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Diabetes mellitus (DM) causes important modifications in the availability and use of

different energy substrates in various organs and tissues. Similarly, dietary manipulations

such as high fat diets also affect systemic energy metabolism. However, how the brain

adapts to these situations remains unclear. To investigate these issues, control and

alloxan-induced type I diabetic rats were fed either a standard or a high fat diet enriched

with advanced glycation end products (AGEs) (HAGE diet). The HAGE diet increased

their levels of blood ketone bodies, and this effect was exacerbated by DM induction.

To determine the effects of diet and/or DM induction on key cerebral bioenergetic

parameters, both ketone bodies (β-hydroxybutyric acid) and lactate oxidation were

measured. In parallel, the expression of Monocarboxylate Transporter 1 (MCT1) and 2

(MCT2) isoforms in hippocampal and cortical slices from rats submitted to these diets

was assessed. Ketone body oxidation increased while lactate oxidation decreased in

hippocampal and cortical slices in both control and diabetic rats fed a HAGE diet. In

parallel, the expression of both MCT1 and MCT2 increased only in the cerebral cortex

in diabetic rats fed a HAGE diet. These results suggest a shift in the preferential cerebral

energy substrate utilization in favor of ketone bodies in animals fed a HAGE diet, an

effect that, in DM animals, is accompanied by the enhanced expression of the related

transporters.

Keywords: brain energy metabolism, diabetes mellitus, high fat diet, MCTs, AGEs

INTRODUCTION

Alterations in cognitive functions of patients with DM were first described many years ago
(Miles and Root, 1922) and have been documented more extensively recently (Frier, 2011;
Jacobson et al., 2011; McCrimmon et al., 2012). However, the mechanisms implicated in
such mental deterioration are not clear (Ryan et al., 2003; Brands et al., 2006). Interestingly,
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recent studies have shown that hippocampal metabolism is
affected when glycemia is increased (Mcnay and Recknagel, 2011;
Duarte et al., 2012). In parallel, a unifying mechanism to explain
the complications linked to diabetes has been proposed in which
an inhibition of glycolysis by Poly-(ADP-ribose)-polymerase
(PARP) generates an increase in glycolytic intermediates
(Brownlee, 2005). These intermediates are metabolized through
four pathways leading to several diabetic complications and one
of these pathways is the formation of dicarbonyl compounds
that are precursors of AGEs, offering a putative explanation for
cognitive impairments associated with diabetes.

Poor-quality diets are among the lifestyle determinants that
affect DM and aging-related diseases and increase the risk
of cognitive decline and dementia development in mammals
(Mattson, 2012). Elevated dietary fat intake, mainly from
saturated fatty acids, contribute to cognitive deficits in rats,
implicating both the hippocampus and the cerebral cortex
(Kaplan and Greenwood, 1998; Greenwood and Winocur, 2005;
Winocur and Greenwood, 2005). In this context, dietary AGEs,
a class of oxidative-stressor promoting agents implicated in DM
and aging, have been shown to cause cognitive and metabolic
disturbances in mice and humans (Cai et al., 2014). In a previous
study, (de Assis et al., 2009) showed that non-diabetic rats fed
with a high fat diet enriched with AGEs for 12 months had a
significant increase in hippocampus DNA damage compared to
those fed a control high fat diet.

MCTs belong to a large family of proton-linked carriers that
transport monocarboxylic acids such as lactate, pyruvate and
ketone bodies (Pierre and Pellerin, 2005). In the central nervous
system, various MCTs have been identified and their distribution
determined at the cellular level. MCT1 is mostly expressed on
astrocytic processes, endothelial cells, and oligodendrocytes in
both rodents (Pellerin et al., 1998; Pierre et al., 2000; Baud et al.,
2003; Lee et al., 2012) and humans (Froberg et al., 2001; Chiry
et al., 2006), whereas MCT2 is a major neuronal transporter
(Pierre et al., 2002). It has been shown that 12 weeks of exposure
to a high fat diet (without AGEs) that led to doubling of
plasmatic β-hydroxybutyrate levels increased both hippocampal
and cortical MCT1 and MCT2 levels in mice (Pierre et al., 2007).

Based on these previous observations, the main goal of this
work was to evaluate the effects of a high fat diet enriched
with AGEs and/or DM induction on bioenergetic parameters
and on the MCT (MCT1 and MCT2) expression levels in the
hippocampus and cerebral cortex of adult male rats.

MATERIALS AND METHODS

Ethics Statement
All experiments were approved by the local Ethics Commission
(CEUA/UFRGS) under project number 19183 and followed the
National Institutes of Health Guide for the Care and Use of
Laboratory Animals (NIH publication no. 80-23, revised 1996).

Chemicals
Alloxan monohydrate, sodium L-lactate, D-glucose and β-
actin antibodies were obtained from Sigma-Aldrich (St. Louis,
MO, USA). L-[U-14C]-Lactate (152 mCi/mmol) were from

Amersham International (Little Chalfont, Bucks, UK). [1-14C]-3-
Hydroxybutyric acid sodium salt (50 mCi/mmol) were obtained
from American Radiolabeled Chemicals, Inc. (Saint Louis, MO,
USA). Anti-MCT1 and anti-MCT2 antibodies were synthesized
and utilized as previously characterized and shown by
Pierre et al. (2000).

Animals, Treatments, And Diets
Adult male Wistar rats (90 days old) from the Central Animal
Facility of the Department of Biochemistry, ICBS, UFRGS were
maintained under a standard dark/light cycle (the lights were on
between 7:00 a.m. and 7:00 p.m.) at a temperature of 22± 2◦C.

Alloxan causes specific damages in pancreatic beta cells by
favoring the production of hydroxyl radicals (Wilson et al., 1984),
while not affecting the glucagon-producing alpha cells (Aleeva
et al., 2002). The optimal dosage regimen for intraperitoneally
administered alloxan is a single high dose between 150 and 200
mg/kg (Federiuk et al., 2004; de Assis et al., 2015). Although most
rats developed type-1 DM after administration of alloxan, a few
rats developed type-2 DM, characterized by stable high blood
glucose values, with normal ketone concentration (Federiuk
et al., 2004).

The rats were divided into 2 groups (n = 20 per group)
after 8 h of fasting. One group received an intraperitoneal (i.p.)
administration of alloxan (150 mg.kg−1) diluted in saline (0.9%
NaCl) to induce diabetes mellitus, and the other group received
saline. After 1 week, glycemia in rats in a fasted state (8 h)
was measured. Only animals with a glucose concentration of
15–25 mmol/l were included in the study. After confirming the
induction of diabetes (hyperglycemia) by alloxan, each group was
subdivided into 2 sub-groups (n = 10 per group), as follows:
(i) groups that received standard laboratory rat chow and (ii)
HAGE–groups that received a high fat diet, which was enriched
with AGEs by heating the diet for 60 min at 180◦C. The heating
regimen of the diets was based on (de Assis et al., 2012), who
reported a high AGE content (∼1 U/µg) in a heated high fat
diet. During the 4-week dietary treatments, the animals had free
access to food and water. In this study, we chose to evaluate the
effects of a relatively short-term (4 weeks) period of diet plus
diabetes induction. It appears to be an initial period during which
the effects on metabolism emerge and are not so harmful. This
may represent perhaps an optimal time for future therapeutic
interventions (de Assis et al., 2012). More details about the diet
composition are presented in Table 1.

Tissue Preparation
After the dietary experimental protocol, rats were sacrificed by
decapitation, and blood was immediately collected in heparinized
tubes and centrifuged at 2500× g for 10 min at 20◦C to yield the
serum fraction, which was used for the subsequent biochemical
analyses. Brains were quickly removed, and the hippocampus
and cerebral cortex were dissected, weighed and either (i) cut
into slices for substrate oxidation to CO2 or (ii) homogenized
in a buffer of 0.32 M sucrose containing HEPES 1 mM, MgCl2 1
mM, NaHCO3 1mM, phenyl-methyl-sulphonyl fluoride 0.1 mM,
pH 7.4, in the presence of a complete set of protease inhibitors
(Complete, Roche, Switzerland) for western blotting analysis (see
description below).
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Blood Samples and Biochemical Assays
The serum glucose, lactate (Labtest, MG, Brazil) and β-
Hydroxybutyrate (BHB) (Cayman Chemical Company, MI,
USA) levels were measured using commercial kits. Reactions
were performed using the SpectraMax R© Plus Microplate
Spectrophotometer (Molecular Devices, CA, US).

Substrate Oxidation to 14CO2
To estimate lactate and BHB oxidation to 14CO2, 300-µm-thick
hippocampal or cortical slices (weighing 40–60 mg), prepared
with a McIlwain tissue chopper, were transferred into flasks and
pre-incubated in a medium containing Krebs Ringer bicarbonate
(KRB) buffer (pH 7.4) at 37◦C for 30 min. Before incubation with
substrates, the reaction medium was gassed with a 95% O2: 5%
CO2 mixture for 30 s. Slices were incubated in 1 mL of KRB
buffer containing either: (i) 10 mM sodium L-Lactate + 0.3 µCi
L[U-14C] Lactate (56–186 mCi/mmol); or (ii) 10 mM DL-BHB
sodium salt + 0.3 µCi [1-14C]-3-Hydroxybutyric acid sodium
salt (50mCi/mmol). Then, flasks containing the slices were sealed
with rubber caps and parafilm, and incubated at 37 ◦C for 1
h in a Dubnoff metabolic shaker (60 cycles/min) as described
previously (Ferreira et al., 2007). The incubation was stopped by
adding 0.2 mL 50% tricarboxylic acid (TCA) through the rubber
cap into the flask, while 0.1 mL of 2 N NaOH was injected into
the central well. Thereafter, flasks were shaken for an additional
30min at 37◦C to trap CO2. Afterwards, the content of the central
well was transferred to vials and assayed for radioactivity in a
liquid scintillation counter. All results were calculated based on
the initial radioactivity in the incubation medium and expressed
in pmol/mg of tissue (Müller et al., 2013).

TABLE 1 | Composition of control and HAGE diets.

Composition Control diet (%) HAGE diet (%)

Commercial bran – 20.5

Soy Protein Isolatea 17.0 15.9

Corn Starch 65.5 –

Sucrose 5.0 20.0

Vitamin mixb 1.0 1.0

Mineral salt mixc 4.0 2.0

DL-Methionind 0.3 0.3

DL-Lysinee 0.3 0.3

Soy Oil 5.0 1.0

Lard – 39.0

aSoy Protein Isolate, purity 97% (from Solae, Esteio, Brazil).
bVitamin mixture: mg/100g of diet (from Roche, São Paulo, Brazil): vitamin A (retinyl

acetate), 4; vitamin D (cholecalciferol), 0.5; vitamin E (DL-α-tocopheryl acetate),

10; menadione, 0.5; choline, 200; PABA, 10; inositol,10; niacine (nicotinic acid),

4; pantothenicacid (calcium D- pantothenate), 4; riboflavin, 0.8; thiamin (thiamine

hydrochloride), 0.5; pyridoxine (pyridoxine hydrochloride), 0.5; folic acid, 0.2; biotin [D-

(+)- biotin], 0.04; vitamin B12, 0.003.
cMineral salt mixture: mg/100 g of diet (from Roche, São Paulo, Brazil): NaCl, 557; KI,3.2;

KH2PO4, 1556; MgSO4, 229; CaCO3, 1526; FeSO4–7H2O, 108; MnSO4–H2O, 16;

ZnSO4–7H2O, 2.2; CuSO4–5H2O, 1.9; CoCl–6H2O, 0.09.
dD-L-Methionin (from Merk, Rio de Janeiro, Brazil).
eDL-Lysine (from Merk, Rio de Janeiro, Brazil).

Salt and vitamin composition are according to Horwitz et al. (1980).

Western Blotting
Proteins (20 µg) were separated by SDS-PAGE on 10% (w/v)
acrylamide and 0.275% (w/v) bisacrylamide gels and then
electrotransferred onto nitrocellulose membranes according to
(de Assis et al., 2015). Membranes were incubated for 12 h
with the appropriate primary antibody (MCT1, 1:800; MCT2,
1:600; Pierre et al., 2000) and β-tubulin, 1:2000 (Santa Cruz
Biotechnology, Heidelberg, Germany). Following the detection of
chemiluminescent bands, densitometric analysis was performed
using the Image-J R© software.

Statistical Analyses
Data are expressed asmean± S.E.M. All analyses were performed
with the Statistical Package for the Social Sciences (SPSS 16.0—
IBM, Chicago, IL, USA) software and Prism GraphPad Software
(San Diego, CA, USA). Differences among groups were analyzed
by one-way ANOVA and Tukey’s post-hoc test or Kruskal-
Wallis test followed by Dunn’s Multiple Comparison test when
necessary, with levels of significance below P < 0.05.

RESULTS

Effects of the HAGE Diet and/or DM on
Body Parameters
We observed that the non-diabetic rats put on the HAGE diet had
a significant (P< 0.05) increase in body weight and adipose tissue
(Table 2). In the diabetic groups (D and D+HAGE) in contrast,
we observed a reduction in body weight and adipose tissue for all
rats, with reductions in the D group that were more pronounced
(Table 2, P < 0.01).

Effects of the HAGE Diet and/or DM on
Blood Biochemical Profile
The plasmatic glucose levels were significantly elevated in both
diabetic groups (∼3.5-fold, P < 0.001 vs. respective control
groups, Table 3; The HAGE diet had no effect per se). The
plasmatic lactate levels were not affected by diet or DM (Table 3).
In contrast, the plasmatic BHB levels were not affected by DM
induction alone compared to control animals, but they were
significantly higher in rats fed with the HAGE diet (∼3.0-fold vs.
control, P< 0.05,Table 3) with a stronger effect of the HAGE diet

TABLE 2 | Body weight and adipose tissue weight in control, HAGE fed,

diabetic and diabetic HAGE fed rats.

Body parameters C HAGE D D+HAGE

Initial body weight (g) 280±16.1 277± 13.6 278± 14.3 281±15.2

Final body weight (g) 315±20.1 332± 21.2 229± 33.9* 248±37.8*

Body weight gain (g) 35±7.2 55± 11.8* −49± 12.6** −33±9.5**

Adipose tissue (g) 3.4±0.3 8.4± 2.9** 0.5± 0.08* 4.6±1.4

Body weight and adipose tissue weight are expressed as grams (g). All results are

presented as mean ± S.D. (n = 10 per group) and analyzed using one-way ANOVA

and Tukey’s post-hoc test. Adipose tissue is composed of epididymal + retroperitoneal

adipose tissues. Asterisks indicate a significant difference compared to either the control

group or the diabetic group for the HAGE group and D+HAGE group, respectively (*P <

0.05, **P < 0.01, ***P < 0.001).
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TABLE 3 | Blood biochemical profile of control, HAGE fed, diabetic and diabetic HAGE fed rats.

Blood biochemical profile C HAGE D D+HAGE

Glucose (mmol/L) 5.27±0.47 5.43± 0.57 22.78± 4.86*** 20.48± 2.13***

Lactate (mmol/L) 3.84±0.93 4.65± 0.69 3.79± 0.65 4.44± 0.70

β-hydroxybutyrate (mM) 0.42±0.20 1.46± 0.42* 0.46± 0.16 4.32± 0.45**,#

Triglycerides (mg/dL) 70.9±20.1 144.1± 74.8* 140.1± 56.2* 258.6± 69.1**,#

Cholesterol (mg/dL) 64.8±11.2 76.1± 25.9 76.1± 16.4 71.5± 10.4

HDL (mg/dL) 23.5±5.3 25.5± 5.7 26.0± 4.8 25.6± 2.5

Free Fatty Acids (µM) 566.1±60.5 523.6± 126.5 583.0± 45.1 616.4± 227.6

All results are presented as mean ± S.D. (n = 10 per group) and analyzed using one-way ANOVA and Tukey’s post-hoc test. Asterisks indicate a significant difference compared to

either the control group or the diabetic group for the HAGE group and D+HAGE group, respectively (*P < 0.05, **P < 0.01, ***P < 0.001). Plus sign indicates a significant difference

between the HAGE and D+HAGE groups (#P < 0.05).

in diabetic rats compared to control animals (∼13-fold vs. DM
alone, P < 0.01; P < 0.01 vs. HAGE, Table 3). The rats submitted
to the HAGE diet or diabetes induction showed higher levels of
triglycerides (Table 3, P< 0.05) and for the rats submitted to both
protocols this increase is more marked (Table 3, P < 0.01). We
found no significant difference in plasma cholesterol, HDL and
free fatty acids of the groups tested.

Effects of HAGE Diet and/or DM on Lactate
and BHB Oxidation and on MCT1 and
MCT2 Protein Expression in the
Hippocampus and Cerebral Cortex
Interestingly, monocarboxylic acid oxidation to CO2 was
differently affected by the HAGE diet and/or DM, depending on
the brain structure and the substrate examined. The oxidation
rate of BHB was increased by the HAGE diet in both structures,
(P < 0.001 vs. control and D groups for both structures; P <

0.05, D+HAGE vs. control and D groups for hippocampus; P
< 0.001, HAGE and D+HAGE vs. control and D groups for
cerebral cortex, Figure 1A), but DM alone had no effect. Lactate
oxidation was decreased by the association of DM induction and
the HAGE diet in both brain structures as well as by the HAGE
diet alone in the cerebral cortex (P < 0.05, D+HAGE vs. all
groups for hippocampus; P < 0.01, HAGE vs. control and D
groups and P < 0.05, D+HAGE vs. control and D groups for
cerebral cortex) (Figure 1B).

Protein expression levels of MCT1 and MCT2 were
significantly upregulated only in the cerebral cortex with
both DM induction and the HAGE diet, but not by either
condition alone (MCT1 in the cerebral cortex, P < 0.05,
D+HAGE vs. all groups, Figure 2A; MCT2 in the cerebral
cortex, P < 0.05, D+HAGE vs. all groups, Figure 2B). Similarly,
we can see an increase in protein expression levels of MCT1 and
MCT2 in the hippocampus of diabetic rats fed the HAGE diet,
however there was no statistical difference between the groups.

DISCUSSION

The main results in this study show that rats fed with a high fat
diet enriched with AGEs presented (i) a simultaneous increase
in serum BHB levels and its hippocampal and cortical oxidation

rate; (ii) a decrease in lactate oxidation for both structures in the
diabetic, HAGE diet-fed group; and (iii) an increase inMCT1 and
MCT2 expression in the cerebral cortex, but only in the diabetic,
HAGE diet-fed group. This is the first investigation suggesting
a putative impact of a high fat, AGE-enriched diet on brain
energy metabolism that occurs by modifying the availability and
utilization of specific substrates and the expression levels of some
brain MCT isoforms.

Our data show that diabetes induced by the destruction of
pancreatic β-cells caused an expected increase in blood glucose
(Lenzen, 2008) but produced no change in the levels of blood
lactate or blood ketone bodies. It may seem surprising that
a ketotic state did not develop following the destruction of
pancreatic β cells, as previously reported (Miethke et al., 1986;
Rösen et al., 1986; Kante et al., 1990). However, it has also been
reported that the induction of DM type I with alloxan in rats
may only lead to the partial destruction of pancreatic β cells,
depending on the dose and administration regimen, and may
thus cause the induction of type II diabetes mellitus (Federiuk
et al., 2004). In such cases, it has been reported that rats do
not spontaneously develop a ketotic state. In parallel, exposure
to the HAGE diet had no impact on blood glucose or lactate
levels, while it enhanced blood ketone body levels as expected
(Crane and Morgan, 1983). The combination of diabetes and
exposure to the HAGE diet had no effect on the blood lactate
levels and no further effect on the blood glucose levels. However,
it produced a stronger elevation in the blood ketone body levels.
This observation would be consistent with insufficient levels of
insulin. In this situation, lipogenesis is reduced and ketogenesis
by the liver is favored (Lombardo et al., 1978; Roman-Lopez and
Allred, 1987). The progressive formation of ketone bodies from
fatty acids supplied by the HAGE diet can then occur.

In contrast to its peripheral effects, little information about
the impact of diabetes and high fat diets on brain metabolism
is available to date. Our results suggest that exposure to a
HAGE diet causes profound modifications in monocarboxylate
utilization in both hippocampal and cortical tissue. Both lactate
and ketone body utilization depend on their uptake into brain
cells via monocarboxylate transporters (Carneiro and Pellerin,
2015). Previously, it has been shown that long-term exposure to a
regular ketogenic diet leads to an enhancement of the expression
of monocarboxylate transporters in the central nervous system
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FIGURE 1 | Effects of the HAGE diet and/or DM on lactate and BHB oxidation in the hippocampus and cerebral cortex. (A) Lactate oxidation to CO2 in rat

hippocampal and cortical slices; and (B) BHB oxidation to CO2 in rat hippocampal and cortical slices. Lactate and BHB oxidation are expressed as pmol of substrate

oxidized to 14CO2/min/mg of tissue. The results are presented as mean ± S.E.M. (n = 10 per group for oxidation experiments) and analyzed using one-way ANOVA

and Tukey’s post-hoc test. Asterisks indicate a significant difference compared to either the control group or the diabetic group for the HAGE group and D+HAGE

group, respectively (*P < 0.05, **P < 0.01, ***P < 0.001).

FIGURE 2 | Effects of the HAGE diet and/or DM on MCTs immunocontent in the hippocampus and cerebral cortex. (A) Representative and quantitative

Western blot analysis of MCT1 protein expression in rat hippocampus and cerebral cortex; (B) Representative and quantitative Western blot analysis of MCT2 protein

expression in rat hippocampus and cerebral cortex. β–tubulin was used as reference. The results are presented as mean ± S.E.M. (n = 3 per group) and analyzed

using Kruskal-Wallis test followed by Dunn’s Multiple Comparison test. Asterisks indicate a significant difference compared to either the control group or the diabetic

group for the HAGE group and D+HAGE group, respectively (*P < 0.05).

(Leino et al., 2001; Pierre et al., 2007; Puchowicz et al., 2007). In
our case, no enhancement in either MCT1 or MCT2 expression
could be observed in either the hippocampus or cortex. Possible
explanations could be either the duration of diet exposure, as
in the study of Pierre et al., it took 12 weeks of exposure to a
high fat diet to obtain significant increases in MCT expression
(Pierre et al., 2007), or the composition of the diet itself, as
the presence of AGEs might also play a role. Nevertheless,
an interesting observation is the fact that the combination of
diabetes and exposure to the HAGE diet led to a significant
enhancement in the expression of MCT1 and MCT2 in the
cortex. This is surprising because it has previously been shown
that MCT2 expression in cultured cortical neurons is enhanced

by insulin (Chenal et al., 2008). The absence of peripheral insulin
might have favored the emergence of other factors, which could
have been triggered by the exposure to the HAGE diet. Apart
from insulin, several other neuroactive substances have been
identified that could modulate monocarboxylate transporter
expression, including BDNF (Robinet and Pellerin, 2010, 2011),
IGF1 (Chenal et al., 2008), noradrenaline (Chenal and Pellerin,
2007), and nitric oxide (Marcillac et al., 2011).

Although the increase in monocarboxylate transporter
expression in our experiment might have facilitated the
consumption of ketone bodies in diabetic animals, it is unlikely to
be the limiting factor, as the exposure of normal rats to the HAGE
diet led to similar changes in ketone body oxidation. We must
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postulate that the HAGE diet could have altered the expression
and/or activity of key enzymes for ketone body metabolism,
such as D-β-hydroxybutyrate dehydrogenase. Indeed, it has
been previously reported in situations such as starvation and
hyperlipidemic diet in rats, concomitant with an increase in
availability of blood ketone bodies, that there is an increase
in the cerebral expression and activity of D-β-hydroxybutyrate
dehydrogenase (Kante et al., 1990; Leino et al., 2001). Similarly,
the reduction in lactate oxidation observed in diabetic animals
treated with the HAGE diet could be due to alterations in lactate
dehydrogenase expression and/or activity. In fact, it has been
reported previously that in rats treated with alloxan, a reduction
in cerebral lactate dehydrogenase activity could be observed
(Ahmed and Zahra, 2011). This switch in the use of different
oxidative substrates (from lactate to ketone bodies) by brain
cells might constitute an attempt to overcome the deleterious
effects of AGEs on some unknown component of their energetic
metabolism. It is likely that the impact of diabetes and AGEs on
the metabolism of neurons and astrocytes is different. However,
more investigations are needed to determine how each cell
type is affected, and what are the global consequences for
brain metabolism. Interestingly, it was recently reported that
the replacement of glucose by ketone bodies as energy source
for neurons allows to maintain synaptic vesicle recycling but it
slows down both exocytosis and endocytosis (Hrynevich et al.,
2016). Indeed, a preferential use of ketone bodies in these
circumstances would fit well with the reported protective effects
of ketogenic diets in neurodegenerative diseases and epilepsy
(Hartman, 2012).

In conclusion, the present study provides preliminary
evidence that a high fat diet enriched with AGEs (control or
diabetes groups) given for 4 weeks led to an increase in the serum

levels of ketone bodies and simultaneously increased their use

as energy sources in the hippocampus and the cerebral cortex.
Interestingly, only the combination of a HAGE diet and DM
induction increased the cerebral expression of the two MCT
isoforms only in cerebral cortex. In parallel, the combination
of DM and the HAGE diet also caused a decrease in lactate
oxidation. These results suggest that our dietary manipulation
together with DM type I induction favored BHB instead of lactate
as an energy source for brain cells. Further studies should be
performed to better understand the cellularmechanisms involved
in the brain alterations induced by the combination of a high fat
diet enriched with AGEs and DM.
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