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Cortical thinning patterns in Alzheimer’s disease (AD) have been widely reported through

conventional regional analysis. In addition, the coordinated variance of cortical thickness

in different brain regions has been investigated both at the individual and group network

levels. In this study, we aim to investigate network architectural characteristics of a

structural covariance network (SCN) in AD, and further to show that the structural

covariance connectivity becomes disorganized across the brain regions in AD, while

the normal control (NC) subjects maintain more clustered and consistent coordination

in cortical atrophy variations. We generated SCNs directly from T1-weighted MR

images of individual patients using surface-based cortical thickness data, with structural

connectivity defined as similarity in cortical thickness within different brain regions.

Individual SCNs were constructed using morphometric data from the Samsung Medical

Center (SMC) dataset. The structural covariance connectivity showed higher clustering

than randomly generated networks, as well as similar minimum path lengths, indicating

that the SCNs are “small world.” There were significant difference between NC and AD

group in characteristic path lengths (z = −2.97, p < 0.01) and small-worldness values

(z = 4.05, p < 0.01). Clustering coefficients in AD was smaller than that of NC but

there was no significant difference (z = 1.81, not significant). We further observed that

the AD patients had significantly disrupted structural connectivity. We also show that the

coordinated variance of cortical thickness is distributed more randomly from one region

to other regions in AD patients when compared to NC subjects. Our proposed SCN

may provide surface-based measures for understanding interaction between two brain

regions with co-atrophy of the cerebral cortex due to normal aging or AD. We applied

our method to the AD Neuroimaging Initiative (ADNI) data to show consistency in results

with the SMC dataset.

Keywords: structural covariance network (SCN), individual SCN, Alzheimer’s disease, network entropy, network
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INTRODUCTION

The morphology of cortical gray matter has been widely used
for analyzing normal development and aging (Salat et al., 2004;
Sowell et al., 2004), degenerative brain diseases (Lerch et al.,
2008; Tae et al., 2008; Bernhardt et al., 2009b; Querbes et al.,
2009; Koolschijn et al., 2010; Järnum et al., 2011), genetic
influence (Panizzon et al., 2009; Winkler et al., 2010), and
developmental brain diseases (Shaw et al., 2006, 2007; Hyde
et al., 2010; Jiao et al., 2010). Of the various morphological
parameters, cortical thickness and gray matter volumetric
intensity are representative measures of cortical morphology
for gray matter MRI scans. Beyond conventional regional
analysis, recent studies have further shown that intracortical
similarities in gray matter morphology can provide evidence
for structural brain connectivity through the examination of
coordinated variations in cortical thickness and volumetric
intensity across the brain (Mechelli et al., 2005; Lerch et al.,
2006; Seeley et al., 2009; Raznahan et al., 2011; Evans, 2013).
These structural covariance networks (SCNs) have been shown
to predict anatomical connectivity, similar to diffusion-weighted
brain network analysis, both in humans (Lerch et al., 2006),
and animals (Barbas, 1986; Barbas and Rempel-Clower, 1997;
Dombrowski et al., 2001). It has also been demonstrated that
SCNs are sensitive imaging markers for aging (Chen et al., 2008,
2011; Wu et al., 2012), multiple sclerosis (He et al., 2009b),
Alzheimer’s disease (He et al., 2008, 2009a; Raj et al., 2012; Zhou
et al., 2012), schizophrenia (Alexander-Bloch et al., 2012; Zhang
et al., 2012), adult/pediatric cancers (Hosseini et al., 2012a,b), and
epilepsy (Bernhardt et al., 2008, 2009a, 2011).

Although the previous SCN-based studies represent
significant breakthroughs, they are largely reliant on group-level
anatomical correlations of cortical morphology (He et al., 2007,
2008; Bassett et al., 2008; Bernhardt et al., 2011; Zalesky et al.,
2012; Zhang et al., 2012). Such group-level SCNs have provided a
statistical framework to study synchronized morphology changes
in brain regions across populations, however, it remains unclear
how an individual-level SCN directly from a prospective subject’s
T1-weighted MR images might be constructed. The morphology
of cortical gray matter varies dramatically between individuals
(Kennedy et al., 1998; Evans, 2013), therefore, construction of
SCNs at the individual level would presumably allow for the
direct analysis of individual anatomical structural covariance. In
addition, it would facilitate statistical analyses of the theoretical
properties of individual SCNs, which is difficult to achieve

using group-level SCNs. Previous studies have attempted to

construct single-subject SCNs. One such approach proposed
a cube-based correlation approach to extract single-subject
anatomical connectivity using volumetric intensities (Tijms
et al., 2012; Batalle et al., 2013). Rather than the volumetric
morphology characteristics, cortical thickness-based individual
SCNs have been recently proposed to leverage surface-based
sensitive features (Apostolova et al., 2006; Fan et al., 2008; Qiu
et al., 2009). For example, Saggar et al. proposed a novel method
to estimate individual contributions to group-level SCNs (Saggar
et al., 2015), although it cannot be used to construct an individual
SCN directly from the T1-weighted MR image. Similarly, some

individual anatomical connectivity studies demonstrated an
improvement in classification between different groups (Raj
et al., 2010; Zhou et al., 2012; Dai et al., 2013; Wee et al., 2013;
Tong et al., 2014; Yun et al., 2015; Zheng et al., 2015). These
approaches are also limited in part that they require reference
models which are usually from a group of normal control
subjects to define relative connectivity for an individual subject,
or in part that the SCNs were used as features for classification
without architecture analysis (Dai et al., 2013; Wee et al., 2013;
Tong et al., 2014; Zheng et al., 2015). Recently, Raamana et al.
proposed a new methods to construct the individual SCNs using
difference of mean cortical thickness between two regions, which
is hard to reflect variance of cortical thickness within a region
(Raamana et al., 2014, 2015).

In the present study, we sought to extend these studies to
construct individual SCNs based on cortical thickness covariance,
and applied the proposed approaches tomorphometric data from
a large group of patients with Alzheimer’s disease (AD) and
an age and gender-matched group of normal control subjects
recruited at Samsung Medical Center (SMC) and applied our
method to the Alzheimer’s disease Neuroimaging Initiative
(ADNI) data to show consistency in results with the SMC dataset.
We further hypothesized that the disrupted network architectural
properties are caused by “spreading out” of the structural
connectivity and examined the hypothesis by investigating
randomness of the anatomical covariance connectivity in both
groups.

MATERIALS AND METHODS

Participants
In this study, we used the SMC dataset. For the SMC
dataset, we recruited 379 AD patients between June 2006
and December 2012, and 2231 normal controls (NC) between
September 2008 and December 2012 at SMC (Seoul, Republic of
Korea). Considering the possibility of amnestic mild cognitive
impairment (aMCI) patients included in the same period, we
selected 353 AD subjects and 307 NC subjects so that age,
education and gender information were matched. We excluded
subjects without Mini Mental State Examination (MMSE) scores
and images with errors arising from image processing were also
excluded. Our final subject pool for the SMC dataset consisted
of 205 AD patients and 250 NC subjects. Patients with AD met
the diagnostic criteria of the Diagnostic and Statistical manual
of the Mental Disorders-Fourth Edition (DSM-IV) (American
Psychiatric Association, 1994), and severity was evaluated using
the MMSE score. This study was approved by the Institutional
Review Board of SMC. We applied our methods to the ADNI
dataset to show consistency in results with the SMC dataset.
For the ADNI dataset, we used 183 AD patients and 158 age,
education and gender matched NC subjects. Data used in the
preparation of this article were obtained from the ADNI database
(adni.loni.usc.edu). The ADNI was launched in 2003 as a public-
private partnership, led by Principal Investigator Michael W.
Weiner, MD. The primary goal of ADNI has been to test whether
serial magnetic resonance imaging (MRI), positron emission
tomography (PET), other biological markers, and clinical and
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neuropsychological assessment can be combined to measure the
progression of mild cognitive impairment (MCI) and early AD.

The demographic and clinical characteristics of the
participants are shown in Table 1. In our datasets, age, gender,
and education were controlled between two groups. Specifically,
age (t-test, SMC dataset: t = −0.26, p = 0.80/ADNI dataset: t
= −1.53, p = 0.13), gender (Chi-square test, SMC dataset: χ2

= 3.06, p = 0.22/ADNI dataset: χ2 = 0.39, p = 0.53) and years
of education (t-test, SMC dataset: t = 1.76, p = 0.08/ADNI
dataset: t = 1.78, p = 0.08) between the two groups were not
statistically different. The MMSE scores (t-test, SMC dataset:
t = 18.9, p < 0.01∗ /ADNI dataset: t = 26.1, p < 0.01∗) were
significantly different between the two groups.

Image Acquisition and Preprocessing
In the SMC dataset, three-dimensional T1-weighted Turbo Field
Echo magnetic resonance (MR) images were acquired from all
455 subjects (205 AD patients and 250 NC subjects) at SMC using
a 3.0T Philips Achieva MRI scanner with the following image
parameters: 1mm sagittal slice thickness, over-contiguous slices
with 50% overlap; no gap; repetition time (TR) of 9.9ms; echo
time (TE) of 4.6ms; flip angle of 8◦; and matrix size 240 × 240
pixels, reconstructed to 480× 480 over a 240mm field of view.

In the ADNI dataset, T1-weighted MR images were obtained
according to a standardized 1.5 Tesla MRI protocol of the ADNI-
1 study (Jack et al., 2008). The MR images were acquired with
following image parameters: sagittal plane, repetition time/echo
time/inversion time 2400/3/1000ms, flip angle 8◦, 24 cm field-of-
view, 192× 192 in-plane matrix, and 1.2-mm slice thickness.

For each subject, we performed image preprocessing and
computed cortical thickness using FreeSurfer v 5.1.0 (http://
surfer.nmr.mgh.harvard.edu/) (Step A in Figure 1). Outer and
inner cortical surface meshes were first constructed from T1-
weighted MR data. The inner surface represented the boundary
between white matter and cortical gray matter, and the outer
surface was defined as the exterior of the cortical gray matter.
As the outer surface was constructed by deforming the inner
surface, the two surface meshes are isomorphic, with the same
number of vertices and edge connectivity. Due to inter-subject
variability of brain shapes, we resampled the surfaces with 40,962
vertices for each hemisphere using our in-house software (Cho
et al., 2012). The image preprocessing and cortical thickness
computation process were manually checked and corrected by an
expert neuroanatomist.

Noise Removal of Cortical Thickness Data
For smoothing cortical thickness data, we adopted the noise
removal procedure proposed by Cho et al. (2012) to our problem
setting. Cho and his colleagues employed the manifold harmonic
transform (MHT) to delineate the cortical thickness data with
its spatial frequency components (Vallet and Lévy, 2008). For
the transform, the Laplace-Beltrami operator is used to obtain
basis functions which results in robustness to noise by filtering
out high frequency components (Cho et al., 2012). Since high
frequency components of the transformed cortical thickness data
were regarded as noise, those components are filtered out, and the
cortical thickness data were then reconstructed using only low

frequency components (Chung et al., 2007). The cut-off value for
the filtering was determined based on goodness of fit. The high
frequency components are filtered out: fx, x > D, where D is the
cut-off dimension. The cut-off dimension D is set by goodness

of fit G: G =
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component of subject i, and N is the number of subjects. We set
the cut-off dimension D = 1600 resulting in G = 0.027 which
is conservative value according to the value G = 0.05 used in
previous study (Qiu et al., 2008; Cho et al., 2012).

Network Construction
To define the nodes in our brain network, we parcellated the
cerebral cortex into 68 cortical ROIs based on the Desikan-
Killiany Atlas (Desikan et al., 2006). We then computed a
connectivity matrix for each subject based on covariance of the
cortical thickness data for each pair of ROIs (Step B in Figure 1).
The covariance between two ROIs was calculated using Z-score:
we considered vertex-wise sampled cortical thicknesses as the
distribution for each ROI. We denoted µ

(

j
)

and σ(j) as the
mean and standard deviation of the cortical thickness data in
the j-th ROI, respectively. This enables calculation of the z-score
of a cortical thickness value as Z (i, j) = (µ (i)− µ

(

j
)

)/σ(j).
Intuitively, Z (i, j) signifies howmuch the cortical thickness of the
i-th ROI deviates from that of the j-th ROI on average. Similarly,
Z

(

j, i
)

can be computed using the mean and standard deviation
of the i-th ROI. Finally, we defined a symmetric connectivity
matrix C(i, j) between nodes iand j as the mean of Z

(

i, j
)

and Z
(

j, i
)

: C(i, j) = ((|Z (i, j)| + |Z (j, i)|))/2. Here, we used
magnitude values of the average z-scores, since the structural
connectivity between two ROIs in our network definition
measures the extent of similarity in cortical thickness distribution
between ROIs.

Since binary networks are simpler to demonstrate and
easier to define null model for statistical comparison, we
binarized the connectivity matrix C(i, j) using a threshold value
for the individual network analysis. Considering appropriate
sparsity of the resulting network from previous researches
which is approximately ranged from 5 to 25%, we examined
a thresholding value in the range of 0.1–0.3 for verification
(Achard and Bullmore, 2007; He et al., 2007; Bassett et al., 2008).
Edges whose weight below the threshold are binarized to 1 and
weight upper the threshold edges are binarized to 0. We then
chose 0.2 as the thresholding value and binarized the network
which results in 18%. Thresholding value determination and its
verification results from the ADNI dataset are shown in the
Supplementary section (Supplementary figure 1, Supplementary
Threshold selection).

Individual-Level Network Architecture
Analysis
We first investigated architectural characteristics of our
individual SCNs based on graph-theoretic measures. For each
individual subject, the network measures include the degree
(the number of edges connected to a node), the clustering
coefficient (the number of existing edges divided by number
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TABLE 1 | Subject demographic and clinical characteristics.

NC AD Comparison

SMC Number of subjects 250 205

Age 69.6 ± 8.4 69.8 ± 9.4 t = −0.26, p = 0.80

Gender(F/M) 139/111 124/81 χ2 = 3.06, p = 0.22

Education 11.5 ± 5.6 10.7 ± 4.9 t = 1.76, p = 0.08

MMSE 27.3 ± 2.7 19.2 ± 6.1 t = 18.9, p < 0.01*

ADNI Number of subjects 158 183

Age 76.2 ± 5.4 75.1 ± 7.3 t = −1.53, p = 0.13

Gender(F/M) 84/74 90/93 χ2 = 0.39, p = 0.53

Education 15.9 ± 2.9 15.4 ± 2.8 t = 1.78, p = 0.08

MMSE 29.2 ± 1.0 23.6 ± 2.5 t = 26.1, p < 0.01*

Normal control (NC) and Alzheimer’s disease (AD) subjects were recruited at Samsung Medical Center (SMC). The AD Neuroimaging Initiative (ADNI) dataset was used to show

consistency in results with the SMC dataset.

*Statistically significant.

FIGURE 1 | An overview of the proposed network construction method: T1-weighted MR images undergo an image preprocessing procedure and

computation of cortical thickness (Step A). For the cortical thickness data from each image, the manifold harmonic transform (MHT) is applied to remove noise

(Step A). After brain parcellation, the edge weight of the network was computed (Step B), and finally the network is binarized using a threshold.

of possible edges from a node’s neighbors), the characteristic
path length (the average shortest path length from a node to
other nodes), and the measure of network small-worldness
(Creal/Crandom)/(Lreal/Lrandom) where C is the clustering
coefficient and L is the characteristic path length (Watts and
Strogatz, 1998; Latora and Marchiori, 2001; Humphries and
Gurney, 2008; Rubinov and Sporns, 2010). The random networks
were generated by preserving the nodal degree and strength

with 100 repetitions for the normalization. Since these scores are
not normally distributed, we used the Wilcoxon rank sum test
for group comparison of each network measure (Wilcoxon and
Wilcox, 1964).

Group-Level Network Consistency Analysis
A group-level network is further constructed to analyze
consistency of the individualized SCNs across subjects. For
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each connection between two ROIs, we counted the number of
subjects of which SCN has a binarized edge. We then constructed
a binarized group-level network shared in common for more
than 50% of the total subjects in the group. Hub nodes from each
group-level network were also identified as a node with nodal
degree higher than the sum of the mean and standard deviation
of total node’s degree.

Network Entropy Analysis
In order to investigate randomness of the anatomical covariance
connectivity, we calculate a nodal entropy for each ROI using the
group-level network. In our problem setting, an edge weight in
the group-level network was determined based on the number
of subjects which has a value 1 for the corresponding edge in
the individual SCN. Thus, the normalized edge weight using
the total number of nodal degrees for each node can be
regarded as the probability of connectedness from one node to
other nodes. We therefore calculate the entropy of a node as
H (i)= −

∑

i pilog (pi). Here, H (i) signifies the nodal entropy
which denotes the extent of evenly distributed or the peakiness
similar to the work by Raj et al. (2010).

For qualitative comparison between NC and AD groups, we
used the normalized nodal entropy values. Since the sparsity
of the group-level networks are different between two groups,
we calculate the normalized entropy values based on a normal
distribution generated by 10,000 random networks for each
group. The random network was generated by preserving degrees
of every node in the group-level network. The normalized
entropy values that are close to 0 indicate that the covariance
connectivity of the node to other nodes is closer to the random
networks. To investigate the coordinated variance is distributed
more randomly AD when compared to NC subjects qualitatively,
the 68 ROIs were separated into four sub-groups: Hub A
(sustained hub regions in NC and AD group network), Hub B
(hub regions in NC group network only), Hub C (hub regions
in AD group network only), and non-hub regions. We compared
the sub-groups for each NC and AD groups visually.

RESULTS

Network Architecture Analysis
We first validated our network construction method by
investigating the network architecture in the resulting SCNs.
Clustering coefficients and characteristic path lengths were
calculated for the binarized structural connectivity network in
an individual level. By considering the network measures of a
random network, we obtained a normalized clustering coefficient
and normalized characteristic path length (γ= 4.19, λ= 1.63) for
each normal control and patient with AD. The result was similar
to that observed in previous studies (He et al., 2007; Tijms et al.,
2012, 2013), with the resulting small-worldness value (σ = γ/λ =

2.61) implying that the proposed SCNs are small-world.
We further analyzed the network architecture for the NC and

AD groups separately. Each group had small-world properties
and reasonable network sparsity, as shown in Table 2. For
comparison purposes, we applied the Wilcoxon rank sum test to
each network measure. Characteristic path lengths (z = −2.97,

p < 0.01) and small-worldness values z = 4.05, p < 0.01)
were significantly different between the two groups. Clustering
coefficients in AD was smaller than that of NC but there was no
significant difference (z = 1.81, not significant). Additionally,
network sparsity had significant difference between the two
groups (z = −4.00, p < 0.01). Box plots for each group
theoretical measures are depicted in Figure 2. The network
architecture measures in the ADNI dataset showed the same
trend with those of the SMC dataset (Supplementary Table 2,
Supplementary Figure 2).

Group-Level Network Consistency Analysis
For each group, we computed the group-level network and
identified hub regions in the networks. The NC group had
190 edges shared by more than 50% of NC subjects, and 15
brain regions were identified as hubs in the network. Figure 3
shows the connectogram for the group-level network and its
corresponding display of the brain connectivity superimposed on
the template brain surface. In this figure, the connectivity was
displayed only for the identified hub regions. The 5 top-ranked
hub regions in the NC group include left inferior parietal cortex,
left precentral gyrus, left supramarginal gyrus, right inferior
parietal cortex, right precentral gyrus. We also found 104 edges
for the AD group and identified 10 brain regions as hubs. Among
the hub regions in the AD group, 5 hubs were also identified as
hubs in the NC group: left fusiform gyrus, left inferior temporal
gyri, left superior temporal gyrus, right lateral orbitofrontal
cortex, and right superior temporal gyrus. Although the AD
patients have significantly higher sparsity in the individual SCNs
compared to the NC subjects, the consistent edges in the NC
group across subjects is twice more dense than that of the AD
group as shown in the group-level networks. All the hub regions
are listed in Supplementary Table 1. The results were consistent
for both SMC and ADNI datasets.

Network Entropy Analysis
For each node in the group-level network, we calculated the nodal
entropy in order to investigate randomness of the anatomical
covariance connectivity in the NC andAD groups. Nodal entropy
of the AD group-level network was higher than that of the NC
group in all brain regions. We further classified the 68 ROIs
into four sub-groups: Hub A (sustained hub regions), Hub B
(NC only hub regions), Hub C (AD only hub regions), and
non-hub regions. Figure 4 shows the bar graph of the mean
z- values for the four sub-groups of each dataset. As explained in
the method section, the z-value of entropy was calculated based
on the random distribution of entropy values in the random
networks, and thus smaller absolute z-values represent increased
randomness in the covariance connectivity of the corresponding
node. The normalized entropy for each group was compared
qualitatively. As shown in Figure 4, the absolute z-value of the
Hub A is much smaller in the AD group compared to that
of the NC group. Also, in the NC group, the entropy of the
Hub B is higher than that of the Hub A, while the result is
opposite in the AD group. The entropy of the Hub C is much
smaller for both NC and AD groups when compared to the
other hub regions. Lastly, we observed that every hub region
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TABLE 2 | Graph theoretical measures of individual network architecture in normal control (NC) and Alzheimer’s disease (AD) groups.

Dataset Group C_real L_real C_random L_random γ λ σ s

SMC NC 0.95 3.23 0.23 2.02 4.23 1.60 2.69 0.17

AD 0.94 3.32 0.23 1.99 4.14 1.67 2.51 0.18

Normalized clustering coefficients (γ = C_real/C_random), normalized characteristic path lengths (λ = L_real/L_random) and normalized small-world property (σ = γ/λ) were calculated

for each individual structural covariance network (SCN). Mean values of NC and AD group for the graph theoretical measures are obtained.

SMC: Samsung Medical Center, C: clustering coefficient, L: characteristic path length, real: result obtained from binarized structural connectivity network, random: result obtained from

random network, γ: normalized clustering coefficient, λ: normalized characteristic path length, σ: small-world property, s: sparsity of network.

FIGURE 2 | Graph theoretical measures for group comparison between NC and AD groups. Normalized clustering coefficients (γ = C_real/C_random),

normalized characteristic path lengths (λ = L_real/L_random) and normalized small-world property (σ = γ/λ) were calculated for each individual network. In each

graph, the asterisk symbol indicates that the graph measures are significantly different between the groups according to the Wilcoxon rank sum test.

have smaller entropy than the other non-hub regions for both
groups. The results were similar for the ADNI dataset as shown
in Supplementary results (Supplementary Network architecture
analysis to Network entropy analysis).

DISCUSSION

In this study, we presented a new method to construct individual
SCNs based on cortical thickness covariance, and applied the
proposed approaches to a large group of AD patients. We first
demonstrated that the AD patients had significantly disrupted
network architecture when compared to NC subjects, which
implies that the anatomical covariance connectivity exhibited
more spreading out and therefore inefficient integration in
AD patients. We further showed the coordinated variance of
cortical thickness in different brain regions is distributed more
randomly in AD patients by investigating nodal entropy in the
SCNs. As such, we hypothesize that the structural covariance
connectivity becomes disorganized across the brain regions
in AD, while the NC subjects maintain more clustered and
consistent coordination in cortical atrophy variations.

In our study, structural connectivity was defined based on the
similarity of surface-based cortical thickness data between two
brain regions, i.e., if two regions had a certain extent of similarity
in terms of cortical thickness, then we connected them, thereby
generating a structural covariance network. The connectivity in

our network could therefore be used to quantitatively measure
the amount of correlated change in different regions of the
cerebral cortex. Note that the connectivity in our network should
be interpreted from the statistical perspective rather than a real
anatomical connection. Similarly as in the previous work on
SCNs (Dai et al., 2011, 2013; Evans, 2013; Raamana et al., 2014,
2015), our covariance networks indeed represent coordinated
variance of cortical thickness between two brain regions by
encoding both the difference of mean cortical thickness and its
variance in a ROI. While there have been a number of cortical
thickness-based studies conducted, most have been limited to
regional studies investigating cortical atrophy in a specific region.
These regional analyses have been successfully applied to not only
normal aging but also several neurodegenerative brain diseases
including AD, and have shown that cortical atrophy in specific
brain areas is associated with both normal aging and degenerative
diseases (Salat et al., 2004; Sowell et al., 2004; Lerch et al., 2008;
Tae et al., 2008; Bernhardt et al., 2009b; Querbes et al., 2009;
Koolschijn et al., 2010; Järnum et al., 2011). It has been asserted
that the occurrence of cortical atrophy in some brain regions
may influence the rate of atrophy in other regions. However, it

remains to be elucidated how such simultaneous cortical atrophy

occurs in normal aging or neurodegenerative brain diseases.
Using our definition of network connectivity, the proposed SCN
can provide surface-based measures to investigate the interaction
between two brain regions in terms of cortical atrophy. It is
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FIGURE 3 | Connectograms of binarized group-level network. In the connectogram, hub regions and their connections were illustrated in orange color. Among

all network edge, only hub connections were depicted on brain. Hub regions were obtained from each binarized group-level network, which are nodes with nodal

degree higher than the sum of the mean and standard deviation of total node’s degree.
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FIGURE 4 | Figures illustrate bar graphs of average nodal entropy z-value of four regions groups (Sustained, disrupted, emerged, and other regions).

Nodal entropy z-value of group-level network is calculated using 10,000 degree preserved random network. Hub A: hub regions from normal control (NC) group-level

network hubs which existed in hub regions of Alzheimer’s disease (AD) group-level network. Hub B: missing regions from NC group-level network’s hub regions as AD

progresses. Hub C: regions from AD group-level network’s hub regions which became hub regions according to the disease. Non-hub: Other regions which were not

included in hub regions.

currently unclear whether related changes in cortical regions
occur in gray matter thickness as a result of AD pathology,
however, our method for constructing individual SCNs provides
a quantitative measure for such studies of coordinated variations
in cortical atrophy in AD patients.

Our method has an inherent advantage in that it can be
used to investigate the individual characteristics of network
architecture. Every individual in theNC andAD groups exhibited
a small-world property in the resulting SCNs. Moreover, we
further observed that the AD patients had significantly disrupted
network architecture when compared to NC subjects (the
patients with AD had smaller clustering coefficients and larger
characteristic path lengths than their NC counterparts, leading
to disrupted small-worldness in the AD group). We speculate
that the disrupted network architectural properties are caused
by “spreading out” of the structural connectivity, as opposed to
clustering. This could imply that the coordinated similarity of
cortical thickness between brain regions is disrupted in AD due
to selective cortical atrophy in AD patients. The results of the
hub analysis showed similar characteristics in the AD patients.
For the NC subjects, 15 regions were identified as hub regions.
In AD, 10 regions were distinguished. We could investigate that
number of hubs regions is decreased and some of them are
changed to another region despite higher SCN sparsity in AD
group. This deterioration of the hub regions in AD is clearly
associated with disrupted structural covariance in terms of both
local segregation (clustering coefficients) and global integration
(characteristic path length) as shown in our network architecture
analysis. We applied the methods to the ADNI dataset and
obtained similar results.

We calculated nodal entropy of the group-level networks
to investigate randomness of the anatomical covariance
connectivity. Based on the work by Raj and his colleagues,
a network entropy captures the peakiness or the extent of
uniformly distributed connectivity. Higher value of nodal

entropy denotes that the structural connections to other regions
become more random. Such a node with high nodal entropy will
have randomly connected network edges, of which connections
are not specific across brain regions. In our experiment, most
regions had higher entropy in AD except the left and right
caudal anterior cingulate gyri. The increased entropy in AD
would be able to support the results that the SCN connectivity
becomes inefficient despite higher sparsity. By extension, the
normalized nodal entropy values were also used for statistical
analysis between groups. As the absolute value is closer to zero,
it indicates more random since the network is more similar to
random networks. The brain regions were separated into four
groups to investigate the different characteristics of the hub
regions from other regions for each group. The bar graph in
Figure 4 shows Hub A, the sustained hub in both groups, is
more random in NC than AD group. In other words, Hub A
connections to other regions are scattered however the regions
play a key role as hub in spite of AD progression. Hub B is
more random-like than Hub A in NC and Hub A has more
randomness in AD. The results imply that connections of the
NC hub regions become more spread and scattered rather
than clustered or efficient in AD. Compare to the hub regions,
the non-hub regions are close to zero which means they are
approximately random. These results are in line with the results
of the ADNI dataset.

We acknowledge some limitations in our study. First, we
did not thoroughly address individual variability in SCNs. Some
individuals had deviated values in the graph theoretical measures
as shown in Figure 2 which depicts the graph theoretic measures
for each group. Although the overall network properties follow a
certain trend that shows small-worldness, such as large clustering
coefficients and small characteristic path lengths, detailed
analysis of the individual characteristics remains challenging.
Second, although our individual SCNs have small-worldness
properties in terms of network architecture, the network seems
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somewhat different from the diffusion tensor imaging (DTI)-
based structural networks. The proposed SCNs are based on
correlations of structural properties in gray matter, while the
DTI-based approach relies on the strength of white matter
connectivity between two gray matter regions. Cortical thinning
in two different gray matter regions may be associated with the
change of white matter connections between them. Therefore,
a promising direction for future work will be to investigate
the relationship between the proposed SCNs and other types
of network, based on a variety of image modalities. Third, it
would be misleading to understand structural covariance. The
term ‘structural covariance network (SCN)’ is inspired by the
review paper (Evans, 2013). Inspired by the review paper, recently
some SCNs have been proposed based on the difference of mean
cortical thickness between ROIs (Dai et al., 2011, 2013; Raamana
et al., 2014, 2015). Our SCNs are based on both the difference of
mean cortical thickness and its variance. Thus, we believe that
the proposed method for edge weight computation reveals the
amount of covariance of the cortical thickness between ROIs.
Fourth, we could use the individual SCNs fully. In this paper,
we sought to understand AD using structural covariance. We
have actually analyzed network architectural properties in both
NC and AD groups using the individualized networks. The
graph theoretical measures were computed individually using
individualized networks and enabled statistical analysis. We
would use the individual SCNs in prediction correlation study
with cognitive scores for future works. The individual SCNs
would be useful feature for predicting group membership or
enable practical interpretation by combining with cognitive data.

Another possible limitation of this study is the binarization.
We binarized networks since the networks are simpler to
demonstrate and easier for statistical comparison. However,
it has some limitations in that the binarization could cause
information loss. Weighted networks provide more information
about the relationship between nodes. The networks would be
useful in studying local study since each node gives weight
information. In addition, many researchers is still debating about
the choice of a threshold. Since it has no golden rule, binarized
networks could be unclear to understand compare to weighted
networks.
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