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Methamphetamine (METH) is one of the psychostimulants that is co-abusedwith ethanol.

Repeated exposure to high dose of METH has been shown to cause increases in

extracellular glutamate concentration. We have recently reported that ethanol exposure

can also increase the extracellular glutamate concentration and downregulate the

expression of glutamate transporter subtype 1 (GLT-1). GLT-1 is a glial transporter that

regulates the majority of extracellular glutamate. A Wistar rat model of METH and ethanol

co-abuse was used to examine the expression of GLT-1 as well as other glutamate

transporters such as cystine/glutamate exchanger (xCT) and glutamate aspartate

transporter (GLAST). We also examined the body temperature in rats administered

METH, ethanol or both drugs. We further investigated the effects of ceftriaxone (CEF),

a β-lactam antibiotic known to upregulate GLT-1, in this METH/ethanol co-abuse rat

model. After 7 days of either ethanol (6 g/kg) or water oral gavage, Wistar rats received

either saline or METH (10mg/kg i.p. every 2 h × 4), followed by either saline or CEF

(200 mg/kg) posttreatment. METH administered alone decreased GLT-1 expression

in the nucleus accumbens (NAc) and prefrontal cortex (PFC) and increased body

temperature, but did not reduce either xCT or GLAST expression in ethanol and water-

pretreated rats. Interestingly, ethanol and METH were found to have an additive effect

on the downregulation of GLT-1 expression in the NAc but not in the PFC. Moreover,

ethanol alone caused GLT-1 downregulation in the NAc and elevated body temperature

compared to control. Finally, CEF posttreatment significantly reversed METH-induced

hyperthermia, restored GLT-1 expression, and increased xCT expression. These findings

suggest the potential therapeutic role of CEF against METH- or ethanol/METH-induced

hyperglutamatergic state and hyperthermia.

Keywords: methamphetamine, GLT-1, hyperthermia, ethanol gavage, xCT, GLAST

INTRODUCTION

Methamphetamine (METH) abusers frequently use alcohol with a higher risk of reaching alcohol
intoxication (Furr et al., 2000). The prevalence of alcohol use disorder was found to be more
than 75% among amphetamine-dependent subjects (Stinson et al., 2005). Exposure to a high dose
of METH induces depletion of dopamine and serotonin at the nerve terminals (Ricaurte et al.,
1980, 1982; Seiden et al., 1988; Hirata et al., 1995; Cass et al., 2006) and increases extracellular
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glutamate concentration in rat striatum (Nash and Yamamoto,
1992; Stephans and Yamamoto, 1994). Repeated exposure to
higher dose of amphetamine has also been shown to increase
extracellular glutamate concentration in the nucleus accumbens
(NAc) and the ventral tegmental area (VTA) in rats (Xue et al.,
1996). Although, it is known that repeated METH exposure
can increase extracellular glutamate concentration, there is less
known about its effect on glutamate transporters. In general,
these transporters are responsible for clearing extracellular
glutamate concentration to maintain glutamate homeostasis.
Among these transporters, glutamate transporter 1 (GLT-1;
human homolog is excitatory amino acid transporter 2, EAAT2)
plays a major role in clearing the majority of the extracellular
glutamate concentration (Ginsberg et al., 1995; Rothstein et al.,
1995; Danbolt, 2001; Mitani and Tanaka, 2003). Importantly,
chronic ethanol exposure was found to reduce GLT-1 expression
(Alhaddad et al., 2014b; Aal-Aaboda et al., 2015; Goodwani
et al., 2015) and increase extracellular glutamate concentration
in the NAc (Ding et al., 2013; Das et al., 2015; Pati et al., 2016).
Since repeated exposure to high dose of METH can increase
extracellular glutamate concentration (Halpin et al., 2014), we
investigated in this study for any potential additive effect of
ethanol and METH exposure on GLT-1 expression as well as
other glial glutamate transporters such as cystine/glutamate
transporter (xCT) and glutamate aspartate transporter (GLAST)
in the NAc and PFC. The NAc is a brain region that is involved
in the rewarding and reinforcing effects of drugs of abuse (Koob
and Bloom, 1988; Wise and Rompré, 1989; Bardo, 1998; Koob
et al., 1998). The NAc receives glutamatergic inputs from the
PFC as well as other brain regions (Kelley et al., 1982; Phillipson
and Griffiths, 1985). In this study, we examined the effect of
ceftriaxone (CEF) posttreatment on GLT-1, xCT, and GLAST
expression in the NAc and PFC in rats that were exposed to
repeated high-dose METH. CEF is known to increase GLT-
1 expression in several brain regions (Miller et al., 2008; Sari
et al., 2009, 2013) and can normalize extracellular glutamate
concentration in the NAc in cocaine and ethanol-seeking rat
models (Trantham-Davidson et al., 2012; Das et al., 2015). CEF
was also shown to reduce ethanol intake and cocaine seeking,
in part, through upregulation of GLT-1 and xCT expression in
the NAc and PFC (Sari et al., 2009, 2011; Knackstedt et al., 2010;

FIGURE 1 | Experimental schedule for METH and ethanol administration. Rats were administered oral gavage of either water or ethanol (6 g/kg) for 7 days

followed by either METH (10mg/kg i.p., every 2 h for 4 times) or saline vehicle (i.p.). After completion of the four METH injections, rats were randomly assigned to

receive either CEF (200 mg/kg i.p.) or saline vehicle (i.p.) for 2 days. Control and treated rats were then quickly euthanized (72 and 48 h following last water/ethanol

and saline/METH administration, respectively) by CO2 inhalation and rapidly decapitated.

Fischer et al., 2013; Alhaddad et al., 2014a; Rao and Sari, 2014).
It is noteworthy that repeated exposure to high dose of METH
was found to cause hyperthermia (Chan et al., 1994; Lan et al.,
1998; Ishigami et al., 2003). Importantly, CEF was also revealed
to reduce morphine-induced hyperthermia (Rawls et al., 2007).
Thus, we have investigated the effects of CEF on METH-induced
hyperthermia. We administered CEF after ethanol and METH
exposure for clinical relevance.

MATERIALS AND METHODS

Subjects
Male Wistar rats, weighing 200–300 g at the beginning of the
study, were obtained from Harlan, Inc. (Indianapolis, IN). Rats
were single-housed in standard plastic cages with controlled
temperature (21◦C) and humidity (30%) on 12:12 light-dark
cycle and were allowed to habituate to these conditions prior to
the experiments. Rats had ad libitum food and water throughout
the experimental procedure, except 2 h fasting prior to each oral
gavage administration. Animal experimental procedures were
approved by the Institutional Animal Care and Use Committee
of The University of Toledo in accordance with the guidelines of
the Institutional Animal Care andUse Committee of the National
Institutes of Health and the Guide for the Care and Use of
Laboratory Animals (Institute of Laboratory Animal Resources,
Commission on Life Sciences, 1996).

Drugs
(+) METH hydrochloride was purchased from Sigma-Aldrich
(St. Louis, MO). CEF (Sandoz Inc., Princeton, NJ) was purchased
from The University of Toledo’s pharmacy. Saline solution (0.9%
NaCl) was used to dissolve either (+) METH or CEF. Ethanol
(95%; Decon Labs, Inc.) was diluted in water.

Experimental Design
An experimental schedule is illustrated in Figure 1. Rats were
administered oral gavage of either water or ethanol (6 g/kg)
for 7 days, followed by either METH (10mg/kg, i.p.) or saline
vehicle (i.p.). We first orally gavaged the rats with ethanol in
order to initially induce a reduction in GLT-1 expression and
glutamate uptake, as it was performed in recent study from our
laboratory (Das et al., 2015); we then followed with METH i.p.
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injections to further reduce glutamate uptake. After completion
of the four METH i.p. injections, rats were randomly assigned to
receive either CEF (200 mg/kg i.p.) or saline vehicle (i.p.) for 2
days; control and experimental groups have been summarized in
Table 1. The rationale for testing repeated high dose of METH
(10mg/kg i.p. every 2 h × 4) exposure was chosen based on
previous studies that showed neurotoxicity and elevation of
extracellular glutamate concentration in rat brains (Bowyer et al.,
1994; Hirata et al., 1995; Yamamoto and Zhu, 1998; Mark et al.,
2004, 2007). The rationale for testing the ethanol binge gavage
paradigm was based on recent studies from our laboratory and
others (Faingold, 2008; Abulseoud et al., 2014; Das et al., 2016).
Control and treated rats were then quickly euthanized by CO2

inhalation and rapidly decapitated. Brains were then extracted
and immediately frozen in dry ice and stored at −80◦C. The
PFC and NAc were micropunched using a cryostat apparatus
as described in a previous study from our laboratory (Sari and
Sreemantula, 2012). Rat Brain Stereotaxic Atlas was used to
identify the selected structures (PFC and NAc) (Paxinos and
Watson, 2007).

Western Blot
The Western blot procedure was performed as previously
described (Sari et al., 2009). Briefly, brain tissue was lysed in
lysis buffer (50mM Tris–HCl, 150mM NaCl, 1mM EDTA, 0.5%
NP-40, 1% Triton, 0.1% SDS) containing a protease inhibitor
cocktail. A Bio-Rad protein assay method was used to determine
total protein content in the tissue extracts (Bio-Rad, Hercules,
CA, USA). The extracted proteins were loaded onto 10–20%
tris-glycine gel. After separation, proteins were transferred
electrophoretically from the gel onto the PVDF membranes.
The membranes were then blocked using 3% milk in Tris-
buffered saline Tween 20 for 30 min. Guinea pig anti-GLT-1
(1:5000 dilution; Millipore Bioscience Research Reagents), rabbit
anti-xCT antibody (1:1000 dilution: Novus), rabbit anti-GLAST
(1:5000 dilution; Abcam), or mouse anti β-tubulin antibody
(1:5000 dilution; Covance) was then added to the blocking
buffer, and the membrane was incubated overnight at 4◦C. The
membrane was then washed and incubated with horseradish
peroxidase-labeled (HRP) anti-Guinea pig, anti-rabbit, or anti-
mouse secondary antibody (1:5000). A chemiluminescent kit
(SuperSignal West Pico) was used to incubate the membrane for
protein detection. Subsequently, the membrane was exposed to
Kodak BioMax MR films (Thermo Fisher Scientific). The films
were then developed using an SRX-101A machine by Konica

Minolta Medical & Graphic, Inc. The blots for each protein
were digitized, and densitometric analysis was obtained using an
MCID software (Imaging Research, Inc.). Data were calculated
as ratios of GLT-1/β-tubulin, xCT/β-tubulin, and GLAST/β-
tubulin. The control group (Water-Saline-Saline) was included
with the drug treatment groups each time the 10-well gel was run.
The control group was set arbitrary as 100% and the changes in
protein expression of the remaining five groups were obtained
relative to the control group in that particular gel. The expression
of proteins was consistent between control and drug treatment
groups (six groups) in each 10-well gel. This calculation method
has been used in several studies from ours and others (Li et al.,
2003; Raval et al., 2003; Miller et al., 2008; Zhang and Tan, 2011;
Simões et al., 2012; Devoto et al., 2013; Goodwani et al., 2015;
Hakami et al., 2016).

Body Temperature Measurement
The body temperature was measured rectally using digital
thermometer (Thermalert TH-5, Physitemp, NJ, USA) at three
time points to minimize handling following METH exposure:
at baseline, after the last METH injection (Time 0) when the
rats were randomly assigned to receive either saline or CEF, and
finally 12 h after last METH injection.

Statistical Analysis
Two-way ANOVA (Pretreatment × Posttreatment) was used to
analyze immunoblot data. Newman-Keuls multiple comparisons
test was used when significant interaction or significant main
effect was revealed using GraphPad Prism. Mixed-model
factorial ANOVA [Time × Pretreatment × Posttreatment,
with repeated measures on the time factor (Baseline, 0, 12 h),
with Pretreatment and Posttreatment as the between-subjects
factor] was used to analyze body temperature data using SPSS
software. All statistical tests were based on p < 0.05 level of
significance.

RESULTS

Effects of METH Administered Alone or
with Ethanol As Well As Effects of CEF
Posttreatment on GLT-1 Expression in the
NAc And PFC
This study investigated the effect of METH on GLT-1 expression
in the NAc and PFC 48 h following the last METH i.p. injection

TABLE 1 | Experimental groups according to the administration of water or ethanol oral gavage, METH or saline, as well as CEF or saline.

Group Day 1–7 Day 8 Day 8–10

Drug Dose Drug Dose

1- Water-Saline-Saline Water Saline (1ml/kg, i.p. every 2 h × 4) Saline (1 ml/kg, i.p. every day × 3)

2- Water-METH-Saline Water METH (10mg/kg, i.p. every 2 h × 4) Saline (1 ml/kg, i.p. every day × 3)

3- Water-METH-CEF Water METH (10mg/kg, i.p. every 2 h × 4) CEF (200 mg/kg, i.p. every day × 3)

4- Ethanol-Saline-Saline Ethanol Saline (1 ml/kg, i.p. every 2 h × 4) Saline (1 ml/kg, i.p. every day × 3)

5- Ethanol-METH-Saline Ethanol METH (10mg/kg, i.p. every 2 h × 4) Saline (1ml/kg, i.p. every day × 3)

6- Ethanol-METH-CEF Ethanol METH (10mg/kg, i.p. every 2 h × 4) CEF (200mg/kg, i.p. every day × 3)
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in Wistar rats. Two-way ANOVA revealed a significant effect
of posttreatment in the NAc [F(2, 30) = 39.09, p < 0.0001]
and PFC [F(2, 30) = 14.10, p < 0.0001], significant effect
of oral gavage pretreatment in the NAc [F(1, 30) = 11.69,
p < 0.0018] but not PFC [F(1, 30) = 0.05634, p = 0.8140],
and significant interaction between posttreatment and oral
gavage pretreatment in the NAc [F(2, 30) = 3.949, p = 0.0300]
but not in the PFC [F(2, 30) = 0.009251, p = 0.9908].
Newman-Keuls multiple comparisons test showed a significant
increase in GLT-1 expression in METH-CEF-treated rats
compared to METH-Saline-treated rats in the NAc [water group
(p < 0.001) and ethanol group (p < 0.0001; Figures 2A,B)]
and PFC [water group (p < 0.01) and ethanol group (p <

0.01; Figures 2C,D)]. Moreover, statistical analyses showed a
significant downregulation of GLT-1 expression in the NAc
[water group (p< 0.05) and ethanol group (p< 0.01; Figure 2B)]
and in the PFC [water group (p < 0.05) and ethanol group (p
< 0.05; Figure 2D)] of the METH-Saline group compared to
the corresponding saline control group. Alternatively, post-hoc
analyses showed a significant decrease in GLT-1 expression in
Ethanol-Saline-Saline compared to Water-Saline-Saline in the
NAc (p < 0.01; Figure 2B). Interestingly, GLT-1 expression
was significantly decreased in Ethanol-METH-Saline-treated rats
compared to Water-METH-Saline-treated rats in the NAc (p <

0.01; Figure 2B).

Effects of CEF Treatment on xCT
Expression in the NAc and PFC of Groups
Administered METH Alone or METH and
Ethanol
We further investigated the effect of METH on xCT expression

in the NAc and PFC 48 h following the last METH i.p. injection

in Wistar rats. Two-way ANOVA revealed a significant effect of

posttreatment in the NAc [F(2, 30) = 12.92, p < 0.0001] and PFC

[F(2, 30) = 11.01, p < 0.001], no significant effect of oral gavage
pretreatment in the NAc [F(1, 30) = 0.04864, p = 0.8269] or PFC
[F(1, 30) = 0.3730, p = 0.5460], and no significant interaction
between posttreatment and oral gavage pretreatment in the NAc
[F(2, 30) = 0.05490, p = 0.9467] or PFC [F(2, 30) = 0.1945,
p = 0.8243]. Newman-Keuls multiple comparisons test showed
a significant increase in xCT expression in METH-CEF-treated
rats compared to METH-Saline and Saline-Saline treated rats in
the NAc [water group (p < 0.05) and ethanol group (p < 0.05;
Figures 3A,B)] and PFC [water group (p < 0.05) and ethanol
group (p < 0.05; Figures 3C,D)]. However, statistical analyses
did not show any significant change in xCT expression in the
NAc [in water group (p > 0.05) or ethanol group (p > 0.05;
Figure 3B)] and PFC [water group (p > 0.05) or ethanol group
(p > 0.05; Figure 3D)] of the METH-Saline group compared to
the corresponding saline control group.

FIGURE 2 | Effects of METH (10 mg/kg i.p. every 2h × 4), ethanol and CEF (200mg/kg) on GLT-1 expression in the NAc and PFC. (A,C) Immunoblots for

GLT-1 as well as β-tubulin, which was used as a control loading protein, in the NAc and PFC, respectively, as compared to water-pretreated groups and

ethanol-pretreated groups. (B,D) Quantitative analysis revealed a significant increase in the ratio of GLT-1/β-tubulin in METH-CEF-treated (WMC or EMC) rats

compared to the METH-Saline-treated rats in the water (WM) and the ethanol (EM) groups, in the NAc and PFC, respectively. Significant downregulation of GLT-1

expression was revealed in the METH-Saline-treated groups compared to control in water- and ethanol-treated groups in the NAc and PFC. Significant

downregulation of GLT-1 expression was revealed in ethanol-Saline-Saline (ES) and ethanol-METH-Saline (EM) groups compared to its corresponding water control

groups in the NAc, but not in the PFC. No significant difference in GLT-1 expression was revealed in water-METH-CEF-treated (WMC) rats compared to water control

groups. However, a significant increase in GLT-1 expression was found in the Ethanol-METH-CEF (EMC) group compared to ethanol control (ES) group in the NAc, but

not in the PFC. *p < 0.05, **p < 0.01 (or &&, for comparison between ethanol and its corresponding water control groups), ***p < 0.001, and ****p < 0.0001. Values

shown as means ± S.E.M. n = 6 for each group.
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FIGURE 3 | Effects of METH (10mg/kg i.p. every 2h × 4), ethanol and CEF (200 mg/kg) on xCT expression in the NAc and PFC. (A,C) Immunoblots for

xCT as well as β-tubulin, which was used as a control loading protein, in the NAc and PFC, respectively, as compared to water-pretreated groups and

ethanol-pretreated groups. (B,D) Quantitative analysis revealed a significant increase in the ratio of xCT/β-tubulin in METH-CEF-treated rats compared to the

METH-Saline and Saline-Saline treated rats in the water and ethanol groups in the NAc and PFC, respectively. No significant change in xCT expression was revealed

in the METH-Saline-treated groups compared to control in water- and ethanol-treated groups in either the NAc or PFC. *p < 0.05. Values shown as means ± S.E.M.

n = 6 for each group.

Effects of CEF Treatment in GLAST
Expression in the NAc and PFC in Groups
Administered METH Alone or with Ethanol
We further investigated the effect of METH on GLAST
expression in the NAc and PFC. Two-way ANOVA did not
reveal any significant effect of posttreatment in the NAc [F(2, 30)
= 0.4872, p = 0.6191] or PFC [F(2, 30) = 0.02371, p =

0.9766], no significant effect of oral gavage pretreatment in
the NAc [F(1, 30) = 2.810, p = 0.1041] and PFC [F(1, 30) =

0.0008578, p = 0.9768], and no significant interaction between
posttreatment and oral gavage pretreatment in the NAc [F(2, 30)
= 0.4643, p = 0.6330] (Figures 4A,B) and PFC [F(2, 30) =

0.003179, p= 0.9968] (Figures 4C,D).

Effect of CEF on METH-Induced
Hyperthermia
A mixed-model factorial ANOVA conducted on body
temperature revealed a significant effect of time [F(2, 39) =

240.305, p < 0.0001], a significant interaction between time
and pretreatment [F(2, 39) = 7.848, p = 0.001], a significant
interaction between time and posttreatment [F(4, 80) =

33.22, p < 0.0001], and a significant interaction between
time, pretreatment and posttreatment [F(4, 80) = 4.335,
p = 0.003]. Contrast analyses revealed that ethanol pretreatment
significantly elevated body temperature compared to water
control at baseline (p < 0.05) (Figure 5). Similarly, contrast
analyses showed that following the last dose of METH (at time

0), METH significantly elevated body temperature compared
to saline in water and ethanol pretreated groups as well as in
comparison to the baseline point (p < 0.0001). In addition,
body temperature was significantly higher in the ethanol-Saline-
Saline group as compared to the Water-Saline-Saline group
at this time point (p < 0.001). CEF posttreatment (at time
12 h) restored body temperature compared to saline in the
water (p < 0.0001) and ethanol (p < 0.001) pretreated groups.
Similarly, body temperature was significantly higher in the water-
METH-Saline (p < 0.0001), ethanol-Saline-Saline (p < 0.05),
Ethanol-METH-Saline (p < 0.0001), and Ethanol-METH-CEF
groups (p < 0.01) as compared to the Water-Saline-Saline
(Figure 5) group. Significant increase in body temperature was
revealed in METH-Saline treated groups in water and ethanol
pretreatment groups as compared to its baseline point. No
significant difference was found betweenWater-METH-CEF and
Water-Saline-Saline groups or between Ethanol-METH-CEF
and Ethanol-Saline-Saline groups (p > 0.05) (Figure 5).

DISCUSSION

The present study revealed for the first time that repeated high
dose of METH significantly decreased GLT-1 expression in the
NAc and PFC in the co-abuse METH and ethanol group as well
as in the METH alone group. Our findings contradict a previous
report in which METH induced an upregulation of GLT-1 in the
PFC (Qi et al., 2012). However, this contradictory result could
be due to different experimental designs and dosing regimens. A
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FIGURE 4 | Effects of METH (10mg/kg i.p. every 2h × 4), ethanol and CEF (200 mg/kg) on GLAST expression in the NAc and PFC. (A,C) Immunoblots for

GLAST as well as β-tubulin, which was used as a control loading protein, in the NAc and PFC, respectively, as compared to water-pretreated groups and

ethanol-pretreated groups. (B,D) Quantitative analysis did not reveal any significant differences in the ratio of GLAST/β-tubulin among all groups in the NAc and PFC,

respectively. Values shown as means ± S.E.M. n = 6 for each group.

FIGURE 5 | Effects of METH (10mg/kg i.p. every 2h × 4), ethanol, and

CEF posttreatment (200mg/kg, i.p.) on body temperature compared to

Water-Saline-Saline control group. Ethanol pretreatment significantly

elevated body temperature at baseline compared to water pretreatment.

METH significantly elevated body temperature in all groups after the last METH

injection (time 0) compared to Water-Saline-Saline group. CEF posttreatment

restored body temperature compared to saline posttreatment in water and

ethanol-METH treated rats. *p < 0.05, **p < 0.01, #p < 0.001, and @p <

0.0001 (&p < 0.01, $p < 0.001 compared to baseline point) (mixed-model

repeated measure factorial ANOVA). Values are represented as mean ± SEM

(Error bars were deleted for clarity). n = 7–9 for each group.

single low dose of METH (2mg/kg), as compared to 10mg/kg
every 2 h for 4 times in this study, was used in the previous
report by Qi et al. (2012). Mice were then euthanized at different
time points following a single METH injection (0.5, 1, 2, and

4 h) compared to rats that were euthanized 48 h after the last
METH injection in our report. The GLT-1 expression was not
changed in the PFC at the first two time points tested. However,
GLT-1 expression was then increased after 2 h of METH injection
(∼250% of control) and then decreased dramatically to reach
140% of control after 4 h of METH injection. This previous
report did not further investigate GLT-1 expression beyond 4 h
of METH administration. The pattern of changes in GLT-1
expression presented in this previous report suggests a transient
increase of GLT-1 that might be followed by a reduction in GLT-
1 expression. By contrast, in our study, we have used repeated
high dose METH, which is well known to produce neurotoxicity
and hyperthermia (Sonsalla et al., 1989; Bowyer et al., 1994;
Halpin and Yamamoto, 2012). This neurotoxic dosing paradigm
of METH produced a comparable neurotoxicity to other studies
that have used a very high dose of METH 50mg/kg 2–3 times
per day for 4 days (Bittner et al., 1981; Ricaurte et al., 1982).
However, previous study has investigated a single dose of METH
in order to produce neurotoxicity and hyperthermia comparable
to the dosing paradigm used in this study (Fukumura et al.,
1998). The least effective dose that produced neurotoxicity and
hyperthermia was 10 times higher than the dose used by Qi et al.
(2012) (i.e., 20mg/kg), while doses that produced a comparable
neurotoxicity and hyperthermia are 30 and 40mg/kg (Fukumura
et al., 1998; Qi et al., 2012).

The GLT-1 is a glial glutamate transporter that plays a

critical role in clearing the majority of extracellular glutamate to

maintain glutamate homeostasis (Ginsberg et al., 1995; Rothstein
et al., 1995, 1996; Danbolt, 2001; Mitani and Tanaka, 2003). The
METH-induced downregulation of GLT-1 expression could be
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due to the fact that bingeMETH exposure induced hepatotoxicity
in rats, with subsequent elevation in plasma and brain ammonia
(Halpin and Yamamoto, 2012). Chronic ammonia exposure
for at least 48 h was shown to decrease glutamate uptake in
cultured astrocytes due to a possible decrease in the expression
of glutamate transporters (Bender and Norenberg, 1996). It
has also been shown that ammonia is responsible for GLT-1
downregulation in brains of a rat model with acute liver failure
(Knecht et al., 1997; Chan and Butterworth, 1999). Moreover,
rats treated with ammonium acetate develop a significant
downregulation in GLT-1 expression compared to control rats
(Norenberg et al., 1997). Therefore, downregulation of GLT-1
expression found in this study could be due to elevation in plasma
and brain ammonia caused by METH exposure. Further studies
are warranted to determine the concentration of ammonia in the
plasma and brain of rats exposed to repeated doses of METH.

A METH-induced decrease in GLT-1 expression in the NAc
and PFC was restored by CEF posttreatment in both ethanol
and water-pretreated rats. CEF is known to upregulate GLT-1
expression in disease and naïve animal models (Rothstein et al.,
2005; Miller et al., 2008; Ramos et al., 2010). Since METH caused
GLT-1 downregulation, we further investigated GLT-1 expression
in ethanol and water pretreated rats to explore whether there is
any additive effect of ethanol and METH in this protein. The
present data revealed that METH exacerbates the reduction in
GLT-1 expression in ethanol-pretreated rats compared to water-
pretreated rats in the NAc, but not in the PFC. This indicates that
there is no additive effect of ethanol on GLT-1 expression in the
PFC, which is consistent with our recent findings demonstrated
that free choice exposure to ethanol does not reduce GLT-1
expression in the PFC (Sari et al., 2013; Alhaddad et al., 2014b).
Moreover, GLT-1 expression was downregulated in the NAc
following saline treatment in the ethanol group compared to
the water group. This is in accordance with recent findings
demonstrated that chronic ethanol exposure decreases GLT-1
expression and increases extracellular glutamate concentration in
the NAc (Das et al., 2015).

Although the mechanism of ethanol-induced downregulation
of GLT-1 is not known, studies from our laboratory showed
that ethanol decreases phosphorylation of Akt (Alhaddad et al.,
2014b; Goodwani et al., 2015). Certain studies, however, have
reported contradicting findings regarding the effects of ethanol
exposure on GLT-1 expression. For example, GLT-1 expression
was not altered following intermittent ethanol exposure (Pati
et al., 2016) or continuous ethanol exposure for 8 weeks in female
P rats (Ding et al., 2013). These contradictory results could be
due to the differences in ethanol exposure paradigm and study
design. The report by Pati et al. (2016) used intermittent ethanol
exposure, while in our present study, we have used repeated daily
ethanol exposure, which has been shown to increase extracellular
glutamate concentration shortly after the last ethanol exposure
in different brain regions such as the VTA, hippocampus, NAc,
PFC, and striatum (Rossetti and Carboni, 1995; Dahchour and
Witte, 1999; Dahchour and DeWitte, 2000; Melendez et al., 2005;
Kapasova and Szumlinski, 2008; Ding et al., 2012; Hermann et al.,
2012) and decrease GLT-1 expression and/or glutamate clearance
(Melendez et al., 2005; Ding et al., 2012; Aal-Aaboda et al.,

2015; Das et al., 2015; Goodwani et al., 2015). Alternatively, the
report by Ding et al. (2013) used free choice continuous ethanol
exposure for 8 weeks (compared to oral gavage of ethanol for 7
days in this current study). Ding et al. (2013) noted a trend of
decrease in GLT-1 expression that was suggested to be masked by
high variations in samples. Moreover, this previous report used
female rats, as opposed to male rats that showed a decrease in
GLT-1 expression following ethanol exposure (Alhaddad et al.,
2014b; Goodwani et al., 2015). Further studies are needed to
investigate different gender responses to ethanol exposure and
consequent changes in GLT-1 expression.

We also tested xCT, a glial protein that exchanges intracellular
glutamate for extracellular cystine to maintain glutamate
homeostasis (Bannai and Kitamura, 1980; Baker et al., 2002).
However, we did not find any downregulation of xCT expression
following METH treatment in either ethanol or water-pretreated
rats. Importantly, CEF upregulated xCT expression in the NAc
and PFC of ethanol and water pretreated rats, which is consistent
with studies from our laboratory and others (Lewerenz et al.,
2009; Knackstedt et al., 2010; Alhaddad et al., 2014a; Rao and
Sari, 2014). CEF-induced upregulation of xCT expression might
be another mechanism that modulates glutamate homeostasis
to alleviate METH effects. In addition, xCT has been shown
to facilitate cystine uptake with the subsequent synthesis of
glutathione (Sato et al., 1999; Lewerenz et al., 2006). An in vitro
study showed that CEF-induced upregulation of xCT expression
was associated in part with increased glutathione concentration,
which is independent of GLT-1 upregulation (Lewerenz et al.,
2009). It is noteworthy that several studies indicated that METH
can cause oxidative stress in different brain regions (Cubells et al.,
1994; Açikgöz et al., 1998; Yamamoto and Zhu, 1998; Gluck et al.,
2001; Ramirez et al., 2009). Furthermore, glutathione was found
to be reduced in the striatum following repeated high doses of
METH (Moszczynska et al., 1998). As a result, the CEF-induced
increase in xCT expression may eventually improve glutathione
synthesis.

Furthermore, we did not find any changes in GLAST
expression in the NAc and PFC in either ethanol
or water-pretreated rats. In accordance, ethanol exposure
and/or CEF treatment did not significantly reduce GLAST
expression (Alhaddad et al., 2014b; Hakami et al., 2016). Studies
suggested that GLAST is highly expressed in the cerebellum
and predominantly regulates glutamate uptake as compared to
forebrain regions, including the PFC and NAc. However, GLT-1
is predominant in the forebrain. The differential predominance
of GLAST vs. GLT-1 in the PFC and NAc might be a key
factor involving the effects of ethanol and METH co-abuse in
the expression of these transporters. Studies are warranted to
investigate the differential effects of these glial transporters in an
ethanol and METH co-abuse model.

METH significantly elevated body temperature in both
ethanol and water-pretreated rats compared to saline, which is
consistent with previous reports (Cass et al., 2006; Shioda et al.,
2010; Halpin and Yamamoto, 2012). The present data showed
that CEF posttreatment significantly reversed the increase in
body temperature compared to saline when measured 12 h
following the last METH dose. Although the rapid onset of action
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of CEF on body temperature is unclear, studies demonstrated
that a single dose of CEF can increase the activity of GLT-1 and
improve the survival of neurons (Thöne-Reineke et al., 2008).
In fact, acute administration of CEF has many effects, including
an anti-inflammatory response and analgesic action (Wei et al.,
2012; Macaluso et al., 2013). Further studies are warranted to
investigate the acute effects of CEF on the glutamatergic system
and body temperature. The mechanism of action of CEF in
reversing hyperthermia is unknown, but is most likely through its
ability to upregulate GLT-1 and improve glutamate uptake. This
is in line with a previous report by Rawls and colleagues in which
CEF reversed morphine-induced hyperthermia (Rawls et al.,
2007). This latter study demonstrates that CEF’s inhibition of
hyperthermia was prevented by administering glutamate uptake
blocker (TBOA), which suggests that upregulation of GLT-1
expression may be critical in the attenuation of hyperthermia.
It is unclear whether the normalizing effect of CEF on body
temperature might be associated with upregulation of GLT-1 and
reduced extracellular glutamate concentration in central reward
brain regions such as the NAc and PFC. However, it is suggested
that glutamate might be implicated in thermoregulation, since
treatment with glutamate receptor antagonists attenuates the
increase in body temperature in animal models (Madden and
Morrison, 2003; Nakamura et al., 2004; Cao and Morrison,
2006; Nakamura and Morrison, 2008). Importantly, the NAc
and PFC were found to be implicated in thermoregulation
(Tseng et al., 1980; Hori et al., 1984; Shibata et al., 1988).
Changes in body temperature and heat production were also
found when functional ablation of PFC was applied (Shibata
et al., 1981, 1985). In addition, a recent study has shown that
microinjections of METH into the PFC evoked measures of non-
shivering thermogenesis (Hassan et al., 2015). Further studies
are warranted to explore any possible associative effects between
thermoregulation and glutamate homeostasis in an ethanol and
METH co-abuse animal model and to investigate the key brain
regions involved in this mechanism.

In summary, our findings provide evidence of the important
role of GLT-1 using high dose of METH, well known to cause
a hyperglutamatergic state and hyperthermia. Importantly, we
found for the first time additive effects of ethanol and METH
on GLT-1 downregulation in the NAc as compared to drug
administered alone. This study also showed for the first time
that CEF, a β-lactam antibiotic, was effective in restoring GLT-1
expression and reversing hyperthermia in the ethanol andMETH
co-abuse rat model. These findings suggest that CEF might
be used as a potential drug for treatment against METH- or
ethanol/METH-induced downregulation of GLT-1 expression
and hyperthermia.
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