets and the availability of a suitable animal
model on which to test newly developed pharmacotherapies
targeting these newly identified biological pathways. This will
ultimately lead to improved treatments and consequently
increased quality of life for those suffering from GTS and
their families. Despite being common, GTS is still considered
a rare, unusual disease by the public, and has been associated
with symptoms and signs causing social misunderstanding and
stigmatization (Roessner et al., 2011; Robertson, 2015a).
Undertaking a comprehensive scientific and outreach
programme TS-EUROTRAIN has the important aspiration
to help raise awareness about GTS, alleviate stigmatization,
and transform GTS into a model disorder for the development
of European policies for the promotion of childhood mental
health.
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