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Ischemic stroke is a leading cause of adult disability, including cognitive impairment.
Our laboratory has previously shown that treatment with function-blocking antibodies
against the neurite growth inhibitory protein Nogo-A promotes functional recovery after
stroke in adult and aged rats, including enhancing spatial memory performance, for
which the hippocampus is critically important. Since spatial memory has been linked to
hippocampal neurogenesis, we investigated whether anti-Nogo-A treatment increases
hippocampal neurogenesis after stroke. Adult rats were subject to permanent middle
cerebral artery occlusion followed 1 week later by 2 weeks of antibody treatment.
Cellular proliferation in the dentate gyrus was quantified at the end of treatment, and
the number of newborn neurons was determined at 8 weeks post-stroke. Treatment
with both anti-Nogo-A and control antibodies stimulated the accumulation of new
microglia/macrophages in the dentate granule cell layer, but neither treatment increased
cellular proliferation or the number of newborn neurons above stroke-only levels.
These results suggest that anti-Nogo-A immunotherapy does not increase post-stroke
hippocampal neurogenesis.
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INTRODUCTION

Cognitive impairment is a recognized sequela of ischemic stroke (Gottesman and Hillis, 2010).
Our laboratory has previously shown that treatment with function-blocking antibodies against
the neurite growth-inhibitory protein Nogo-A (anti-Nogo-A immunotherapy) improves spatial
memory performance after stroke in aged rats (Gillani et al., 2010), but a cellular mechanism
of efficacy has not yet been identified. We and others have previously demonstrated that anti-
Nogo-A immunotherapy stimulates dendritic and axonal remodeling and increases dendritic spine
density in the contralesional sensorimotor cortex after stroke (Papadopoulos et al., 2002, 2006;
Wiessner et al., 2003; Seymour et al., 2005; Tsai et al., 2007, 2011; Lindau et al., 2014). These
neuroplastic changes may underlie the sensorimotor recovery seen in anti-Nogo-A treated animals
(Papadopoulos et al., 2002, 2006; Wiessner et al., 2003; Seymour et al., 2005; Tsai et al., 2007,
2011; Lindau et al., 2014; reviewed by Kumar and Moon, 2013), as silencing of newly sprouted
axonal connections ablates the sensorimotor recovery promoted by anti-Nogo-A treatment (Wahl
et al., 2014). However, no changes in dendritic complexity or spine density were found in anti-
Nogo-A-treated animals in pyramidal neurons of CA1 or CA3 or in dentate granule cells, despite
spatial memory improvement, suggesting an alternate mechanism of efficacy (Gillani et al., 2010).
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We and other groups have likewise reported that anti-Nogo-
A treatment enhances recovery from hemispatial neglect after
aspiration lesion of the medial agranular cortex (Brenneman
et al., 2008) and recovery of cognitive function after traumatic
brain injury (Lenzlinger et al., 2005; Marklund et al., 2007),
positioning Nogo-A as a promising therapeutic target for
improving cognition after brain injury.

Nogo-A is a transmembrane protein with two main inhibitory
domains (Nogo-66 and Nogo-A-A20), and acts primarily by
activating two different cell surface receptors. Nogo-66 binds
to the Nogo receptor NgR1, leading to activation of the small
GTPase RhoA and subsequent activation of Rho-associated
protein kinase (ROCK). Nogo-A-A20 activates the previously
characterized sphingosine-1-phosphate receptor S1PR2, which
also activates RhoA/ROCK and may also influence gene
expression. Both receptors have been found to play a role
in mediating structural and synaptic plasticity (Schwab and
Strittmatter, 2014).

Several studies have linked hippocampal neurogenesis and
spatial memory performance on the Morris water maze (reviewed
by Garthe and Kempermann, 2013), and interventions that
increase neurogenesis have also been shown to improve Morris
water maze performance after brain injury, including stroke
(Wurm et al, 2007; Meng et al, 2014). Whether Nogo-
A plays a direct role in adult hippocampal neurogenesis is
unknown. However, a previous study reported that mice deficient
for the Nogo receptor NgR1 exhibit increased hippocampal
neurogenesis and reduced cognitive impairment after traumatic
brain injury (Tong et al,, 2013). Furthermore, at the molecular
level, the key Nogo-A signaling mediators RhoA and ROCK play
a suppressive role in hippocampal neurogenesis (Keung et al.,
2011; Christie et al., 2013; reviewed by Vadodaria and Jessberger,
2013). Nogo-A signaling has also been shown to inhibit nerve
growth factor-mediated CREB phosphorylation in vitro (Joset
et al., 2010), whereas CREB phosphorylation is important for
the maturation and survival of newborn dentate granule cells,
including after stroke (Zhu et al., 2004; Jagasia et al., 2009). These
studies raise the question of whether antibody-mediated Nogo-
A neutralization could lead to alterations in neurogenesis, which
may in turn contribute to cognitive recovery after stroke.

The goal of this study was to determine whether Nogo-A
neutralization enhanced post-stroke hippocampal neurogenesis.
Our results showed that while infusion of both anti-Nogo-
A and control antibodies led to the accumulation of
new microglia/macrophages in the hippocampus, Nogo-A
neutralization did not affect the number of newborn neurons in
the dentate gyrus after stroke. Therefore, enhanced neurogenesis
is unlikely to contribute to the improvement in spatial memory
that we previously reported after stroke and anti-Nogo-A
immunotherapy.

MATERIALS AND METHODS

Animal Subjects
All animal experiments were approved by the Institutional
Animal Care and Use Committee of the Hines Veterans Affairs

Hospital. A total of 42 adult male Long-Evans black hooded rats
(Harlan, Indianapolis, IN), 12 weeks of age at study initiation,
were used. See Table 1 for an overview of experimental design.
Animals were housed in pairs on a 12 h light-dark cycle with ad
lib food and water.

Middle Cerebral Artery Occlusion

Rats were anesthetized with 2% isoflurane in oxygen. Distal
middle cerebral artery occlusion was performed as described
previously (Chen et al., 1986; Papadopoulos et al., 2002). An
incision through the scalp and temporalis muscle was made,
followed by a craniotomy to expose the middle cerebral artery
(MCA). The left MCA was then ligated with 10-0 suture and
bisected. After making a midline ventral neck incision, the left
common carotid artery (CCA) was permanently ligated with
4-0 suture, and the right CCA was occluded for 1 h using
an aneurysm clip. Body temperature was maintained at 37°C
throughout the procedure by a thermoregulator and heating pad.
After incisions were closed, animals were allowed to recover in
their home cage. Sham surgery animals were anesthetized for an
equivalent duration and given neck and scalp incisions.

Anti-Nogo-A Treatment Antibody

Production and Purification

The hybridoma cell line for the mouse monoclonal anti-Nogo-
A antibody 11C7 was provided by Prof. Martin Schwab (Brain
Research Institute, University of Zurich). The cells were grown
in Hybridoma-SFM (Gibco, Waltham, MA) using the CELLLine
multi-chamber cell cultivation system (BD Biosciences, San
Jose, CA) according to manufacturer’s protocol. The 11C7
antibody was purified from antibody-containing medium by
Protein-G column chromatography (Pierce, Waltham, MA).
Coomassie blue staining of purified antibody separated on
denaturing polyacrylamide gels routinely showed only two bands
corresponding to heavy and light chains. For infusion, purified
11C7 was diluted to 2.5 mg/mL in sterile phosphate-buffered
saline.

Intracerebroventricular Antibody Treatment
One week following stroke (a delay in treatment that still
improves functional recovery, Seymour et al., 2005; Gillani et al.,
2010), rats were anesthetized with isoflurane and implanted

TABLE 1 | Overview of experimental groups.

N Treatment BrdU Sacrifice
duration

PROLIFERATION
Stroke only 6 None 200 mg/kg i.p. on 2 h after BrdU
Stroke/Control Ab 6 14 days day 21 post-stroke  injection
Stroke/Anti-Nogo-A Ab 6 14 days
DIFFERENTIATION/SURVIVAL
Stroke only 8 None 50 mg/kg twice/day 8 weeks
Stroke/Control Ab 5 14 days for 5 days beginning  post-stroke

day 7 post-stroke

Stroke/Anti-Nogo-A Ab 8 14 days
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with a subcutaneous osmotic minipump (Alzet model 2ML2;
Durect Corporation, Cupertino, CA) connected to a cannula
leading to the ipsilesional lateral cerebral ventricle, as previously
done. Either anti-Nogo-A mouse IgG1 (antibody 11C7) or a
control antibody raised against a non-mammalian peptide (anti-
cyclosporine A; mouse IgGl, a generous gift from Novartis
International AG; Craveiro et al., 2013), both 2.5 pg/pL, were
infused at a rate of 5pL/h (as previously done, Markus et al.,
2005; Gillani et al., 2010) for 14 days. At the end of the treatment
period, pumps were removed under isoflurane anesthesia.

5-Bromo-2’'-Deoxyuridine (BrdU) Injections
BrdU (Sigma-Aldrich Co., St. Louis, MO) was dissolved at
20 mg/mL in sterile saline plus 0.007N NaOH and sterilized
by passing through a 0.22 pm syringe filter. Rats were injected
intraperitoneally according to one of two injection schedules. To
measure cellular proliferation, rats were injected with a single
dose of 200 mg/kg body weight BrdU (a saturating dose, even in
animals with increased hippocampal neurogenesis; Eadie et al.,
2005) and killed 2 h after injection. For long-term phenotype
analysis of proliferating cells, rats were injected with 50 mg/kg
BrdU twice per day for 5 consecutive days, beginning 7 days after
stroke.

Tissue Collection and Preparation

Animals were euthanized by overdose with Euthasol (390 mg/kg
i.p., Virbac, Fort Worth, TX) and transcardially perfused with
cold heparinized saline followed by 4% paraformaldehyde (PFA).
Brains were extracted and post-fixed overnight in 4% PFA,
cryoprotected in 30% sucrose until sinking, and embedded in
OCT on dry ice. 40 pm sections were cut using a Leica CM1850
cryostat and stored in cryoprotectant solution at —20°C until use.

Histology

For BrdU immunostaining, tissue sections were mounted on
plus-charged slides, dried at room temperature overnight,
and then immersed in 99-100°C 10 mM sodium citrate pH
6 for 15min (Tang et al, 2007). Slides were then placed in
sodium phosphate buffer (PB) and sections carefully removed
from the slides using a razor blade, allowing subsequent
staining steps to be performed free-floating. Sections were
then incubated in primary antibodies diluted in PB pH 7.4
plus 0.2% Tween 20 overnight at 4°C with gentle agitation.
After extensive washing in PB/0.2% Tween-20, tissue was
incubated in secondary antibody (conjugated to either biotin
or fluorophores) diluted in PB/0.2% Tween-20 for 2 h at room
temperature (see Table 2 for a list of antibodies and dilutions
used in this study). SIPR2 immunostaining was detected by
avidin-biotin peroxidase complex (VectaStain Elite ABC kit;
Vector Laboratories, Burlingame, CA) followed by AlexaFluor
568 tyramide signal amplification (Thermo Fisher T20949) per
manufacturer’s instructions. For fluorescence microscopy, nuclei
were counterstained with DAPI. For chromogenic detection,
sections incubated in biotinylated secondary antibody were
then incubated in avidin-biotin complex (Vector Laboratories)
for 1 h and reacted in nickel-enhanced 3,3'diaminobenzidine
(DAB, Sigma-Aldrich Co.). Fluorescent immunostained tissue

was mounted on gelatin-subbed slides and coverslipped
with Fluoromount G mounting media (Southern Biotech,
Birmingham, AL). DAB tissue was mounted on gelatin-subbed
slides, dehydrated in graded ethanols, cleared in xylene, and
coverslipped with Permount (Fisher Scientific, Waltham, MA).

Quantification
All quantification was performed by an investigator blind to
experimental group.

Cellular Proliferation

Six 40 pm sections per subject (n = 6 per group) encompassing
the dorsal DG (every 12th section beginning at the rostral
appearance of the dentate granule cell layer, between —2 and
—4.8 mm with respect to bregma; Paxinos and Watson, 1998)
were immunostained for BrdU and examined using bright-field
microscopy on a Leica DM4000B microscope with a 40x/0.75 NA
objective. Exhaustive cell counts were performed by manually
counting all BrdU+ nuclei in the subgranular zone (SGZ) and
basal layers of the granule cell layer (GCL) (within approximately
3 nuclei from the interface between the dentate granule cell layer
and polymorphic layer) of the dorsal hippocampus bilaterally.
Cell counts were multiplied by 12 to estimate the total number
of proliferating cells.

BrdU+ Cell Counts at 8 Weeks Post-stroke

Six 40 pm sections (every 12th section beginning at the rostral
appearance of the dentate granule cell layer; stroke/control
antibody: n = 5; stroke only and stroke/anti-Nogo-A antibody:
n = 8) were stained for BrdU, lightly counterstained with
toluidine blue to identify the GCL, mounted, and coverslipped.
BrdU+ nuclei within the dorsal DG GCL of each section
were exhaustively counted using a 40x/0.75NA objective and
multiplied by 12 to estimate the total number of BrdU+ cells.
Counts were then normalized to GCL volume using Cavalieri’s
principle (see below).

Measurement of GCL Volume

The toluidine blue-stained tissue sections used for measuring
total BrdU+ cells at 8 weeks post-stroke (6 sections total per
subject) were imaged using MBF Stereolnvestigator software.
The Cavalieri Estimator probe was applied to measure GCL area
and estimate the total volume of the GCL within the dorsal DG
encompassed by the six sections.

Quantification of Newborn Cell Phenotypes
A total of three 40 pm sections per subject (every 24th section
beginning at the rostral appearance of the GCL [bregma —2 mm]
and proceeding caudally) were stained for BrdU plus NeuN, Ibal,
or Sox2, counterstained with DAPI, and examined on a Leica SPE
confocal microscope using a 63x/1.3 NA oil immersion objective.
Due to the dense cellularity of the GCL and poor penetration
of the NeuN antibody that confounded co-expression analysis
in the middle of the tissue section, analysis of BrdU/NeuN co-
labeling was restricted to near the outer surfaces of the tissue
where NeuN expression was unambiguous. Approximately 50
cells per dentate gyrus per side were examined in each subject.
Workflow was as follows: BrdU-positive cells were identified by
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TABLE 2 | Antibodies used for immunofluorescence and immunohistochemistry.

Antibody Source Dilution
PRIMARY ANTIBODIES

Mouse IgG2a anti-BrdU Pierce MA3-071 [RRID: AB_10986341] 1:1000-5000
Rabbit anti-doublecortin (DCX) Cell Signaling 4604S [RRID: AB_10693771] 1:500
Goat anti-doublecortin (DCX) Santa Cruz SC-8066 [RRID: AB_2088494] 1:500
Rabbit anti-GFAP Dako Z0334 [RRID: AB_10013382] 1:1000
Mouse IgG1 anti-GFAP Chemicon MAB360 [AB-11212597] 1:1000
Rabbit anti-lbat Wako 019-19741 [RRID: AB_839503] 1:5000
Rat anti-myelin basic protein (MBP) Abcam Ab7349 [RRID: AB_305869] 1:100
Mouse IgG1 anti-NeuN Chemicon MAB377 [RRID: AB_2298772] 1:1000
Rabbit anti-NeuN Millipore ABN78 [RRID: AB_11211087] 1:1000
Rabbit anti-NgR1 Alomone Labs ANT-008 [RRID: AB_2040180] 1:250
Mouse IgG1 anti-Nogo-A mAb 11C7 produced from hybridoma cell line 0.25 ng/mL
Human anti-S1PR2 AbD Serotec custom antibody AbD14533.1 1:50
Rabbit anti-Sox2 Abcam Ab97959 [RRID: AB_10013822] 1:1000
SECONDARY ANTIBODIES

Goat anti-mouse (AlexaFluor 488) ThermoFisher A11001 [RRID: AB_10566289] 1:1000
Goat anti-mouse 1gG2a (AlexaFluor 488) ThermoFisher A21131 [RRID: AB_141618] 1:1000
Goat anti-mouse IgG2a (biotinylated) Jackson Immunoresearch 115-065-206 [RRID: AB_2338572] 1:1000
Donkey anti-mouse (rat serum protein adsorbed; biotinylated) Jackson Immunoresearch 715-065-151 [RRID: AB_2340785] 1:1000
Goat anti-mouse IgG1 (AlexaFluor 568) ThermoFisher A21124 [RRID: AB_141611] 1:1000
Donkey anti-mouse (rat serum protein adsorbed; DyLight 488) Jackson Immunoresearch 715-486-151 [RRID: AB_2572300] 1:200
Goat anti-rabbit (AlexaFluor 568) ThermoFisher A11036 [RRID: AB_143011] 1:1000
Goat anti-rabbit (AlexaFluor 647) ThermoFisher A21244 [RRID: AB_142672] 1:1000
Donkey anti-goat (AlexaFluor 488) ThermoFisher A11055 [RRID: AB_2534102] 1:1000
Goat anti-human (biotinylated) BioRad STAR126B [RRID: AB_961503] 1:500
Donkey anti-rat (AlexaFluor 594) ThermoFisher A21209 [RRID: AB_10562899] 1:500

first scanning the tissue with the appropriate excitation laser until
positive nuclei within the GCL were identified. Then a single
optical section was acquired with 1 Airy unit pinhole size, and
channels merged to identify (1) total BrdU+ cells, and (2) the
number of BrdU+ cells that were positive for either NeuN, Ibal,
or Sox2. When co-labeling was not clear from a single optical
section, z-stacks were acquired to disambiguate the labels.

Estimates of the total numbers of new neurons were calculated
by multiplying the total number of BrdU+- cells by the proportion
of BrdU+ cells expressing each marker.

Treatment Antibody Distribution and Fluorescence
Intensity
Infused treatment antibody was detected using either a
chromogen (DAB) or a fluorescent secondary antibody. For
chomogenic detection, sections were incubated in a biotinylated
anti-mouse IgG secondary antibody (rat serum protein adsorbed)
overnight at 4°C (1:1000 in sodium phosphate buffer plus
0.3% Triton X100), followed by incubation in avidin-biotin
peroxidase complex (Vector) and reaction in nickel-enhanced
DAB. For visualization of the reaction product, the staining
intensities of scanned tissue sections were then remapped in
Image] (Schindelin et al., 2012) using the “Fire” look up table.
For fluorescence intensity analysis, three tissue sections
through the dorsal DG (a 1 in 24 series) from an untreated,

7-day treated (3 subjects each from control antibody and anti-
Nogo-A groups) and 8 weeks post-stroke (3 subjects each from
control antibody and anti-Nogo-A groups) were washed in
sodium phosphate buffer (PB) and incubated in DyLight-488-
conjugated donkey anti-mouse (rat serum protein adsorbed)
secondary antibody (Jackson Immunoresearch, West Grove, PA;
1:200 in PB/0.3% Triton X100) for 90 min at room temperature.
Sections were washed in PB and then mounted on gelatin-subbed
slides and coverslipped in Fluoromount G. Z stacks through the
entire thickness of each tissue section were acquired using a 10x
objective on a Leica SPE confocal microscope at equivalent parts
of the DG in each tissue section. All image acquisition settings
were kept constant. Image stacks were imported into Image]
and compressed to maximum intensity Z projections. The mean
gray value of the tissue was then measured in each section using
Image] and averaged to yield a single intensity value for each
hippocampus per subject. The tissue from the untreated (stroke-
only) subject was used to determine background fluorescence,
which is a combination of tissue autofluorescence and any
potential non-specific binding of the fluorescent anti-mouse
secondary antibody.

Lesion Analysis
For each subject, a 1 in 24 tissue section series throughout each
brain (excluding olfactory bulbs and cerebellum) was mounted
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on gelatin-subbed slides and stained with toluidine blue. Slides
were then scanned at high resolution using a flatbed scanner
and imported into Adobe Photoshop CS3, where the number of
pixels in the intact and lesioned hemispheres was measured. To
compute a lesion size as a percentage of the intact hemisphere, the
total number of pixels in the lesioned hemisphere was subtracted
from the total number of pixels in the intact hemisphere, and
divided by the total intact hemisphere pixel number. This method
therefore calculates the size of the missing, lesioned tissue.

Statistics

Statistical analysis was performed using Minitab 17 and SAS
9.4 software. When appropriate, data were analyzed using one-
way ANOVA, equal-variance t-tests or paired t-tests; when
assumptions were not supported, unequal-variance ANOVA or
t-tests or non-parametric tests (Wilcoxon rank-sum or Kruskal-
Wallis) were used. Details regarding significance testing for each
experiment can be found in Supplementary Table 1.

RESULTS

Nogo-A Is Expressed by Immature Neurons
in the Normal Adult Dentate Gyrus (DG)

To determine whether neural precursor cells in the subgranular
zone and granule cell layer (GCL) of the DG may be potential
direct cellular targets of anti-Nogo-A immunotherapy, we
performed double-label immunofluorescent staining using the
Nogo-A-specific antibody 11C7 and antibodies to cell type-
specific markers (Figures 1, 2). Strong Nogo-A expression was
found in immature (doublecortin [DCX]-positive) neurons in
various stages of development. Both radially-oriented (more
mature) cells with more complex arborizations (Figure 2A)
and tangentially-oriented (transitioning, less mature progenitors)
(Figure 2B; Kempermann et al., 2004) were positive for Nogo-
A. Nogo-A expression was especially enriched in the apical
dendrites of radially-oriented DCX+ cells.

*Q*O*Y*Y

Type | cell Typellicell Typelllcell Immature Mature
(neural (intermediate  (intermediate neuron granule cell
stem cell) progenitor) progenitor)

[Soxz
[GrarT pox

FIGURE 1 | Simplified diagram of cell lineage progression and
stage-specific expression of markers (Sox2, GFAP, DCX, NeuN)
referenced in this study.

In contrast, Nogo-A expression by mature dentate granule
cells within the GCL was not appreciable by immunofluorescence
(Figrue 2C), consistent with a previous report (Huber et al.,
2002), suggesting transient expression of Nogo-A during the
development of adult-born dentate granule cells. Strong Nogo-
A expression was observed in large, pyramidal NeuN+ cells
at the GCL/polymorphic layer interface (putative basket cells)
(Figure 2C, arrowhead), while Nogo-A was not detectable in
GFAP+ putative stem cells or astrocytes of the subgranular zone
(Figure 2D).

A recently identified receptor for the Nogo-A A20 domain,
sphingosine-1-phosphate receptor 2 (Kempf et al., 2014), was
found to be widely expressed in the DG GCL (as reported by
Akahoshi et al., 2011), including in the cell bodies of DCX+
cells (Figure 2E, top and bottom panels). SIPR2 staining typically
did not occupy the entirety of the DCX+ cell bodies, possibly
suggesting targeting to distinct subcellular domains. Mature
NeuN+ granule cell bodies were likewise positive for SIPR2
(Figure 2E, bottom panel; arrowheads: additional DCX/S1PR2
co-expression). GFAP+/Sox2+ cells located in the subgranular
zone (putative stem cells) appeared to be weakly S1IPR2 positive
relative to the stronger SIPR2 expression seen in mature dentate
granule cells (Figure 2F).

Lastly, we examined the expression of the Nogo-66 receptor
NgR1 in hippocampal neural precursor cells. Throughout the
dentate GCL and SGZ, NgR1 expression was observed primarily
in a punctate pattern, with more distinctly labeled cell bodies less
frequently seen. We found no clear evidence of NgR1 expression
by either DCX+ immature neurons or GFAP+ astrocytes or stem
cells in the SGZ (Figures 2G,H).

Lesion Size Is Not Affected by Antibody

Treatment

As the size of the stroke lesion may affect neurogenesis, we
measured lesion sizes at both 21 and 56 days post-stroke. Stroke
lesions in all experimental groups were unilateral and similar
in location, encompassing the dorsolateral cortex and extending
from primary motor cortex rostrally through auditory and visual
cortices caudally (Figure 3A). Little to no infarction of the
underlying white matter or subcortical structures was evident,
consistent with previous observations using this model (Gillani
et al.,, 2010). At all-time points, the hippocampus was grossly
intact upon brain cryosectioning, but occasionally appeared
distorted on the side ipsilateral to the stroke lesion, possibly due
to distention of the cerebral ventricles. Lesion sizes were not
different among the three treatment groups at either time point
assessed (Figure 3B).

Infused Treatment Antibody Penetrates the

Hippocampus

Treatment antibodies penetrated into the hippocampal
parenchyma as assessed by immunostaining for mouse IgG
after 3 days of treatment (Papadopoulos et al., 2002; Weinmann
et al., 2006; Tsai et al., 2007; Figures 4A,B). Treatment antibody
was detected in the hippocampus after 3, 7, and 14 days of
treatment. Five weeks after pump removal (7 weeks after
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FIGURE 2 | Nogo-A is expressed by immature neurons in the adult dentate gyrus. (A) Nogo-A is expressed in the processes and somata of immature neurons
(arrowheads), which are also positive for doublecortin (DCX). Scale bar: 25 wm. (B) Horizontally-oriented DCX+/Nogo-A+ neuroblast. Scale bar: 25 um. (C) Nogo-A
expression is not appreciable in NeuN+ mature granule cells, the majority of NeuN+- cells in the GCL. However, putative basket cells (arrow) label strongly for Nogo-A.
Scale bar: 25 pm. (D) Nogo-A immunoreactivity is not detectable in GFAP+ stem cells or astrocytes. Scale bar: 50 um. (E) S1PR2 is broadly expressed in the GCL,
including DCX+ immature neurons and NeuN+ mature neurons. Scale bar: 20 pm. (F) S1PR2 expression by GFAP+/Sox2+ neural stem cells in the SGZ. Scale bar:
25 pm. (G) Lack of NgR1 expression by DCX+ immature neurons. Scale bars: 25 um; 10 um (inset). (H) Lack of NgR1 expression by GFAP+ neural stem cells in the
SGZ. Scale bar: 25 wm. ML, molecular layer; GCL, granule cell layer; PL, polymorphic layer.

treatment initiation), both control and anti-Nogo-A antibodies
appeared to have been substantially cleared, and were no longer
detectable by immunofluorescence above background levels in
the DG (Figure 4C).

Anti-Nogo-A Treatment Does Not Alter
Cellular Proliferation in the Subgranular
Zone (SGZ2)

Cellular proliferation was measured after 14 days of treatment
(i.e., at 21 days post-stroke) by injecting rats with a single
dose of BrdU and euthanizing 2 h later (Figures 5A,B). The
number of proliferating cells in anti-Nogo-A-treated subjects was

not significantly different vs. stroke-only or control antibody-
treated controls in either the ipsilesional or contralesional SGZ
(Figure 5C; Table 3).

Both Control Antibody and Anti-Nogo-A
Antibody Treatment Stimulate the
Accumulation of New
Microglia/Macrophages, but Not New
Neurons, in the Dentate Granule Cell Layer
(GCL)

To analyze the phenotypes of newborn cells in the GCL, rats
were administered multiple injections of BrdU beginning 7
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FIGURE 3 | Lesion size is not affected by antibody treatment. (A)
Representative images of lesion (arrows) location and size from each
experimental group at 8 weeks post-stroke. (B) Lesion size did not differ
among groups at either 21 or 56 days post-stroke.
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FIGURE 4 | Infused treatment antibody penetrates hippocampus. (A)
Low magnification images of anti-mouse IgG immunostaining in a stroke-only,
untreated subject (left; negative control) and an anti-Nogo-A-treated subject
after 3 days of treatment (right). Staining intensities have been remapped,
where brighter/hotter colors represent increased signal intensity. Abundant
treatment antibody can be seen in the hippocampus (arrows). (B)
Immunofluorescence staining for mouse IgG after 3 days of antibody infusion
shows diffuse, uniform penetration of anti-Nogo-A and control antibodies in
the dentate gyrus (DG), whereas only background fluorescence is evident in
untreated MCAO rats. Scale bar: 200 um. (C) Quantification of mean
fluorescence intensity shows expected elevated signal intensity after 7 days of
treatment, whereas at 5 weeks after treatment cessation, the signal is not
detectable above background fluorescence by direct immunofluorescence.
Contra., contralesional; Ipsi., ipsilesional; DG, Dentate gyrus.
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FIGURE 5 | Cellular proliferation in the subgranular zone and basal
granule cell layer is not altered by anti-Nogo-A treatment after stroke.
(A) Overview of BrdU injection strategy to measure cellular proliferation. (B)
Representative image of BrdU+ nuclei (arrowheads) in the ipsilesional DG of a
stroke-only subject at 21 days post-stroke. Scale bar: 500 wm. (C) Total
numbers of BrdU+ nuclei in the SGZ and basal GCL of the ipsilesional (left)
and contralesional (right) DG. Error bars indicate SEM.

TABLE 3 | Cellular proliferation in the subgranular zone after stroke and
anti-Nogo-A immunotherapy.

Group Ipsilesional DG Contralesional DG
Stroke only (n = 6) 447 + 65 522 £ 53
Stroke/Control Ab (n = 6) 622 + 55 588 +£ 75
Stroke/Anti-Nogo-A Ab (n = 6) 596 4+ 100 510 + 84

Data are presented as mean + SEM (cells/SGZ).

days after stroke and euthanized for analysis 7 weeks thereafter
(Figure 6A). Stroke itself led to a significant increase in the total
number of BrdU-positive cells (i.e., cells that had proliferated
between days 7 and 11 post-stroke and survived approximately
6-7 weeks thereafter) in the ipsilesional vs. the contralesional
GCL (Figures 6B,C; Supplementary Table 2). In both control
antibody and anti-Nogo-A treatment groups, more BrdU+ cells
were found in the GCL compared to the stroke-only group,
but were also more generally distributed throughout the DG
(Figures 6B,C). As in the stroke-only group, both antibody-
treated groups showed higher numbers of BrdU+ cells in
the ipsilesional vs. contralesional GCL (Figure 6C). However,
the proportion of BrdU+ cells co-labeled for NeuN (i.e., new
neurons) in the GCL was lower in antibody-treated groups
(Figure 6F; Supplementary Table 3), such that the total numbers
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FIGURE 6 | Both anti-Nogo-A and control antibody treatment induce long-lasting accumulation of new microglia/macrophages without altering
neurogenesis. (A) Overview of BrdU injection strategy to measure the differentiation and survival of proliferating cells. (B) Representative images of BrdU
immunoreactivity in the ipsilesional dentate gyrus at 8 weeks post-stroke. Newborn cells are evident throughout the DG in both control and anti-Nogo-A antibody
groups. The granule cell layer, where cells were counted, is outlined in red. (C) Total BrdU+ nuclei in the contralesional (black bars) and ipsilesional (white bars) GCLs.
kp < 0.05, ipsilesional vs. contralesional DG (within treatment group); @p < 0.05, vs. stroke-only contralesional DG; #p < 0.05, vs. stroke-only ipsilesional DG;
(Continued)
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FIGURE 6 | Continued

p < 0.05, vs. stroke/anti-Nogo-A contralesional GCL. (D) The volume of the GCL in which BrdU+ nuclei were counted (in panel “C”) was not significantly different
among groups. (E) Representative image of newborn neurons (BrdU-+/NeuN+) and microglia/macrophages (BrdU+/Iba1+) in the GCL. Scale bar: 10 um. (F)
Proportions of newborn cells of each phenotype (neuron [NeuN-+], microglia/macrophage [Iba1+], neural stem/progenitor cell or astrocyte [Sox2+]). ©p < 0.05, vs.
stroke-only contralesional DG NeuN+ proportion; #p < 0.05, vs. stroke-only ipsilesional DG NeuN+ proportion. (G) Total number of new neurons in the GCL. *p <
0.05, ipsilesional vs. contralesional DG (within treatment group). (H) Total number of new Iba1+ microglia/macrophages in the GCL. @p < 0.05, vs. stroke-only
contralesional DG; #p < 0.05, vs. stroke-only ipsilesional DG. All error bars indicate SEM.

of newborn neurons was not statistically different among groups
(Figure 6G; Table 4).

The total volume of the GCL in the area of cell counting
in each subject was estimated using Cavalieri’s principle. No
significant differences were found either among groups or within
groups between the ipsilesional and contralesional GCLs when
compared at 8 weeks post-stroke (Figure 6D).

Nearly all BrdU+4/NeuN- cells in both control antibody
and anti-Nogo-A treatment groups were positive for Ibal
(Figures 6E,H; Supplementary Table 4), identifying these cells
as microglia/macrophages. Resident microglia were found in
the DG of untreated rats, as previously reported (reviewed by
Gemma and Bachstetter, 2013), but only rarely had incorporated
BrdU.

At 8 weeks post-stroke, only a small percentage
(approximately 2-5%) of BrdU+- cells in each group was positive
for Sox2, which labels neural stem cells, early intermediate
progenitors, and mature astrocytes in the adult rat brain
(Komitova and Eriksson, 2004; Yu et al., 2014).

DISCUSSION

Anti-Nogo-A immunotherapy improves spatial memory after
stroke in aged rats, but a cellular mechanism of efficacy has not
been identified (Gillani et al., 2010). This study was conducted to
determine whether Nogo-A neutralization enhances post-stroke
neurogenesis in the dentate gyrus.

We first performed multiple-label immunofluorecent staining
to determine whether Nogo-A is expressed by neural precursor
cells in the adult DG, thereby identifying possible direct
treatment targets. Nogo-A was found to be expressed by
doublecortin (DCX)-positive immature neurons, but not stem
cells or mature dentate granule cells. To our knowledge, this
is the first report of Nogo-A expression in immature neurons
of the adult dentate gyrus. This transient expression suggests a
stage-specific role of Nogo-A expression in adult hippocampal
neuronal development, similar to what has been reported in
the adult subventricular zone (Rolando et al., 2012) and during
embryonic and early post-natal development (Huber et al., 2002;
Aloy et al., 2007; Mingorance-Le Meur et al., 2007; Mathis et al.,
2010; Schwab, 2010). Notably, per many of these reports, Nogo-
A is expressed by migratory neurons. While we do not directly
address the normal physiological role of cell surface and/or
intracellular Nogo-A in DG neurogenesis here, we may infer
from these previous studies that Nogo-A could play a role in
migration of neuronal precursors in the adult DG (Deng et al,,
2010; Sun et al, 2015) or in the morphogenesis of new DG
neurons (Petrinovic et al., 2013; Kurowska et al., 2014).

TABLE 4 | Total numbers of newborn neurons in the dentate granule cell
layer (GCL) at 8 weeks post-stroke.

Group Ipsilesional DG Contralesional DG
Stroke-only (n = 8) 8604 + 544 5375 + 434
Stroke/Control Ab (n = 5) 9884 + 1250 6468 + 383
Stroke/Anti-Nogo-A Ab (n = 8) 9822 + 1463 6636 + 849

Data are presented as mean + SEM (new neurons/mm® GCL).

Expression of the recently identified receptor for the
Nogo-A A20 domain, S1PR2, was broadly observed in the
dentate granule cell layer, including by immature (DCX+) and
mature dentate granule cells. Qualitatively, staining appeared to
be stronger in the mature granule cells. Therefore, it is possible
that upregulation of SIPR2 begins at the immature neuron stage
and persists throughout maturation. Furthermore, we found
evidence of S1PR2 expression in GFAP+/Sox2+ cells in the SGZ
(putative neural stem cells).

In contrast, NgR1 expression was not clearly seen in neural
precursors in the SGZ/DG. We observed punctate NgR1 labeling
throughout the GCL, possibly indicative of synaptic localization,
as NgR1 has been localized both pre- and post-synaptically (Lee
et al., 2008). Cell bodies labeled distinctly for NgR1 were seen
infrequently in the GCL, but these cells did not co-express either
DCX or GFAP, suggesting against NgR1 expression by immature
neurons or neural stem cells.

Examining treatment antibody distribution, we showed
that intracerebroventricularly infused antibody entered
the hippocampal parenchyma, but was undetectable by
immunofluorescence 5 weeks after cessation of treatment.
Therefore, direct exposure of target tissue to infused antibody is
transient. As we did not analyze antibody distribution at earlier
time points after treatment cessation, we cannot conclude that
complete antibody clearance requires the full 5 weeks. However,
our findings are in line with a previous report noting a reduction
in anti-Nogo-A antibody in the brain parenchyma just 1 week
after the end of treatment (Marklund et al., 2007). These results
raise the possibility that rapid clearance of the antibody from
the brain may limit the full potential of anti-Nogo-A antibodies
to promote functional recovery, and that a longer treatment
duration may be further clinically beneficial.

Despite Nogo-A expression by DCX+ immature neurons
(as seen in fixed tissue sections; Figure 2A), we were unable
to discern by immunofluorescent histology whether the infused
anti-Nogo-A treatment antibody had bound to this cell type
in vivo. Therefore, it is unclear whether Nogo-A is expressed
at the surface of immature neurons in the DG. While
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Nogo-A is expressed both intracellularly and at the surface
of several cell types, including oligodendrocytes and dorsal
root ganglion neurons (Caroni and Schwab, 1988; Dodd et al.,
2005), Nogo-A was found to be intracellular in a human
dopaminergic neuron line (Kurowska et al., 2014). Therefore,
subcellular localization of Nogo-A may be cell type-specific.
Regardless, intracellular localization of Nogo-A in DCX+
immature neurons would not preclude an indirect effect of anti-
Nogo-A treatment antibody on their function. For example,
antibody neutralization of surface Nogo-A could block Nogo-
A signaling to immature neurons from neighboring cells or
myelin.

After inducing a large cortical stroke followed 1 week later
by 2 weeks of antibody treatment, we measured the number of
proliferating cells in the SGZ. Anti-Nogo-A treatment did not
significantly alter the number of proliferating cells in either the
ipsilesional or contralesional subgranular zone (SGZ) and basal
granule cell layer (GCL) of the dorsal DG. Furthermore, we found
no evidence of earlier, transient effects after either 3 or 7 days
of treatment (data not shown), suggesting that neural precursor
proliferation is unaffected by surface Nogo-A neutralization.

We then investigated the types of cells that were produced
after stroke and survived long-term. We found that the
proportion of long-lived newborn cells that were positive for
NeuN (i.e., new neurons) was approximately 86-90% in the
stroke-only group, similar to findings in a previous report
(Kluska et al., 2005). Given the increase in total BrdU+ cells in
the ipsilesional GCL, this indicates a significant increase in the
number of new neurons in the ipsilesional vs. contralesional DG.
This result is consistent with reports of increased hippocampal
neurogenesis in numerous animal models of stroke, including
transient global ischemia (Liu et al, 1998; Kee et al.,, 2001),
transient middle cerebral artery occlusion (Jin et al., 2001; Zhu
etal., 2003, 2004), photothrombotic cortical stroke (Kluska et al.,
2005), and distal middle cerebral artery occlusion (Matsumori
et al.,, 2006). In contrast, only a small number of BrdU+ cells at 8
weeks post-stroke were Sox2-positive, indicating relatively scant
production of new, long-lived neural stem cells and astrocytes.

Both control antibody- and anti-Nogo-A-treated groups
exhibited robust accumulation of new Ibal-positive
microglia/macrophages in the GCL. In contrast, newborn
microglia/macrophages were found very rarely in the GCL of
stroke-only subjects. Several potential mechanisms behind the
observed accumulation of new microglia/macrophages may be
considered. First, the absence of differences in lesion size between
treated and untreated groups argues against a direct effect of the
lesion itself. Cannulae for antibody delivery are implanted in
the lateral cerebral ventricle, and may in rare cases puncture the
hippocampal fimbria. However, the fact that BrdU+ cells were
generally elevated bilaterally and more uniformly distributed,
rather than clustered around a cannula track, makes it unlikely
that the observed response was a reaction to mechanical injury.
On the other hand, infusion of mouse antibody into the rat
CNS could potentially induce a microglial/macrophage response
through either recognition of the antibody as a foreign protein,
or binding and activation of microglia/macrophage-expressed Fc
receptors. Antibody immunogenicity in human patients should

be reduced by the use of human antibodies (Nelson et al., 2010),
which are currently in use in anti-Nogo-A clinical trials for
spinal cord injury and have so far shown an encouraging safety
profile (Zorner and Schwab, 2010). While to our knowledge
direct demonstration of rat FcR-mouse IgG binding has not
been demonstrated, cross-species FcR binding has been reported
between more phylogenetically distant species (Lubeck et al.,
1985), and FcR cross linking has been shown to stimulate
macrophage proliferation (Luo et al., 2010).

The mechanism responsible for improved spatial memory
after stroke and anti-Nogo-A treatment is not yet fully
understood. While our previous work did not find an effect of
anti-Nogo-A treatment on dendritic complexity in CA1, CA3, or
DG GCL neurons, a subsequent study noted dendritic alterations
in these subfields after acute treatment of hippocampal slice
cultures with anti-Nogo-A antibody (Zagrebelsky et al., 2010).
These changes were evident after just 4 days of antibody
treatment, a much shorter time course than in our previous
study, in which histological analysis was performed 10 weeks after
the end of treatment. Therefore, it is possible that in vivo anti-
Nogo-A antibody treatment after stroke leads to rapid changes
in dendritic growth that may be pruned back over time (Andres
etal., 2011).

Intriguingly, several studies have shown that Nogo-A and its
receptors NgR1 and S1PR2 can regulate cognitive function and
synaptic plasticity. Transgenic Nogo-A knockdown rats exhibit
subtle spatial memory deficits in certain tasks (Petrasek et al.,
2014a,b), while mice overexpressing NgR1 show impaired spatial
memory performance in the Morris water maze (Karlsson et al.,
2016), suggesting that the proper balance of Nogo-A signaling,
including during development, is necessary for optimal cognitive
function. These effects may also depend on whether Nogo-A
signaling perturbation is chronic (as in the case of Nogo-A- or
NgR1-transgenic animals), or acute (after neutralizing antibody
or blocking peptide treatment). For example, CA3-CA1l long-
term potentiation (LTP) was unaffected by null mutation of
NgR1 (in the absence of FGF2) (Lee et al, 2008), whereas
acute application of an NgR1 blocking antibody enhanced LTP
(Delekate et al., 2011). However, both Nogo-A knockdown rats
(Tews et al., 2013) and acute hippocampal slices treated with
anti-Nogo-A antibodies (Delekate et al, 2011; Kellner et al.,
2016) exhibited enhanced CA3-CA1l LTP, suggesting different
roles of the ligand (Nogo-A) and receptor (NgR1) in the proper
development and function of hippocampal circuitry. Given these
findings, it is possible that Nogo-A neutralization improves
spatial memory after stroke through a mechanism involving
enhanced synaptic plasticity.

Lastly, other properties related to newborn neuron function
that we did not examine, including connectivity, synaptogenesis,
or morphogenesis, rather than the total number of newborn
neurons, may be altered by Nogo-A neutralization. The
Nogo receptor NgR1 negatively regulates synaptogenesis and
dendritic complexity during hippocampal development (Wills
et al., 2012), raising the possibility of a similar role in adult
hippocampal neurogenesis. Future studies examining these
changes in adult-born neurons after anti-Nogo-A treatment may
be enlightening.
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In conclusion, our results suggest that anti-Nogo-A
immunotherapy does not significantly alter hippocampal
neurogenesis after focal cortical stroke in adult rats. We
cannot rule out that treatment may induce differences in
neurogenesis specifically in aged rats, which were used in our
previous study showing efficacy of anti-Nogo-A treatment in
improving spatial memory after stroke. However, the present
results suggest that different mechanisms outside of enhanced
neurogenesis are more likely to underlie this recovery. These
results add to our understanding of the scope and limitations
of anti-Nogo-A immunotherapy, which are vitally important as
anti-Nogo-A antibodies continue to be used in human clinical
trials.
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