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In this paper, we present an alternative approach to perform spike sorting of complex

brain signals based on spiking neural networks (SNN). The proposed architecture

is suitable for hardware implementation by using resistive random access memory

(RRAM) technology for the implementation of synapses whose low latency (<1µs)

enables real-time spike sorting. This offers promising advantages to conventional spike

sorting techniques for brain-computer interfaces (BCI) and neural prosthesis applications.

Moreover, the ultra-low power consumption of the RRAM synapses of the spiking neural

network (nW range) may enable the design of autonomous implantable devices for

rehabilitation purposes. We demonstrate an original methodology to use Oxide based

RRAM (OxRAM) as easy to program and low energy (<75 pJ) synapses. Synaptic weights

are modulated through the application of an online learning strategy inspired by biological

Spike Timing Dependent Plasticity. Real spiking data have been recorded both intra- and

extracellularly from an in-vitro preparation of the Crayfish sensory-motor system and used

for validation of the proposed OxRAM based SNN. This artificial SNN is able to identify,

learn, recognize and distinguish between different spike shapes in the input signal with

a recognition rate about 90% without any supervision.

Keywords: brain-computer interfaces, neuromorphic computing, OxRAM, resistive RAM (RRAM) synapse, spike

sorting, spiking neural network, spike timing-dependent plasticity

1. INTRODUCTION

Probing motor cortical activity has recently received increased attention for the exploitation of
human brain signals within Brain-Computer Interfaces (BCI). BCI’s offer promising rehabilitation
approaches to improve life quality of patients suffering from neurodegenerative diseases or
paralysis (Hochberg et al., 2006, 2012). This requires the ability to precisely collect and analyse
brain signals, e.g., triggered when a person intends to perform movements. The effectiveness
and accuracy of BCI systems scale with the number of simultaneously recorded populations
of neurons (see Figure 1A) (Wessberg et al., 2000; Ifft et al., 2013). Advanced microelectrode
array (MEA) technologies (Spira and Hai, 2013) are unique and increasingly powerful tools to
explore the central nervous system in detail. Nowadays, they consist of hundreds or thousands
of microelectrodes that allow recording the activity of large neural ensembles and especially spikes
(action potentials) generated by the surrounding single cells (see Figure 1B). These technologies
generate massive data due to sampling rates of typically 20–40 kHz that have to be processed
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FIGURE 1 | (A) Accuracy of BCI or neural prosthesis applications as a function of the number of recorded neurons. Adapted from Wessberg et al. (2000) and Ifft et al.

(2013). (B) Example of extracellular electrical signals recorded from n channels (microelectrodes) and zoom-in showing three distinct spike shapes (A, B, and C)

corresponding to three different neurons.

for further use and/or wireless transmission (Yin et al., 2014).
Spike sorting is a key technique to drastically reduce the amount
of data by extracting relevant information as how many cells are
active and the different instants at which they fire (Abeles and
Goldstein, 1977). State-of-the-art spike sorting methodologies
are mainly based on spike shape template matching and
statistical clustering techniques (Lewicki, 1998; Rey et al., 2015),
where the electrical waveform is analyzed against a temporally
sliding analysis window and a spike is identified whenever the
waveform is found to match one of the previously generated
templates or certain set of parameters within some tolerance.
The most commonly used spike sorting approach consists of
spike detection [mainly by thresholding (Tanskanen et al., 2015)],
feature extraction (typically Principal Components Analysis,
PCA) and clustering (e.g., k-means). Algorithms of this type have
been implemented in commercial software (Bestel et al., 2012),
however, they present several limitations, as they often need
user supervision (manual tuning of the threshold parameters,
choice of features to be extracted), they can fail to recognize
overlapping spikes and moreover they are computationally
expensive. Therefore, most of the neural signal processing is
performed via offline software on desktop computers. The offline
processing is not optimal because it does not allow for real-time
processing in closed-loop applications [e.g., in BCI (Hochberg
et al., 2006, 2012)] or real-time data compression prior to wireless
transmission with reasonable power consumption in case of high
channel counts. It was shown in Wessberg et al. (2000) and Ifft
et al. (2013) that BCI performances are enhanced when recording
from large numbers of neurons by means of large MEA’s, i.e.,
numerous signals have to be stored and decoded resulting in
exploding data rates and computational efforts, respectively.
Furthermore, the offline processing using computers or powerful
GPU’s is an issue for the design of power-efficient portable BCI
solutions. New spike sorting approaches are required to address
the described drawbacks of state-of-the-art techniques.

In this paper, we explore the design of an RRAM based
neuromorphic system targeting to perform real-time

spike sorting with nanowatt-level power consumption
and reasonable spike sorting performances. Brain-inspired
computing imitations by means of neuromorphic network
architectures have demonstrated to be superior candidates for
the detection and prediction of patterns occuring in complex
data with respect to conventional von-Neumann architectures
(Ananthanarayanan et al., 2009; Merolla et al., 2014; Prezioso
et al., 2015). Furthermore, emerging resistive RAM (RRAM)
memories offer the possibility to build complex brain-like
cognitive computing systems that are compact and consume
low power. Several concepts for synaptic implementations
based on RRAM have been proposed (Wu et al., 2012; Kuzum
et al., 2013). Oxide based RRAM (OxRAM) technology is
among the most promising candidates for next generation Non
Volatile Memories (NVM) thanks to its low (sub-µA) operation
currents (Goux et al., 2012), highly scalable lateral dimensions
(Govoreanu and Kar, 2011), low cost production, and back-end-
of-line (BEOL) process compatibility. While OxRAM in typical
NVM applications is operated using switching currents higher
than 50 µA for reliability reasons, we have analyzed the OxRAM
device behavior in this paper for switching currents as low as
1 µA. Switching and conduction properties are investigated
in the perspective of implementation into potential artificial
synapses for neuromorphic systems.

This paper is structured as follows. Section 2 introduces
the biological data used in this paper illustrating the spike
sorting problem. Section 3 describes the architecture of the
SNN, followed by the electrical characterization of OxRAM
and its implementation into an artificial synapse in Sections 4
and 5, respectively. Section 6 presents the performance of the
spike sorting application and finally, Section 7 summarizes our
findings.

2. BIOLOGICAL DATA

In order to illustrate the validity of the proposed spike
sorting methodology, we measured the extracellular activity
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from in-vitro Crayfish nerves recorded simultaneously with
intracellular data of one motor or sensory neuron of the
T5 ganglion (see Figure 2A) (Cattaert and Manira, 1999;
Cattaert et al., 2010). In these data, the extracellular signal (ES)
contains two different spike shapes (labeled as Spike A and B in
Figure 2B) corresponding to two different neurons. The spikes
simultaneously observed in the intracellular signal (IS) correlate
with the activity of Spike A in the ES. Therefore, the IS activity
can be used as the ground truth to assess the spike sorting
capability of our system for the detection of Spike A in the ES
data. The entire data set duration comprises 681 s and is called
CF1 subsequently.

3. SPIKING NEURAL NETWORK (SNN)
ARCHITECTURE FOR SPIKE SORTING

We assume that different spike shapes observed in the
extracellular signal exhibits distinct representations in the time-
frequency domain as shown for example in Figure 3 for
“Spike A” and “Spike B” which can serve as finger prints for
the identification of these spike shapes. By this approach, it
is possible to trace the activity of single neurons. Figure 4

shows the topological view of the two-layer SNN architecture
(implemented in the event-driven simulator “Xnet”(Bichler et al.,
2013) designed to extract, learn, and recognize different spike
shapes from biological extracellular signals. The topmost layer
above the SNN represents the frequency band-pass filtering used
to convert the extracellular recording into a useful input for
the SNN. Thus, the normalized continuous ES is encoded by
32 frequency band-pass filters whereas their center frequencies
are gradually increasing with the filter number. The 32 filtered
signals are then full-wave rectified and presented to the SNN
input layer of 32 neurons where the analog continuous signals
are converted into spikes which are then propagated along the
synapses to the SNN output layer of 5 neurons. The neurons
of both layers are described by the Leaky Integrate Fire (LIF)
model (Gerstner and Kistler, 2002) and they are fully connected
by 32 × 5 excitatory synapses, i.e., every input neuron has a

synaptic connection with every output neuron. The firing event
of an output neuron indicates that the spike inspected in the input
signal (Spike A or B in the example of Figure 3) belongs to the
specific class corresponding to this output neuron.

The parameters for the band-pass filters and input neurons
are tuned separately from the parameters of the output neurons.
First, the order and the bandwidth of the filters have to be
defined. Note, that spikes in the recorded extracellular signal
have a characteristic duration of 1–2 ms and multiple spikes can
occur within few tens of milliseconds. Hence, the filter signals
must allow to resolve and distinguish those different spike signals
sufficiently. Moreover, our spike sorting approach aims at real-
time application in BCI which requires minimized delay times
between input (spike event in the extracellular signal) and output
(corresponding output neuron of SNN spikes). To address this
need, a low filter order (≤3) is required in order to have filter
responses of less than a few ms. Filter bandwidths should be
narrow to achieve a reasonable frequency resolution, however,
the temporal resolution degrades (longer filter response) as the
filter bandwidth is reduced. Thus, a trade-off between frequency
and temporal resolution has to be found. Bandwidths of around
60Hz and 2nd order Butterworth filters offer a good compromise
for our application. The frequency spectrum of spikes is usually
invariant and does not exceed 3000Hz (Rey et al., 2015; Kellis
et al., 2016). In this work, we defined a frequency range of

100–2000 Hz for the signal analysis which allows to exclude low
frequent background signals (below 100 Hz). Finally, the number
of filters depends on the previously defined filter bandwidth
and on the frequency range (100–2000 Hz) to be analyzed. It is

chosen such that the entire frequency range is covered without

introducing excessive filter redundancy among the adjacent
filters. We have used 32 band-pass filters which are distributed
on a linear range between 100 and 2000 Hz. This filter bank is
independent of the specific dataset chosen for this work and
can be used on different spiking neural data as demonstrated in
Section 6.

By using the band-pass filter approach to encode spiking data,

the SNN does receive strong input signals if a spike is observed
in the input data whereas rather low-frequency signals are not

FIGURE 2 | (A) Illustration of the experiment used to obtain real biological data. The crayfish is dissected and two electrodes are used in-vitro, one intracellular

electrode inside a motor neuron in the T5 ganglion and one extracellular positioned against a depressor nerve (“Dep”). (B) The extracellular signal (ES, short sequence

shown) contains two different spike shapes, labeled as Spike A, B. The intracellular signal (IS) contains spiking events matching only Spike A of the ES.
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FIGURE 3 | Spike sorting paradigm based on continuous time-frequency decomposition of the analog extracellular signal (ES). Different spike shapes

(here Spike A and B) exhibit distinct patterns in the spectrogram. This “finger print” is used for spike shape recognition.

FIGURE 4 | Functional schematic of spike sorting system based on a Spiking Neural Network. The extracellular signal (ES) is fed through 32 frequency

band-pass filters which are connected one-to-one to the input layer of the SNN. Synapses are based on OxRAM devices. Output neurons are interconnected by

inhibitory synapses to feature the winner-take-all principle which allows them to become selective to different input spikes shapes.

able to excite the network sufficiently. Thus, no dedicatedmethod
to remove low frequent noise is required and spike detection
is inherently implemented. As shown in Figure 4, the number
of input neurons corresponds to the number of filters. The
corresponding LIF parameters are manually tuned using the two
spike waveforms of the biological dataset described in Section 2.
The parameters are tuned in such a way that the 1st layer’s activity
represents the spectral magnitude of the signal throughout the
tested frequency range (100Hz–2000Hz), i.e., the stronger the
energy in a specific frequency band the more input spikes are
generated. Thus, the input neurons create characteristic patterns
for different spike waveforms.

The number of output neurons determines the maximum
number of spike classes that the SNN is able to classify. A
sufficiently high number of output neurons has to be chosen so
that every spike shape contained in the extracellular data can
be assigned to one output neuron, i.e., the number of output
neurons has to be at least as high as the (a priori unknown)
number of spike shapes in the extracellular signal. Here, our
dataset of Section 2 contains two spike classes which need
to be classified. However, the number of classes is typically
not known in this kind of application, therefore we used five

output neurons to verify that our network is able to detect the
number of classes independently. The goal is that every spike
shape will be learned and recognized by one of the output
neurons whereas non-selective neurons remain silent, i.e., the
number of spiking output neurons indicates the number of spike
classes. To avoid classification redundancy, lateral inhibition
is implemented with recurrent inhibitory synapses across the
output layer to prevent the neurons from simultaneous spiking
(i.e., winner-takes-all principle). The output neuron parameters
(Ithres, Tleak, Trefractory) were tuned manually and then optimized
by using a genetic algorithm to make the system sensitive for
spiking data. In the genetic algorithm, we randomly varied the
parameters (maximum 20%) of one generation and evaluated the
classification rate. Based on the results of each generation, four
winners were chosen for further parameter variation. The level
of variation was decreased as the classification rate saturated.
The parameters of the LIF input and output neurons are given in
Table 1.

One of the key challenges for spike sorting algorithms is
the real-time functionality for a priori unknown data. This
requires an online learning algorithm, i.e., the fast adaptation
of the spike sorting system to new data (new spike shapes in

Frontiers in Neuroscience | www.frontiersin.org 4 November 2016 | Volume 10 | Article 474

http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Neuroscience/archive


Werner et al. OxRAM Synapses for Unsupervised Spike Sorting

the ES, changing number of classes) and specifically for SNN
a synaptic latency that is lower than the duration of biological
spikes (approximately 1 ms). Spike-timing dependent plasticity
(STDP) is used to meet the first requirement whereas the latter is
accomplished thanks to the fast switching synapses (<1µs), in
our case the OxRAM devices. Note, that a fast switching time
of the SNN synapses is required since the online learning is
permanently active. Without online learning, classification does
not require fast switching synapses. Our synapses are composed
of multiple binary-state devices (Figure 5A) in order to achieve
multi-level synaptic weights (Bill and Legenstein, 2014). The
STDP rule for online learning was simplified and used in a
probabilistic manner (Goldberg et al., 2001) (see Figure 5B) to
induce gradual Long Term Potentiation (LTP) and Depression
(LTD) (Figure 5C). The synaptic weight changes when a post
synaptic spike occurs. If the presynaptic neuron was activated
recently (1t < tLTP), LTP is performed on the synapse with
a given Set probability pSet , otherwise (1t > tLTP), LTD is
performed with a Reset probability pReset . The probabilities as
well as tLTP were optimized by means of a genetic algorithm
together with the parameters of the output neuron layer. Note
that once all the parameters for the filters, SNN and probabilistic
STDP are set, the spike sorting system may in principal be used
on any spiking dataset without changing those parameters.

It is possible to implement the presented SNN in a
co-integrated circuit using complementary metal oxide
semiconductor (CMOS) technology for the neurons (Joubert
et al., 2012) as well as the band-pass filters and Oxide based
resistive RAM (OxRAM) for the synapses (Garbin et al., 2015).
The electrical conductance of OxRAM devices can be modified

TABLE 1 | Leaky Integrate Fire (LIF) neuron parameters of the 2-layer

spiking neural network used for spike sorting of extracellular spiking data.

Symbol Parameter Layer 1 Layer 2

Ithres Integration threshold 0.1 (a.u.) 0.58 (a.u.)

Tleak Leak time constant 0.2ms 5.1ms

Trefractory Refractory period 4ms 46.1ms

by means of voltage pulses which is exploited to tune the synaptic
weights, described in Section4. The synapse design is explained
in more detail in Section 5. The validity of the proposed network
and the OxRAM synapse model extracted from electrical data
will be demonstrated in Section 6 by means of simulations using
our special purpose event-driven simulator tool “Xnet.”

4. OxRAM ELECTRICAL DEVICE ANALYSIS

OxRAM technology relies on a functional thin oxide between
two metal layers [the Top (TE) and Bottom electrodes (BE),
respectively]. Binary metal oxides were reported to exhibit a
sudden switching phenomenon for a critical electric field applied
across TE to BE resulting in a drop of electrical resistance of
the oxide (Gibbons and Beadle, 1964) leading to the so-called
Low Resistance State (LRS). The resistance change is commonly
attributed to the formation of an oxygen vacancy (VO)-rich path,
the so-called Conductive Filament (CF) (Wong et al., 2012). The
transformation is partly reversible by breaking the CF when VO

are recombining with diffusing oxygen ions, thus leading to the
High Resistance State (HRS). Hence, OxRAM offers two distinct
non-volatile states, LRS and HRS, when it is operated using
fixed programming conditions for Set and Reset. The LRS level
depends on the used Set current (ICC, also known as current
compliance) whereas the HRS level is determined by the applied
Reset voltage (VR) (Wong et al., 2012). OxRAM suffers from
cycle-to-cylce as well as device-to-device variability in both LRS
and HRS. This is a major concern for standard non-volatile
memory applications, however, neuromorphic applications are
expected to be more robust to those single-unit variabilities
(Vianello et al., 2015).

In this work, OxRAM resistors are co-integrated with n-type
metal oxide semiconductor (NMOS) transistor access devices
in a standard 65 nm CMOS technology (Vianello et al., 2014),
allowing for a precise current control. The resistive switching
layer is sandwiched between 10 nm thick Ti and 35 nm
TiN electrodes. Three oxide compositions deposited by Atomic
Layer Deposition (ALD) were studied: (i) 5 nm HfO2, (ii)
1 nm Al2O3/3 nm HfO2, and (iii) 5 nm HfO2/4 nm TaOx.

FIGURE 5 | (A) Schematic representation of synapses based on binary OxRAM devices. A synapse consists of n devices (row) in parallel. A pseudo-random number

generator (PRNG) is integrated for probabilistic device programming. (B) Probabilistic learning rule used for online learning in our SNN inspired by spike timing

dependent plasticity (STDP). Set and Reset probabilities, pSet and pReset, as well as the LTP time window (tLTP) are indicated. (C) Long Term Potentiation (LTP) and

Long Term Depression (LTD) for 20 synapses each based on 20 OxRAM devices using pSet and pReset. OxRAM devices are fitted using experimental data from

Figure 9.
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To study the electrical behavior of OxRAM with regard to a
synapse implementation, significantly lower currents (down to
approximately 1 µA) with respect to our previous studies were
investigated (> 50 µA). Several OxRAM devices were therefore
tested both by voltage sweeping (dc) and voltage pulses (ac). All
resistance readings of the single OxRAM devices were performed
using a bias voltage VA = 0.1 V while reading the static current.
Figures 6A,B show typical IV sweep curves for ICC ranging from
1.5µA to 340µA for Forming (first Set operation), Set, and Reset
operations. During Forming or Set operations, a positive bias
voltage is applied to TE to switch the OxRAM devices from
HRS to LRS. During Reset operations, a negative bias voltage
is applied to TE switching from LRS to HRS. Although the
forming voltages (i.e., voltage of abrupt current increase) are
similar for all operation currents, the Set voltage increases when
ICC is reduced and the Set process appears to be more gradual.
Furthermore, the reset current (IReset), defined as the maximum
current during the reset process, is typically equal or slightly
higher than the current compliance during Set operation. This
is true for ICC > 20 µA, however, if ICC is reduced below 20 µA,
IReset drops significantly below ISet (Figure 7A). This applies
regardless of the oxide material whereas the effect is the strongest
for the HfO2/TaOx layer which is the oxide layer with the highest
overall thickness of 9 nm tested in this work. This suggests

that the electric conduction involves mainly tunneling transport
phenomena. Figure 7B represents the LRS values as a function of
ICC for the different material compositions. While the LRS seems
to be independent from the oxide material for ICC > 20 µA
[in agreement with the literature (Ielmini et al., 2012)], the LRS
value shows a strong dependence on the oxide material for ICC <

20 µA. As expected, the largest oxide layer (HfO2/TaOx) exhibits
the highest LRS values. Moreover, the LRS seems to depend
strongly on ICC in this low current range. Figure 8 represents the
resistance variability σR of all tested oxide materials as a function
of themean resistanceµR. As we previously stated in Garbin et al.
(2015), the LRS and HRS variabilities form a continuous curve
and are thus presented together for each material. As one can
see, σR increases with µR, i.e., when ICC is reduced. Indeed, the
variability depends strongly on the resistance level but is identical
for different oxide materials. The dependence of σR on µR is
slightly reduced for µR > 106 �.

The experimental results (reduced IReset, oxide dependent
LRS, similar variability for LRS and HRS) may be explained
by bulk switching and conduction mechanisms rather than
filamentary ones (Chen et al., 2014; Goux et al., 2014) when
very low ICC (< 20 µA) are used. We believe that in this case
the current conduction in the LRS is dominated by trap-assisted
tunneling as is the case for the HRS (Wong et al., 2012). This

FIGURE 6 | OxRAM (Al2O3/HfO2) IV characteristics for (A) Forming/1st Reset and (B) Set/Reset. Operation is shown for ICC (i.e., current compliance)

ranging from 1.5µA to 340µA. Note the shift of the Set IV curve toward higher voltages for reduced ICC.

FIGURE 7 | (A) Reset current (IReset) as a function of ICC for different oxide materials and (B) LRS depending on ICC for different oxide materials.
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FIGURE 8 | (A) Variability (σR) as a function of programmed mean resistance

(µR). (B) µR and σR extraction methodology from experimental resistance

distribution of 30 cycles for one device.

assumption is supported by experimental results from pulsed
cycling of the OxRAM devices in both current regimes shown
in Figure 9. Whereas ICC = 30 µA is still sufficient to achieve a
defined switching with a significant resistance margin between
LRS and HRS (see Figure 9B), the LRS and HRS distributions
for ICC = 5 µA cover several orders of magnitude and are
overlapping (i.e., no resistance window). In the case of ICC >

30 µA, the resistance window can be improved by increasing
the ICC.

The dependence of the switching process on ICC was
experimentally studied in more detail by applying 50 identical Set
or Reset pulses on the OxRAMdevice in HRS or LRS, respectively
(see Figure 10). When a pulse with ICC = 30 µA is repeatedly
applied, the Set process occurs abruptly in a probabilistic manner
after a few pulses and the achieved LRS does not change with
more pulses (see Figure 10B). On the contrary, for pulses of
ICC = 5 µA, the Set process is no longer abrupt but rather
progressive and the achieved LRS depends on the number of
applied Set pulses (see Figure 10A). Note, that the conductance
of single devices (gray lines) changes over several orders of
magnitude orders with the pulse number while the different
devices exhibit significant differences in conductance values (i.e.,
strong device-to-device variability).

5. OxRAM BASED SYNAPSES

Based on the electrical tests of OxRAM in the previous section,
the HfO2/TaOx resistive layer was chosen in this paper to
implement the synapses since it has the highest resistance
values compared to other tested materials (see Figure 7B) thus
consuming the lowest power in read mode. Note, that the
gradual resistance change observed in the ultra-low current
OxRAM operation (using ICC = 5 µA) seems promising for the
implementation of LTP and LTD with one device per synapse,
significantly reducing the circuit complexity [i.e., no pseudo-
random number generator (PRNG) needed] and allowing for
very compact low power synaptic networks. However, the
device-to-device variability is in the same order of magnitude
as the range of 1G for single devices, thus preventing the
gradual switching OxRAM based synapse from straightforward

FIGURE 9 | TaOx/HfO2 endurance for pulsed operation using (A)

ICC = 5 µA, VSet = 3 V, VReset = −1.5 V, tSet/Reset = 10 µs (no

resistance window) and (B) ICC = 30 µA, VSet = 2.5 V, VReset = −1.5 V,

tSet/Reset = 1 µs (1 decade median-median resistance window).

integration into a neuromorphic network circuitry. For this
reason, the synapse implementation based on multiple abrupt
switching OxRAM devices is adopted in this work. A number
of OxRAM devices (n) operated in this manner (using ICC =

30 µA) can be combined in a parallel architecture (Figure 5A)
as described in detail in Garbin et al. (2015) to build one
synapse featuring approximately n + 1 states of synaptic weight.
1T1R OxRAM structures have been fully characterized using a
programming current ICC = 30 µA and the experimental LRS
and HRS distributions (from results in Figure 9B) have been
integrated in the OxRAM based SNN architecture presented in
Figure 4. Ten OxRAM devices were used per synapse resulting
in a total number of 1600 OxRAM devices required for the SNN.

The stochastic STDP (see Section 3 for the description)
can be achieved by using the intrinsic switching probability
(tuning Set and Reset voltages) or by an extrinsic probability
(tuning a pseudo random number generator, PRNG). In this
work, the latter is used in combination with a driver circuit
for the application of the Set and Reset electrical pulses with
the corresponding probabilities (pSet and pReset). This allows to
overcome the abrupt Set switching limitation of single OxRAM
devices (Figures 9B, 10) inducing gradual/progressive Long
Term Potentiation (LTP) and Long Term Depression (LTD)
(Figure 5B).

6. SPIKE SORTING PERFORMANCE OF
SNN APPLICATION

The complete spike sorting system consisting of band-pass filters
and SNNwas simulated with the “Xnet” (event-driven) simulator
for the treatment of the Crayfish data (CF1) introduced in
Section 2. Figure 11 illustrates schematically the unsupervised
learning response of our SNN to the input signal (ES) described
in Section 2. Initially (0 s–285 s), only Spike B is present in
the ES. The SNN output, i.e. the firing patterns of the five
output neurons N1–N5 are completely random. Thanks to
the introduced lateral inhibition, one output neuron, here N2,
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FIGURE 10 | (A) Gradual Set (LTP) of TaOx/HfO2 devices (gray) obtained by application of 50 identical Set and Reset pulses and ICC = 5 µA. Geometric mean for all

devices (red). (B) Abrupt Set of TaOx/HfO2 for ICC = 30 µA.

FIGURE 11 | Schematic illustration of the learning phase for the SNN (see Figure 4) applied on the biological data (see Figure 2). Initially, the SNN is

untrained for new input spikes (in the ES signal) and output neurons spike randomly. Due to online learning, different output neurons become gradually selective to

certain input spike patterns.

becomes gradually selective to Spike B. Then (285 s–545 s), also
Spike A is observed in the input signal. In this period, N1 starts
to spike predominantly when the Spike A appears, while N2

continues to fire for Spike B. The remaining output neurons N3,
N4, and N5 are rather silent. At the end of the test case (545 s–
681 s) only Spike B is present. As expected, onlyN2 shows activity
whereas N1, N3, N4, and N5 are inactive.

The activities of all output neurons N1–N5 are shown in
Figure 12 whereas the activity is defined as the number of output
spikes in time intervals of 10 s. As one can see, the N1 activity
is in good agreement with the intracellular reference, i.e. N1

detects Spike A. The activity of N2 is found to be correlated
to Spike B, however, no ground truth (intracellular signal) is
available for a reliable quantification of the recognition rate. N3,

Frontiers in Neuroscience | www.frontiersin.org 8 November 2016 | Volume 10 | Article 474

http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Neuroscience/archive


Werner et al. OxRAM Synapses for Unsupervised Spike Sorting

FIGURE 12 | Activity of SNN output neurons during 681 s of continuous

input signal. Activity is plotted as the number of spikes in time intervals of 10

s. N1 activity matches well with the intracellular reference (blue dots), i.e., N1

detects Spike A. N2 seems to be selective to Spike B, however, no reference

data is available for verification.

N4, and N5 show very small activity meaning that they do not
become selective to input spikes in the ES. These results prove the
qualitative functionality of the proposed spike sorting algorithm.
Note that, even if the frequency patterns of Spike A and B are
overlapping, two independent output neurons are assigned for
the two different spikes.

In order to quantify the recognition rate of Spike A
(Figure 12), we correlated the activity ofN1 with the intracellular
signal (IS in Figure 11). A Spike A event is considered to be
recognised by N1 if N1 spikes within 20 ms after the Spike
A event. The recognition rate was calculated as the ratio of
recognized spikes to the total number of Spike A events (truth
from IS data) in a given time interval (fixed to ten seconds).
As shown in Figure 13, the system reached its mean spike
recognition rate of 85.5% after 15 s (corresponding to 50 Spike
A events), calculated starting from the first occurrence of Spike A
in the ES signal at (t = 285 s).

Table 2 summarizes the statistics of the SNN for the
application on the ES data used in this work. The total duration
of the signal is 681 s and the activity of all neuronal and
synaptic events was recorded. Note, that the average number of
set and reset events per OxRAM device is very small, 17 and 37,
respectively. This means that the SNN learning is fast and stable
and OxRAM device degradation can be neglected. Furthermore,
extrapolation of these statistics to an application time of 10 years,
accounts to 8 × 106 Set and 1.7 × 107 Reset events per OxRAM
device. Note, that these cycling requirements are satisfied by
state-of-the-art OxRAM technologies (Garbin et al., 2015).

We estimated the specific energy dissipation for a single
synaptic event in our SNN by considering the pre-defined
operation conditions for the OxRAM devices according to:

Emode = Vmode · Imode · tmode (1)

where the index mode = [Set, Reset, Read] denotes the type of
synaptic event. Vmode, Imode, and tmode are the respective values

FIGURE 13 | Temporal evolution of recognition rate of Spike A by N1. A

mean recognition rate of 86.4% (dashed line) is reached within 15 s starting

from the first Spike A occurence.

TABLE 2 | SNN statistics.

Input signal duration 681 s

Number of synapses 160

Devices/synapse 10

Read events 16.2 × 106

Set events 27.5 × 103

Reset events 58.6 × 103

Number of spikes 330 × 103

for the voltage, current, and time of the applied pulse. For Set and
Reset, the pulse conditions reported in Figure 9B were used. For
the Read operation, VRead = 0.1V and tRead = 1µs whereas IRead
is determined by the device resistance. Based on the statistics
reported in Table 2 and the event specific energies, the total
energy dissipation and corresponding power consumption P =

E/t of the synaptic part of the SNN are calculated following to:

Etotal =
∑

mode

Emode · Nmode (2)

whereas Nmode is the number of Set, Reset, or Read events. The
estimated energy consumptions of the synaptic part of the SNN
are reported in Table 3. The event specific energies in the low pJ
range in combination with the relatively low number of switching
events, result in extremely low synaptic power consumption of
8.1 nW. Considering a state-of-the-art analog neuron design in
the 65 nm technology node (Joubert et al., 2012) with an energy
per spike of 2 pJ may add 0.66 µJ (i.e., 5.6%) to the total energy
dissipation. Hence, the power consumption remains at a very low
competitive level of 8.6 nW.

We tested our spike sorting SNN with respect to its
applicability on other neural spiking data. Therefore, we used
another dataset recorded (in-vitro) from Crayfish and a dataset
recorded from anesthetized (in-vivo) rat hippocampus [publicly
available online provided by the Buszaki lab (Harris et al., 2000;
Henze et al., 2000)]. Both datasets feature simultaneous recording
of extra- and intra-cellular signals and are in the following
referred to as CF2 and B1, respectively. As before in the case
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of CF1, we use the intracellular recording as a ground truth for
the quantification of the recognition rate of the SNN output.
CF2 is more complex with respect to CF1 since it contains more
different spike shapes and a higher overall spiking frequency
which results in overlapping spikes. B1 comprises a strongly
increased background noise level with respect to CF1. Snapshots
of both datasets are shown in Figure 14. Without changing the
parameters of our filter bank and SNN, the recognition rate for
CF2 is 74.2 and 82.1% for B1. These results confirm that thanks
to the STDP learning rule, the proposed network can be used

TABLE 3 | SNN power metrics.

Energies per event

Set event (ESet ) 75 pJ

Reset event (EReset) 45 pJ

Read event (ERead) 0.39 pJ

Total power estimation

Energy dissipation 11 µJ

Power consumption 8.1 nW

on different biological data without tuning parameters. State-of-
the-art spike sorting algorithms based on spike detection, feature
extraction, and clustering (i.e., standard methodology) achieve
recognition rates around 90% on the dataset B1 (Gasthaus and
Wood, 2008; Gasthaus et al., 2008) and therefore outperform
our proposed approach slightly in terms of accuracy. However,
the reported method does not incorporate a spike detection
step but uses previously extracted and aligned spike waveforms
for the classification. Moreover, the mathematical algorithm
is rather complex. For this reason, the standard approach
seems impractical for real-time applications with low power
consumption (for portability).

Finally, we make a qualitative comparison between our
SNN-based spike sorting approach with the standard (template
matching, PCA) methodologies in Table 4. The advantage of our
approach is clearly the real-time functionality without the need
for supervision as well as the computational efficiency which
results in very low power consumption. These benefits may
enable our approach to be suitable for rather simple hardware
implementation for long-time, portable, and low-power implants
whereas standard spike sorting techniques do not meet these

FIGURE 14 | Sequences of real biological spiking data used for verification of Spike Sorting system, recorded in (A) in-vitro crayfish (Cattaert and

Manira, 1999) and (B) in-vivo implanted rat hippocampus (Henze et al., 2000). Intracellular recordings were simultaneously obtained and provide the ground

truth for valid quantification of the spike recognition rate for the labeled spikes (blue arrows).
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TABLE 4 | Qualitative comparison of Spike-Timing Depending Plasticity

(STDP) based spike sorting (this work) with standard approaches

(template matching, PCA).

Criterion STDP based (this work) Standard techniques

Real-time functionality + −

(permanent adaptation

to spikes shapes)

Unsupervised operation + −

Computational efficiency + −

Energy efficiency + −

Accuracy − +

Suitability for (long-term) + −

hardware integration

requirements. On the other hand, the spike sorting accuracy is
lower with respect to standard techniques. This issue might be
addressed by a more sophisticated network (e.g., more neuron
layers, better data encoding etc.).

7. CONCLUSION

In this paper, we demonstrated the high potential of possible
hardware embedded Spiking Neural Networks (SNN) for spike
sorting of brain activity signals, relevant for the analysis
of large-scale brain signals. We showed that these systems
allow for fast adaptation to new input data and completely
unsupervised operation, independently from the number of
spikes in the input signal. The network has been tested on
different sets of real biological spiking data and functionality
was proven for all datasets without parameter tuning. In
contrast to standard spike sorting techniques, SNN based
approaches offer several advantages, e.g., no power-consuming
CPU or GPU are needed and no parameters (e.g., threshold
level for spike detection) have to be optimized manually

as a function of the input data. Hence, SNN’s offer a
powerful alternative to standard spike sortingmethodologies.We
proposed OxRAM technology for the hardware implementation
of synapses with ultra-low power consumption and fast
operation times (< 1µs). This enables the system for real-
time application to neural data in potential medical devices
featuring high energy-efficiencies. Moreover, extended OxRAM
cycling capabilities (>108 switching cycles) allow for long-
term functional implants. Spike sorting performances are
lower with respect to conventional power-hungry spike sorting
methodologies and may be improved by more sophisticated SNN
designs and/or complementary input information. Nevertheless,
thanks to the unsupervised real-time functionality and low-
power hardware compatibility, we believe that compact hardware
implementations of SNN’s will enable spike sorting directly at
the recording site within the brain thus solving the bottleneck
of data storage and power consumption. Furthermore, data
reduction rates of about 1000 (depending on the spiking
frequency of the input data) open the path to wireless

data streaming of the spike sorted data to an external
receiver.
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