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Functional Magnetic Resonance Imaging (fMRI) studies have become increasingly

popular both with clinicians and researchers as they are capable of providing unique

insights into brain functions. However, multiple technical considerations (ranging from

specifics of paradigm design to imaging artifacts, complex protocol definition, and

multitude of processing and methods of analysis, as well as intrinsic methodological

limitations) must be considered and addressed in order to optimize fMRI analysis and

to arrive at the most accurate and grounded interpretation of the data. In practice,

the researcher/clinician must choose, from many available options, the most suitable

software tool for each stage of the fMRI analysis pipeline. Herein we provide a

straightforward guide designed to address, for each of the major stages, the techniques,

and tools involved in the process. We have developed this guide both to help those new

to the technique to overcome the most critical difficulties in its use, as well as to serve

as a resource for the neuroimaging community.
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INTRODUCTION

Introduced in the early nineties, functional Magnetic Resonance Imaging (fMRI) (Bandettini
et al., 1992; Kwong et al., 1992; Ogawa et al., 1992; Bandettini, 2012a; Kwong, 2012) is a variant
of conventional Magnetic Resonance Imaging (MRI) intended to measure brain activity and
connectivity. It is a fundamentally non-invasive method, and one which provides a method to
assess brain function with unparalleled spatial specificity. Amongst its attributes are high spatial
resolution, signal reliability, robustness, and reproducibility.

Functional brain mapping is most commonly performed using the venous blood oxygenation
level-dependent (BOLD) contrast technique (Ogawa and Lee, 1990; Ogawa et al., 1990a,b; Ogawa,
2012). The magnitude of the BOLD signal is an indirect measure of neuronal activity, and is
a composite which reflects changes in regional cerebral blood flow, volume, and oxygenation.
Functional MRI principles and basic concepts have been extensively described and reviewed in
the literature (Le Bihan, 1996; Gore, 2003; Amaro and Barker, 2006; Norris, 2006; Logothetis,
2008; Buxton, 2009; Faro and Mohamed, 2010; Ulmer and Jansen, 2010; Poldrack et al., 2011;
Bandettini, 2012b; Uğurbil and Ogawa, 2015). In summary, the basic concept underlying all
fMRI measurement is that an increase in local neuronal activity stimulates both higher energy
consumption and increased blood flow. The resultant indirect determination of brain function
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is typically represented as a statistical map which reflects
regional activity. Information transfer between neurons is a
metabolically demanding process, which requires an increased
flow of oxygenated blood, oxyhemoglobin. The local influx
of oxygenated blood results in a net increase in the balance
of oxygenated arterial blood to deoxygenated venous blood
(associated with elevated deoxyhemoglobin). The increase in
the oxy-/deoxy-hemoglobin ratio leads to an increase in the
MRI signal compared to that of the surrounding tissue. It is
important to note that as local neuronal activity increases, there
is an intrinsic delay before regional vasodilation occurs and
flow increases. This mechanism, which is a function of the
properties of the local vascular network, is referred to as the
hemodynamic response function (HRF) and has a time course
of several seconds after the increase in activity. The BOLD signal
can be characterized by the shape of this HRF, which reflects its
vascular origin. Typically, fMRI software model the HRF with a
set of gamma functions, commonly designated by canonical HRF,
that is characterized by a gradual rise, peaking ∼5–6 s after the
stimulus, followed by a return to the baseline (about 12 s after the
stimulus) and a small undershoot before stabilizing again, 25–
30 s after (Figure 1A) (Miezin et al., 2000; Buxton et al., 2004;
Handwerker et al., 2012). Occasionally, an initial dip is reported
but its origin and implications are still under debate (Hu and
Yacoub, 2012). This also highlights that, despite the good fit of
the canonical HRF for most situations, the true HRF is known
to present some variability. Whenever a researcher suspects that
the canonical HRF is not good enough, it is common practice to
include its temporal and dispersion derivatives in the model in
order to estimate the variability in latency and shape, respectively
(Friston et al., 1998; Calhoun et al., 2004).

It has become an established practice in fMRI studies
to investigate the differential neuronal responses to various
forms of stimuli and activity during task performance. Typical
investigations have compared periods of brain activation during
a task with periods of a matched baseline task or a “rest”
condition (Bandettini et al., 1992; Blamire et al., 1992; Vallesi
et al., 2015). However, stimulus-evoked responses are only the tip
of the iceberg in brain activity. More recently, a new perspective
in functional imaging has brought with it the recognition that
spontaneous/intrinsic brain activity is a fundamental aspect of
normal brain function. Technical advances in neuroimaging
methods have contributed to this paradigm shift, and have led
to the recognition that the brain is more accurately considered
a network of functionally connected (co-varying) and constantly
interacting regions, requiring a focus on understanding patterns
of connectivity as well as localized activation (Biswal et al., 1995;
Carlson et al., 2003; Fox et al., 2005; Fox and Raichle, 2007;
Raichle, 2009; Smith et al., 2011). For this reason, resting state
fMRI (rs-fMRI) analyses rely upon spontaneous coupled brain
activity to reveal intrinsic signal fluctuations in the absence
of external stimuli or demands of imposed tasks (Damoiseaux
et al., 2006; Fox and Raichle, 2007; Schölvinck et al., 2010;
van den Heuvel and Hulshoff Pol, 2010; Friston et al., 2014b).
Complimentary approaches, combining rs-fMRI with functional
deactivation (shifting from periods of stimulation to those of rest)
also have been described to study functional activity transitions

(Greicius and Menon, 2004; Anticevic et al., 2012; Soares et al.,
2016).

With its popularity steadily increasing among clinicians and
researchers, the technique of fMRI has demonstrated great utility
in the study of the functioning brain, both in health and disease.
It is important to recognize, however, that it has an intrinsically
complex workflow (summarized in Figure 1) which assumes
broad knowledge of task design, imaging artifacts, complex MRI
acquisition techniques, a multitude of preprocessing and analysis
methods (in several software packages see Tables 1–4), statistical
analyses, as well as interpretation of results. Several papers and
books describing the main technical issues and pitfalls related to
both intrinsic and evoked activity have been published (Jezzard
and Song, 1996; Le Bihan, 1996; Norris, 2006; Haller and Bartsch,
2009; Cole et al., 2010; Margulies et al., 2010; Poldrack et al., 2011;
Davis and Poldrack, 2013; Lee et al., 2013; Uğurbil and Ogawa,
2015). However, given the complex nature of the data processing,
constant methodological advances and the increasingly broad
application of fMRI to both the clinical and research domains,
we have sought to compile a practical “hitchhiker’s guide,”
containing essential information and primary references. These
guides have proven to be important to assist in the optimization
of data quality and interpretation of results (Soares et al., 2013).
We also have provided an analysis of the principal software tools
available for each step in the workflow, highlighting the most
suitable features of each. Through this process it is our goal to
enable investigators/clinicians to design and implement practical
workflows which will lead to robust and reproducible results.
In the following sections, information about each specific fMRI
workflow step, from the current technique applications to the
final results interpretation, will be discussed in detail. We have
started by presenting a list of common software tools used for
fMRI pipelines (Table 1), including both applications for general
and wide-ranging purposes (e.g., AFNI, BrainVoyager, FSL, or
SPM) as well as for very specific tasks (e.g., Marsbar and NBS).

APPLICATION FIELDS

The use of the technique of fMRI has led to significant expansion
of understanding in multiple areas of cognitive neuroscience
(Cabeza, 2001; Raichle, 2001; Poldrack, 2008, 2012). It has, for
example, been successfully used to study systems involved with
sensory-motor functions (Biswal et al., 1995; Calvo-Merino et al.,
2005), language (Woermann et al., 2003; Centeno et al., 2014),
visuospatial orientation (Formisano et al., 2002; Rao and Singh,
2015), attention (Vuilleumier et al., 2001; Markett et al., 2014),
memory (Machulda et al., 2003; Sidhu et al., 2015) affective
processing (Kiehl et al., 2001; Shinkareva et al., 2014), working
memory (Curtis and D’Esposito, 2003; Meyer et al., 2015),
personality dimensions (Canli et al., 2001; Sampaio et al., 2014),
decision-making (Bush et al., 2002; Soares et al., 2012), and
executive function (Just et al., 2007; Di et al., 2014). Functional
MRI has also been used as a tool in the study of topics as diverse
as addiction behavior (Chase and Clark, 2010; Kober et al., 2016),
neuromarketing (Ariely and Berns, 2010; Kuhn et al., 2016) and
politics (Knutson et al., 2006), among others.
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FIGURE 1 | Typical fMRI workflow. In order to perform the most appropriate fMRI study (either task-based or resting state), researchers/clinicians need to

understand its main application fields, intrinsic hemodynamic characteristics (A) and how to best design the experiment [Resting State (B), Block (C), Event related

(D), or Mixed (E) designs]. Identification of the most appropriate acquisition techniques (F) and the recognition of the primary artifacts involved (G) are essential. The

acquired data then undergoes several quality control and preprocessing steps [acquisition quality control (H), format conversion (I), slice timing (J), motion correction

(K), spatial transformations (L), spatial smoothing (M), and temporal filtering (N)]. The intended analysis methods should be implemented for task-based (O) or

resting-state fMRI (P) and statistical inferences performed (Q). Analysis can be complemented with a variety of different methods for multimodal studies (R). Finally,

results interpretation should be made with extreme caution.

Frontiers in Neuroscience | www.frontiersin.org 3 November 2016 | Volume 10 | Article 515

http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Neuroscience/archive


Soares et al. A Hitchhiker’s Guide to fMRI

TABLE 1 | Software tools used for fMRI pipelines present in published studies.

Software tools URL Main purpose

Analysis of Functional NeuroImages (AFNI; Cox,

1996, 2012)

https://afni.nimh.nih.gov/afni/ Preprocessing, analysis, and statistical analysis

Analyze 4D http://analyze4d.com/ Region of interest and time-series analysis

AnalyzeFMRI (Bordier et al., 2011) https://cran.r-project.org/web/packages/AnalyzeFMRI/ Independent component analysis

BioImage Suite (Papademetris et al., 2006) http://bioimagesuite.yale.edu/ Preprocessing, analysis, and statistical analysis

(modules from AFNI)

Brain Connectivity Toolbox (Rubinov and Sporns,

2010)

http://www.brain-connectivity-toolbox.net/ Graph theory analysis

BrainVISA http://brainvisa.info/web/index.html Analysis and statistical analysis (preprocessing

modules from SPM or FSL)

BrainVoyager (Goebel, 2012) http://www.brainvoyager.com/ Preprocessing, analysis, and statistical analysis

BROCCOLI (Eklund et al., 2014) https://github.com/wanderine/BROCCOLI/ Preprocessing, analysis, and statistical analysis

(mainly non parametric) with GPU

implementation

Cambridge Brain Analysis (CamBA) http://www.bmu.psychiatry.cam.ac.uk/software/ Analysis and statistical analysis

Cambridge Centre for Ageing and Neuroscience

(Cam-CAN)

http://www.cam-can.org/ Structural equation modeling analysis

Functional connectivity toolbox (CONN) https://www.nitrc.org/projects/conn/ Preprocessing, analysis, and statistical analysis

Cosmo multi-variate pattern analysis toolbox

(CosmoMVPA)

http://cosmomvpa.org/ Multi-voxel pattern analysis

Configurable Pipeline for the Analysis of

Connectomes (C-PAC)

https://fcp-indi.github.io/ Preprocessing, analysis, and statistical analysis

(based on AFNI, FSL, and ANTS)

Data Processing and Analysis for Brain Imaging

(DPABI; Yan et al., 2016)

http://rfmri.org/dpabi Preprocessing, analysis, and statistical analysis

Data Processing Assistant for Resting-State fMRI

(DPARSF; Yan and Zang, 2010)

http://rfmri.org/DPARSF Preprocessing and analysis

A software for dynamic functional connectivity

analysis of fMRI data (DynaConn)

http://softwarecircuits.weebly.com/dynaconn.html Dynamic functional connectivity

Dynamic brain connectome (DynamicBC; Liao et al.,

2014)

http://restfmri.net/forum/DynamicBC Dynamic functional connectivity

fMRI Advanced Normalization Tools (ANTsR; Avants

et al., 2009)

http://stnava.github.io/fMRIANTs/ Preprocessing, analysis, and statistical analysis

FMRLAB http://sccn.ucsd.edu/fmrlab/ Independent component analysis

Freesurfer (FSFAST; Fischl, 2012) http://freesurfer.net/ Preprocessing, analysis, and statistical analysis

FMRIB Software Library (FSL; Jenkinson et al.,

2012)

http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/ Preprocessing, analysis, and statistical analysis

Group ICA Of fMRI Toolbox (GIFT; Calhoun et al.,

2009)

http://mialab.mrn.org/software/gift/ Independent component analysis

Group Iterative Multiple Model Estimation (GIMME;

Gates and Molenaar, 2012)

https://www.nitrc.org/projects/gimme/ Structural equation modeling analysis

GLM Flex http://mrtools.mgh.harvard.edu/ Statistical analysis

Granger Multivariate Autoregressive Connectivity

(GMAC; Tana et al., 2012)

https://www.nitrc.org/projects/gmac_2012/ Preprocessing, analysis (Granger causality

mapping)

Generalized psychophysiological interactions (GPPI;

McLaren et al., 2012)

https://www.nitrc.org/projects/gppi Psychophysiological interactions analysis

A user-friendly toolbox for comprehensive graph

analyses of functional brain connectivity (GraphVar;

Kruschwitz et al., 2015)

http://rfmri.org/GraphVar Graph theory analysis

GRaph thEoreTical Network Analysis (GRETNA;

Wang J. et al., 2015)

https://www.nitrc.org/frs/shownotes.php?release_id=2213 Graph theory analysis

Graph Theory GLM (GTG) https://www.nitrc.org/projects/metalab_gtg/ Preprocessing and graph theory analysis

Marsbar http://marsbar.sourceforge.net/ Region of interest analysis

Multivariate Granger causality (MVGC; Barnett and

Seth, 2014)

http://www.sussex.ac.uk/sackler/mvgc/ Granger causality mapping analysis

(Continued)
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TABLE 1 | Continued

Software tools URL Main purpose

Network Based Statistic (NBS; Zalesky et al., 2010) https://www.nitrc.org/projects/nbs/ Graph theory analysis and statistical analysis

NeuroLens https://www.nitrc.org/projects/nldo/ Preprocessing, analysis, and statistical analysis

Nipy (Millman and Brett, 2007) http://nipy.org/ Preprocessing, analysis, and statistical analysis

Nitime http://nipy.org/nitime/ Time-series analysis

Pattern Recognition for Neuroimaging Toolbox

(PRONTO)

http://www.mlnl.cs.ucl.ac.uk/pronto/prtsoftware.html Multi-voxel pattern analysis

MultiVariate Pattern Analysis in Python (PyMVPA;

Hanke et al., 2009)

http://www.pymvpa.org/ Multi-voxel pattern analysis

Structural equation modeling for fMRI (SEM) http://dslink333.dyndns.org/SEM.htm Structural equation modeling analysis (toolbox

for SPM)

Statistical non Parametric Mapping (SnPM; Nichols

and Holmes, 2002)

http://www2.warwick.ac.uk/fac/sci/statistics/staff/

academic-research/nichols/software/snpm

Non-parametric permutation/randomization

analysis (toolbox for SPM)

Statistical Parametric Mapping (SPM; Friston et al.,

2007)

http://www.fil.ion.ucl.ac.uk/spm/ Preprocessing, processing and statistical

analysis

The Decoding Toolbox (Hebart et al., 2014) http://www.bccn-berlin.de/tdt Multi-voxel pattern analysis (toolbox optimized

for SPM)

TABLE 2 | Most common software tools used to program and present fMRI stimuli.

Software tools URL OS GUI Programming

skills

required

Availability

A Simple Framework (ASF)

(Schwarzbach, 2011)

https://code.google.com/p/asf/ Windows (Matlab) × X Open-source

BOLDSync (Joshi et al., 2014) http://www.nbrc.ac.in/faculty/pravat/BOLDSync.php Windows, Linux

(Matlab)

X × Open-source

Cogent 2000 http://www.vislab.ucl.ac.uk/cogent_2000.php Windows (Matlab) × X Open-source

E-Prime (Psychology Software

Tools, Pittsburgh, PA)

http://www.pstnet.com/ Windows X × Commercial

FLXLab http://flxlab.sourceforge.net/ Windows, Linux, OS X × X Open-source

Inquisit http://www.millisecond.com/ Windows, OS X X X Commercial

NordicAktiva http://www.nordicneurolab.com/ Windows X × Commercial

Paradigm http://www.paradigmexperiments.com/ Windows X × Commercial

Presentation® (Neurobehavioral

systems)

https://www.neurobs.com/ Windows X X Commercial

Psychophysics Toolbox

(Brainard, 1997)

http://psychtoolbox.org/ Windows, Linux, OS X

(Matlab/Octave)

× X Open-source

PsychoPy (Peirce, 2008) http://www.psychopy.org/ Windows, Linux, OS X X X Open-source

PsyScope X (Cohen et al., 1993) http://psy.ck.sissa.it/ OS X X X Open-source

Stim 2 http://compumedicsneuroscan.com/ Windows X × Commercial

SuperLab http://www.superlab.com/ Windows, OS X X × Commercial

Wake Forest Visual

Experimentation Software

(WaVE) (Meyer and

Constantinidis, 2005)

http://www.wakehealth.edu/Research/Neurobiology-

and-Anatomy/Wake-Forest-Visual-Experimentation-

Software-(WaVE).htm

Windows (Matlab) X X Open-source

Another area in which fMRI is expanding is in clinical
neuroimaging, with applications which range from pre-surgical
mapping/planning (Stippich, 2015; Lee et al., 2016) to functional
characterization of a variety of disease states (Matthews et al.,
2006; Bullmore, 2012), as well as in understanding plasticity,
contributing to the study of drug development (Wise and
Preston, 2010; Duff et al., 2015), and in the study of genetically

determined differences in function (Koten et al., 2009; Richiardi
et al., 2015).

While these research and clinical-oriented fields of fMRI
application usually require a task or stimulus evoked brain
response, the defining attribute of not requiring active patient
participation, triggered the use of rs-fMRI for additional research
and clinical applications. This research methodology has been
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TABLE 3 | A list of the main preprocessing steps implemented by the common fMRI tools *.

Software Preprocessing steps

DICOM Slice Motion Motion Automated Coregister Normalization Confound Spatial Temporal

import Timing Correction outlier detection skull striping removal Smoothing Filtering

AFNI X X X X X X X X X X

BioImage Suite × X X × X X X X X X

BrainVoyager X X X × X X X × X X

BROCCOLI × X X × X X X X X X

CONN × × × × × × × X × X

C-PAC × X X X X X X X X X

DPABI X X X X X X X X X X

DPARSF X X X X X X X X X X

fMRIANTs/ANTsR × × X × × X X X X ×

Freesurfer X X X × X X X × X ×

FSL × X X X X X X X X X

GMAC × × × × × × × X × X

GTG × X X X × × × X × X

NeuroLens X × X × × X X × X ×

Nipy X X X X X X X X X X

SPM X X X × X X X X X X

*To the best of our knowledge at the date of submission, based on information gathered from the software manuals, main webpages and published papers.

applied to prognostic and diagnostic information (Fox and
Greicius, 2010; Lang et al., 2014), treatment guidance (Rosazza
and Minati, 2011; Castellanos et al., 2013), identification of
functional fingerprints, discovery, and validation of biomarkers
in the investigation of relation to cognitive, emotional, and social
processes (Fox M. D. et al., 2014; Krishnadas et al., 2014; Finn
et al., 2015).

Finally, preliminary work appears to offer promise for the
use of real-time neurofeedback and/or brain computer interfaces
methodologies (Caria et al., 2012; Weiskopf, 2012; Sulzer et al.,
2013; Kadosh et al., 2016), in the treatment of disorders
such as Obsessive Compulsive Disorder (Emmert et al., 2016),
Depression (Young et al., 2014), and Schizophrenia (Scheinost
et al., 2013; Cordes et al., 2015).

EXPERIMENTAL DESIGN

The number of variables (such as the specific nature of the
research question, availability of imaging instruments, demand
of data handling, and cost) associated with each study makes it
essential to optimize BOLD signal acquisition time and statistical
efficiency of the analysis. There is not one optimal design which
will encompass all fMRI studies. However, optimizing certain
parameters can significantly improve the study efficiency and
reliability of the final results. Some reviews and book chapters
have already provided the basic fMRI experimental design
concepts (Amaro and Barker, 2006; Friston et al., 2007; Filippi,
2009; Bennett and Miller, 2013; Maus and van Breukelen, 2013).
The experimental designs used in fMRI are resting state and
task-based.

Resting State
Characterization of the resting state is the most straightforward
experimental design in fMRI. The subjects are not performing
any explicit task (Figure 1B). During acquisitions performed
under these circumstances, consistent and stable functional
patterns, which are reproducible across individuals, sessions,
scanners, and methods can be identified and are known as
Resting State Networks (RSNs) (Fox et al., 2005; Damoiseaux
et al., 2006; Long et al., 2008; Choe et al., 2015; Jovicich
et al., 2016). That said, the specific resting conditions and the
duration of the acquisition both have an important effect on the
final functional signals. The most traditional design consists of
instructing the participants to keep their eyes closed, not to think
about anything in particular and not falling asleep. Alternative
approaches have included keeping the eyes open or keeping
the eyes open while fixating upon an object in the visual field,
such as a cross, during scanning. The most suitable approach
depends on the research question and purpose. If reliability and
consistency are of upmost importance, the eyes fixated condition
should be preferred, except for the primary visual network whose
connectivity is more reliable with the eyes open but not fixated
condition (Yan et al., 2009; Patriat et al., 2013; Zou et al., 2015).
On the other hand, if the focus is on obtaining higher functional
connectivity (FC) strength, eyes open, either fixated or not,
should be used (Yan et al., 2009; Van Dijk et al., 2010). The chosen
approach can also have a significant impact on the topological
organization (Xu et al., 2014), global signal amplitude (Wang X.-
H. et al., 2015;Wong et al., 2016), and directionality (Zhang et al.,
2015). Nevertheless, the different resting-state conditions present
comparable results, and thus the choice of the condition should
also take into account which is more comfortable/appropriate for
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TABLE 4 | A list of the main analysis methods implemented by the common fMRI tools*.

Software Task-based fMRI Resting-state fMRI

GLM PPI SEM DCM GCM MVPA Seed-Based ReHO ALFF PCA ICA Clustering Graph Theory dFC

AFNI X X X × X × X X X X X X × ×

AnalyzeFMRI × × × × × × × × × × X × × ×

BioImage Suite X × × × × × × × × × × × × ×

Brain Connectivity

Toolbox

× × × × × × × × × × × × X ×

BrainVoyager X X × × X X X × × X X X × ×

BROCCOLI X × × × × × × × × × X × × ×

CamBA X × × × × × × × × × × × × ×

Cam Can × × X × × × × × × × × × × ×

CONN X X × × × X X X × X X × X X

CosmoMVPA × × × × × X × × × × × × × ×

C-PAC × × × × × × X X X × × × X ×

DPABI X × × × × × X X X X × × × ×

DynaConn × × × × × × × × × × × × × X

DynamicBC × × × × × × × × × × × × × X

ANTs/ANTsR fMRI X × × × × × × × × × × × × ×

FMRLAB × × × × × × × × × × X × × ×

Freesurfer (FSFAST) X × × × × × × × × × × × × ×

FSL X × × × × × X × X X X × × ×

GIFT × × × × × × × × × × X × × ×

GIMME × × X × × × × × × × × × × ×

GLMFlex X × × × × × × × × × × × × ×

GMAC × × × × X × × × × × × × × ×

GPPI × X × × × × × × × × × × × ×

GraphVar × × × × × × × × × × × × X ×

GRETNA × × × × × × × × × × × × X ×

GTG × × × × × × × × × × × × X ×

Lipsia X × × × × × × × × × × × × ×

MVGC × × × × X × × × × × × × × ×

NBS X × × × × × × × × × × × X ×

Neurolens X × × × × × × × × × × × × ×

Nipy X × × × × × × × × × × × × ×

Nitime × × × × X × X × × × × × X ×

PRONTO × × × × × X × × × × × × × ×

PyMVPA × × × × × X × × × × × × × ×

SEM - Structural

Equation Modeling

(SEM) for fMRI

× × X × × × × × × × × × × ×

SnPM X × × × × × × × × × × × × ×

SPM X X × X × × X × × × × × × ×

The Decoding Toolbox × × × × × X × × × × × × × ×

*To the best of our knowledge at the date of submission, based on information gathered from the software manuals, main webpages and published papers.

the study population, keeping inmind that it should be consistent
for all the study participants. Differences in scan length also have
a demonstrable impact, with acquisition times of 5–7 min shown
to yield a reasonable trade-off between time/robustness of RSNs
FC (Van Dijk et al., 2010; Whitlow et al., 2011), 5.5 min shown
to be acceptable in young children (White et al., 2014), but both
increased reliability and greater in-depth analysis are possible
with scans of∼13 min (Birn et al., 2013).

Task-Based
When employing task-based fMRI studies, the way in which
the stimuli are presented as a function of time is of upmost
importance. The typical experimental designs are termed block
(Figure 1C), event-related (Figure 1D), and mixed block/event-
related (Figure 1E). The most simple task design, block-design,
consists of presenting consecutive stimuli as a series of epochs,
or blocks, with stimuli from one condition being presented
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during each epoch, followed by an epoch of stimuli from
another condition, or with rest/baseline epochs. Specific block
duration depends on the type of stimulus, with 15–30 s the most
commonly used range, although some researchers suggest an
optimal length of 15 s (Maus and van Breukelen, 2013). The order
of the conditions is also important, and these are recommended
to be counter-balanced across subjects of the same study. Block
design allows a straightforward approach, good statistical power,
signal amplitude and robustness. However, because each block
is of such long duration, the participant’s rapid habituation
to task as well as the inability to accurately define response-
time courses are intrinsic limitations of this design (Dale and
Buckner, 1997; Amaro and Barker, 2006; Dosenbach et al.,
2006).

Event-related designs are intended to delineate the association
between brain functions and discrete events (typically
randomized and of short duration between 0.5 and 8 s),
separated by an inter-stimulus interval (ISI, normally ranging
from 0.5 to 20 s). By incorporating great task flexibility and
participant’s unpredictability, this design provides the means
to detect transient variations in local hemodynamic response.
It presents however a more complex analysis process and a
decreased signal-to-noise ratio (SNR), the combination of which
leads to diminished detection power (Dale, 1999; Miezin et al.,
2000; Huettel, 2012; Liu, 2012). Two types of event-related
designs can be implemented and are characterized by different
ranges of ISI: slow event-related designs, where the individual
stimuli are well-separated in time (usually by more than 15
s), which prevents the overlap of successive stimuli HRFs, and
rapid event-related designs, where stimuli are closely spaced
in time (less than the HRF of the previous stimulus) resulting
in the overlap of their HRFs. The latter protocols allow higher
stimulus frequencies, resulting in greater statistical power, as well
as diminished participant anticipation and boredom (Amaro
and Barker, 2006; Huettel, 2012). Additionally, the randomized
or pseudo-randomized order of stimuli presentation also is of
importance in minimizing habituation. For these rapid event-
related designs, implementing variable ISIs (jittering) allows
differential overlap of HRFs, reduces multicollinearity problems
and may provide better characterization of each condition
response (Dale, 1999). Alternative methods as m-sequences
(Buracas and Boynton, 2002; Liu, 2004) and genetic algorithms
(Wager and Nichols, 2003; Maus et al., 2010) also can be
used in event-related experimental designs, in order to reach
flexible trade-offs between estimation efficiency and detection
power. Some tools which can facilitate the implementation
of randomized design are Optseq2 (https://surfer.nmr.mgh.
harvard.edu/optseq/), RSFGen (http://homepage.usask.ca/~
ges125/fMRI/RSFgen.html) and the fMRI Simulator (http://
www.mccauslandcenter.sc.edu/crnl/tools/fmristim).

Combining stimuli in discrete blocks (mixed block/event-
related design) provides information about both sustained and
transient functional activations during task performance. While
the technique offers the advantages of both block and event-
related designs, it involves more assumptions, has a poorer HRF
estimation and decreased statistical strength of sustained signal,
and requires more subjects in order to measure statistically

significant and sustained effects (Visscher et al., 2003; Amaro and
Barker, 2006; Petersen and Dubis, 2012).

Independent of the experimental design, the specific way with
which the study conditions are modeled (model specification)
also plays an important role in the signal optimization process
(Price et al., 1997; Friston, 2005; Amaro and Barker, 2006; Friston
et al., 2007). The most basic comparison consists of subtracting
two or more conditions (e.g., A − B), in which one is typically a
control condition. Factorial designs expand this principle to two
or more factors (e.g., different cognitive processes), each one with
two or more levels. A simple example of such design would be the
visualization of two different words in two different colors which
would result in 4 conditions: the first word with the first color (A)
the first word with the second color (B), the second word with the
first color (C) and the second word with the second color (D).
This design, not only enables the exploration of the effect of the
two main factors (words and colors), but also their interactions,
specifically how one factor affects the relation between the other
factor and the response variables [e.g., (A− B) − (C − D)]. If
the researcher is interested in assessing if the BOLD response
to trials is modulated by a continuously varying parameter, a
parametric design (e.g., A < A < A < A) would be more
suitable. A typical example would be a study where the goal is
to assess if the BOLD response increases/decreases linearly with
the difficulty of the task. Choosing appropriate baselines and
controls is of paramount importance since neural activity may
vary unpredictably and overlap (or even exceed in amplitude)
regions activated during the target task. A properly defined
baseline should allow for maximum sensitivity in the detection
of brain activity related to the study target (target isolation)
while controlling for as many extraneous variables and unrelated
confounds as possible (Stark and Squire, 2001; Peck et al., 2004;
Diers et al., 2014). Generic recommendations include the use of
multiple baseline conditions, scan times as long as possible (the
more trials the better, with several shorter runs preferred over one
long run), randomized conditions when possible, avoidance of
comparison between trials widely separated in time and keeping
participants engaged (Friston et al., 2007).

Several software tools can be used to implement the stated
principles and present the task to the participants in the scanner
(Table 2).

When designing a study involving both task-based and rs-
fMRI, in order to avoid contamination of rs-fMRI with residual
activity from previous task performance, it is recommended that
one perform the resting state acquisition before the task-based or,
at the minimum, after a suitable delay (Stevens et al., 2010; Tung
et al., 2013).

Power Analyses
The question about “how large is enough” is a matter of
debate in the neuroimaging field to determine the appropriate
study sample size. For example, in an attempt to establish
the boundaries for an adequate sample size, sensitivity and
sensibility analyses were conducted, demonstrating that sample
sizes of at least 27 subjects provide adequate reliability for
fMRI investigations (Thirion et al., 2007). Additionally, in a
controversial technical note (Friston, 2012), it was suggested that
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there is an optimal sample size, compared to which sample sizes
could be either too small (studies with less than 16 subjects)
or even, although less frequently, too large (studies with more
than 32 subjects), under the arguments of reduced power or
meaningless/trivial findings resulting from overpowered studies,
respectively. It was mentioned that: on one hand, significant
findings obtained in small samples (n = 16) indicate large effects
being stronger than the same level of significance obtained
with larger sample sizes; on the other hand, the relevance of
significant findings obtained with large samples can be illustrated
with the magnitude of observed effect-sizes. However, criticisms
have been outlined (e.g., Yarkoni, 2012), particularly focusing
on the liberal assumptions (e.g., significance threshold) in which
Friston’s arguments were built. Furthermore, it was recently
described that a substantial number of published studies are
statistically under-powered (Button et al., 2013). In this context,
it is important to highlight the use of power analyses as a means
to obtain robust and meaningful findings in these studies. Power
analyses refer to the probability of rejecting the null hypothesis
(given that the alternative hypothesis is true) and allow the
establishment of a sample size that will increase the confidence
of detecting true effects (Ioannidis, 2008). Functional MRI
studies are often characterized by low statistical power, primarily
due to limited sample size and large number of comparisons
(Murphy and Garavan, 2004). Calculations of power are rarely
performed in fMRI research, possibly due to the uncertainty
associated to the unknown variance of the BOLD response and
also due to the difficulty in predicting expected effects (Guo
et al., 2012). Software tools have been developed in order to
facilitate calculation of the statistical power, both for estimating
the number of subjects to be included in the study, and for the
number of stimuli to be presented. In order to employ these tools,
information about the mean activation, the variance, the Type
I error rate, and the sample size must be provided (Mumford,
2012). The power calculation should use either the statistical
images (t/F maps generated by simple study designs) from pilot
studies (PowerMap software; Joyce and Hayasaka, 2012), the
estimated parameters in specific regions-of-interest (fMRIPower
tool) (Mumford and Nichols, 2008) or the prevalence of active
peaks (NeuroPower; Durnez et al., 2016).

DATA ACQUISITION TECHNIQUES AND
ARTIFACTS

Performing effective fMRI studies requires a thorough
understanding of specific MRI acquisition techniques and
artifacts, and how to deal with them (Figures 1F,G). When the
activity of a population of neurons within a voxel (minimum
spatial resolution unit in each image, the volume element)
changes, the associated hemodynamic response can be
determined using T2∗ weighted MRI acquisitions (details
in Buxton, 2009; Hashemi et al., 2012). Detection of the BOLD
signal is the most commonly used technique in fMRI, due
primarily to its ease of implementation and inherent functional
contrast. Alternative detection methods do exist and are based
on the measurement of a combination of additional parameters

including: changes in cerebral blood volume (CBV), cerebral
blood flow (CBF), and cerebral metabolic rate of oxygen
(CMRO2) (Davis et al., 1998). The alternative methods are:
calibrated BOLD, based on BOLD contrast but also taking
into account physiological variation (e.g., heamatocrit, oxygen
extraction fraction, and blood volume) (Davis et al., 1998;
Blockley et al., 2012); Arterial Spin Labelling (ASL) used to
measure regional CBF by tracking intravascular water as an
endogenous tracer (Williams et al., 1992; Buxton et al., 1998;
Telischak et al., 2015); Vascular-Space-Occupancy (VASO)
based on differences between blood and surrounding tissues
and determined through dynamic measurement of local CBV
(Lu et al., 2003; Lu and van Zijl, 2012); Venous Refocusing
for Volume Estimation (VERVE), based on changes in venous
cerebral blood volume (Stefanovic and Pike, 2005); Signal
Enhancement by Extravascular Protons (SEEP) based on the
determination of proton-density changes associated with cellular
swelling (Stroman et al., 2003; Figley et al., 2010); and diffusion-
weighted fMRI, which measures structural changes in the neural
tissues related to cell swelling during activation (Le Bihan, 2012;
Aso et al., 2013).

Functional MRI data are generally collected over the entire
brain through the acquisition of sequential volumes (time-
points), each one composed of a set of slices. The typical
sequence used for fMRI studies is echo planar imaging (EPI),
which is attractive due both to its imaging speed and BOLD
contrast sensitivity, but also associated with inherent artifacts and
diminished image quality (Stehling et al., 1991; Poustchi-Amin
et al., 2001; Schmitt et al., 2012). EPI may be performed using
gradient-echo, spin-echo, or combination techniques. When
compared to spin-echo EPI, gradient echo acquisitions have
higher BOLD sensitivity, imaging speed and versatility, and have
been used in the majority of fMRI studies. On the other hand,
spin-echo sequences have been proposed as a viable alternative
when the goal is to obtain increased functional localization in the
capillary bed (especially at high fields) and when specific regions
of interest (ROIs) are less superficial regions such as for example
the ventromedial frontal and anterior inferior temporal cortex
are the primary focus of the study (Norris, 2012; Boyacioğlu et al.,
2014; Halai et al., 2014; Chiacchiaretta and Ferretti, 2015).

Data Acquisition Techniques
In order to minimize artifact, and to obtain the most reliable
data it is critically important to optimize the acquisition phase.
There is no single “gold standard” fMRI protocol due to the
great variability in parameters such as the MRI hardware vendor
and configuration, field strength, scanning time available, specific
regions under study and subsequent analyses intended. For this
reason, we here confine ourselves to a series of suggestions based
upon the use of a standard single-shot gradient-echo EPI 3 T
fMRI acquisition. When defining an fMRI acquisition protocol,
a reasonable strategy is to start from a well-characterized
“standard” protocol usually provided by the vendor, and then
to modify it according to the specific requirements of the study
to be undertaken. A practical description of the parameters
involved in a typical fMRI acquisition, and guide to how they
should be reported, is provided in Inglis’ checklist (Inglis, 2015).
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While many characteristics of the individual MRI scanner and
of the specific acquisition protocols have a strong impact on
the fMRI results, magnetic field strength is amongst the most
defining. The amplitude of signal usually associated with the
BOLD contrast is very low (around 1% of baseline or less). With
increased field strengths the sensitivity is increased as is the
spatial resolution and SNR (Gore, 2003; van der Zwaag et al.,,
2009; Wald, 2012; Skouras et al., 2014), but all at the cost of
increased artifact (Triantafyllou et al., 2005). The majority of
scanners currently in use, both in diagnostic and research centers,
are units having field strengths of 1.5–3 T, but some research
groups are already utilizing 7 T fields, and it is expected that
the availability and use of such scanners will increase (Duyn,
2012). Typically, fMRI data are acquired using a series of 2D axial
slices to cover the whole brain (one volume) and then the process
is repeated to collect a number of volumes over time (time-
series). Each volume can be acquired using either interleaved or
sequential slice acquisitions. While interleaved acquisitions have
less adjacent slice interference, they can be more vulnerable to
spin history effects generated by head motion (Muresan et al.,
2005). To reduce the influence of both these potential issues, most
fMRI acquisitions utilize a gap between slices (around 10–25% of
the total slice thickness). Slice acquisition also can be performed
either in an ascending (foot-to-head) or descending order, with
the former theoretically affected by excitation and saturation of
in-flowing blood. Although no significant differences have been
reported between the two directions, the most robust approach
seems to favor the use of descending sequential acquisitions
(Howseman et al., 1999).

An important trade-off in fMRI acquisition is between
temporal and spatial resolution. Since the BOLD signal changes
as a function of time, optimizing the temporal resolution is
critical. Typical fMRI acquisitions with full brain coverage have
repetition times (TRs) of 2–3 s (the time it takes to acquire
one volume). For task-based studies, shorter TRs are usually
chosen for event-related designs than for block designs, due to
the relative lack of experimental power and greater importance
of time-course information. Shorter TRs may lead to a significant
reduction in SNR while longer TRs are theoretically associated
with higher sensitivity to motion (Filippi, 2009; Wald, 2012;
Craddock et al., 2013). Due to the necessity of optimizing
temporal measurements, spatial resolution is usually sacrificed.
With high-field strengths and/or if full brain coverage is not
mandatory for the specific study, the TR can be made as low
as 1 s, or even less. One way of increasing temporal resolution
while still maintaining full brain coverage is to use a parallel
imaging method, such as GRAPPA (Griswold et al., 2002),
SENSE (Pruessmann et al., 1999), or multiplex-EPI (Feinberg
et al., 2010). GRAPPA and SENSE work by reducing the time
required for acquiring a single slice but increasing the sensitivity
to motion. Thus, extra care should be taken, especially with
participants prone to move a lot during scanning. On the other
hand, multiplexed-EPI works by simultaneously acquiring more
than one slice at a time (Feinberg et al., 2002). However, the
simultaneous excitation of slices causes signal leaking from
one slice to the other, which increases with the number of
slices acquired simultaneously (i.e., the acceleration factor) and

also induces artifactual thermal noise correlations, critical for
functional connectivity studies (Setsompop et al., 2013). The
combination of both techniques can also be employed, further
reducing the acquisition time and with revealed increased
sensitivity to detect RSNs at moderate acceleration factors
(Preibisch et al., 2015). Isotropic voxels are recommended (in-
plane resolution and slice thickness with equal dimensions)
because the folded cortex has no dominant orientation. At 3
T fields, typical voxel sizes range between 2.8 and 3.5 mm3

(Wald, 2012; Craddock et al., 2013). Higher spatial resolution
can be achieved at higher field strengths, but is associated with
increased artifact (Olman and Yacoub, 2011). A square Field of
View (FOV) ranging between 192 and 224 mm, with a matrix
size of 64 and slice number of 30–36, is common at 3T. The
most critical parameter when optimizing an fMRI protocol with
respect to timing is the interval between slice excitation and
signal acquisition, known as echo time (TE). The interval choice
of TE in order to maximize the BOLD contrast depends on the
tissue characteristics and the field strength and is ideally equal to
the apparent tissue T2∗. The TE for 3 T field strength is typically
around 30 ms (ranging from 25 to 40 ms) (Gorno-Tempini
et al., 2002; Craddock et al., 2013; Murphy et al., 2013). The
appropriate flip angle also is of relevance when optimizing the
BOLD signal. One recommended practice is to select a flip angle
equal to the Ernst angle (Ernst and Anderson, 1966) for gray
matter. More recently, however, it has been shown that the use of
much lower flip angles is possible, as long as physiological noise
is the dominant noise source in fMRI time-series (Gonzalez-
Castillo et al., 2011). For field strength of 1.5 T and a TR of
3 s, the Ernst angle is ∼89◦, resulting in the common choice
of 90◦ for flip angle. For 3 T and a TR of 2 s, the angle is
closer to 77◦ (Ernst and Anderson, 1966). These specifications are
even more complex when a multicenter study is planned, and a
number of considerations need to be taken into account in order
to maximize reproducibility (Stöcker et al., 2005; Friedman and
Glover, 2006; Glover et al., 2012; Keator et al., 2016).

Some important tips include: for studies involving both
resting state and task-based fMRI, it is recommended that the
same acquisition protocol be used, or at least, as similar as
possible, in order to most accurately integrate and compare
results (Ganger et al., 2015; Pernet et al., 2016); when performing
task-based studies, it is of upmost importance to precisely
synchronize scan acquisition with stimulus presentation.
Such synchronization can be achieved through the use of
manual configurations (e.g., sending triggers between the
scanner and stimulus presentation software) or with integrated
solutions such as the Lumina Controller (http://cedrus.com/
lumina/controller/), SyncBox (http://www.nordicneurolab.
com/products/SyncBox.html), SensaVue fMRI (http://www.
invivocorp.com/solutions/neurological-solutions/sensavue/),
or nordic fMRI solution (http://www.nordicneurolab.com/
products/fMRISolution.html).

Artifacts
The primary goal of any fMRI acquisition is to obtain the highest
possible SNR and contrast-to-noise ratio (CNR) (Welvaert and
Rosseel, 2013) while minimizing the impact of artifacts. The
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artifacts in fMRI are usually related to the pulse sequence,
gradient system hardware, acquisition strategy used as well
as physiological noise. Three artifacts are characteristic of the
traditional EPI pulse sequence: spatial distortions (Figure 1G1),
signal dropouts (Figure 1G2), and ghosting (Figure 1G3).
Geometric and intensity spatial distortions may result from static
field inhomogeneity and appear locally either as stretched or
compressed pixels along the phase-encoding axis, being worse at
higher field strengths. A number of strategies have been suggested
to correct the distortions, and include the use of shimming coils
(Reese et al., 1995; Balteau et al., 2010), field mapping (Hutton
et al., 2002; Zeng and Constable, 2002), point spread function
mapping, or reversed phase gradients (Holland et al., 2010; In
et al., 2015). Signal dropouts due to field inhomogeneities near
air/tissue interfaces, particularly prevalent in the frontal and
temporal lobes, also occur in EPI. The choice of an appropriate
echo time (TE, described below; optimum BOLD contrast occurs
when the TE matches the local T2∗ of the tissue of interest),
greater number of thinner (rather than lower number of thicker)
slices, as well as optimizing slice tilt, the direction of the phase-
encoding or the z-shim moment may all help to reduce these
dropouts (Weiskopf et al., 2006; Balteau et al., 2010). Ghosting
artifacts, which occur only in the phase-encoding direction, are
triggered because odd and even lines of k-space are acquired
with opposite polarity. Techniques such as implementing a
multi-echo reference scan, two-dimensional phase correction
or applying dual-polarity generalized autocalibrating partially
parallel acquisitions (GRAPPA), can reduce the magnitude of
these effects (Schmithorst et al., 2001; Chen and Wyrwicz, 2004;
Robinson et al., 2013; Hoge and Polimeni, 2015). Hardware-
related artifacts such as scanner and head coil heterogeneities,
spiking, chemical shifts, and radiofrequency (RF) interferences
all can significantly impact the fMRI image quality and
compromise results (Bernstein et al., 2006; Poldrack et al., 2011).
One approach for reducing the impact of these artifacts is
to implement an Independent Component Analysis (ICA) or
Robust Principle Component Analysis (RPCA) (Behzadi et al.,
2007; Griffanti et al., 2014; Campbell-Washburn et al., 2016).
Although hardware-related artifacts can, at least theoretically
be fixed, participant related confounds will always be present.
Participant’s physiological confounds such as head motion
(Power et al., 2012), cardiac, and respiratory “noise” as well as
vascular effects all have a significant impact on the final fMRI
results (Faro and Mohamed, 2010; Murphy et al., 2013). The
most common and critical artifact in fMRI is head motion.
Even though it is common to correct for subject motion during
preprocessing (see preprocessing section), the best approach
is to prevent motion as much as possible in the first place
using comfortable padding and optimized head fixation (Edward
et al., 2000; Heim et al., 2006), as well as to fully inform
the subject in advance about scanner noise and the confining
environment. Performing multi-echo acquisitions can also help
reduce motion artifacts (Kundu et al., 2013). Cardiac pulsation
and the respiratory cycle can have an impact similar to that of
head motion. Due to the long repetition time (TR, see below)
of standard BOLD EPI acquisitions (2–3 s) the fluctuations
are aliased into low-frequency signals which may be mistaken

for neural activity-related BOLD oscillations, especially on rs-
fMRI (Birn, 2012; Murphy et al., 2013; Cordes et al., 2014).
A number of strategies have been used in an attempt to
reduce these artifacts, and include the use of band-stop filtering,
dynamic retrospective filtering (Särkkä et al., 2012), image-based
methods (RETROICOR; Glover et al., 2000), corrections based
on canonical correlation analysis (Churchill et al., 2012c) and
through the use of externally recorded cardiac and respiratory
waveforms as regressors (Falahpour et al., 2013).

Thorough understanding of the link between neural activity
and the hemodynamic changes that give rise to the BOLD
signal (neurovascular coupling), as well as the variation in its
response, should help to reduce the inter-subject variability
and increase the homogeneity and statistical power of the
studies (D’Esposito et al., 2003; Handwerker et al., 2012; Liu,
2013; Phillips et al., 2016). One key feature is that as the signal
increases (field strength, array coils), the physiological noise
increases proportionally (Triantafyllou et al., 2005, 2006; Hutton
et al., 2011). A great variety of software tools have been developed
to minimize the impact of artifacts, for example the Artifact
detection Tool (ART—http://www.nitrc.org/projects/artifact_
detect/), the Physiological Artifact Removal Tool (PART—
http://www.mccauslandcenter.sc.edu/CRNL/tools/part), the
PhysIO Toolbox (http://www.translationalneuromodeling.
org/tnu-checkphysretroicor-toolbox/), the ArtRepair Software
(http://cibsr.stanford.edu/tools/human-brain-project/artrepair-
software.html), the FMRIB’s-based Xnoisifier (FIX) (http://fsl.
fmrib.ox.ac.uk/fsl/fslwiki/FIX), and the RobustWLS Toolbox
(http://www.icn.ucl.ac.uk/motorcontrol/imaging/robustWLS.
html) (Diedrichsen and Shadmehr, 2005). While a significant
problem in task-based fMRI, artifact identification and removal
is even more complex with rs-fMRI. In the absence of an a priori
hypothesis, it may be hard to distinguish the signal related to
neural activity from the sources of noise, particularly when the
artifacts are spatially or temporally correlated and may share a
degree of spatial or spectral overlap with the RSNs. Whenever
artifacts cannot be corrected, it may be necessary to adopt some
alternative strategies such as the exclusion of the affected subject,
volume or slice, or to limit the analysis to regions without
significant artifacts.

QUALITY CONTROL AND
PREPROCESSING

Quality control and preprocessing procedures are key steps in
the detection and correction of artifacts in fMRI, thus providing
consistency and reliability to maps of functional activation. A
variety of automated preprocessing pipelines have been described
and implemented [e.g., DPABI, LONI (Rex et al., 2003), Nipype
(Gorgolewski et al., 2011), BrainCAT (Marques et al., 2013) and
C-PAC], but there is a lack of consensus about which workflow is
the most effective. Several studies and reviews have explored the
effects of preprocessing techniques on both task-based (Strother,
2006; Churchill et al., 2012a,b) and rs-fMRI results (Aurich et al.,
2015; Magalhães et al., 2015). Herein we attempt to provide a
practical guide to the most commonly used methodologies.
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Acquisition Quality Control and Data
Conversion
The first quality control point comes during the acquisition
phase. It is important to loop through the images using real-
time display of the scanner, while it is still possible to repeat
the acquisition and not lose data. Assessing the images using
two different contrast settings, standard anatomical (to verify
the appearance of the brain, gross head motion and spiking)
and background noise contrast (to verify hardware issues
and important small motion) is a wise strategy (Figure 1H).
Following data acquisition, it is important to verify that all
images have been imported and sorted correctly, and to ensure
the same acquisition protocol has been used for all study
participants. At this point, inspection of the scans to screen
for obvious brain lesions (except for those specifically being
studied) as well as visible artifacts can be performed using
general-purpose viewers, such as Osirix, MRIcro, RadiAnt, or
ImageJ (Escott and Rubinstein, 2003; Rosset et al., 2004). Due
to the absence of a standard file format, it is necessary to start
by converting the original scanner data from DICOM format
(Mildenberger et al., 2002; Liao et al., 2008; Mustra et al., 2008)
to the most common file format used by fMRI preprocessing
tools, the NIfTI format (Neuroimaging Informatics Technology
Initiative, allows both separated ∗.img and ∗.hdr files or both
combined on a single ∗.nii file) (Poldrack et al., 2011), which is
an extension from the Analyze 7.5 format (set of two files: ∗.img
containing the binary image data and ∗.hdr with the metadata)
(Figure 1I). In the NIfTI format most of the DICOM header
information is discarded (e.g., patient information) and only
basic acquisition information (e.g., TR, resolution, FoV, image
orientation) is kept. Most of the fMRI processing packages
include file converting tools, and several dedicated converters
also are available [e.g., dcm2nii (https://www.nitrc.org/plugins/
mwiki/index.php/dcm2nii:MainPage), MRIConvert (https://lcni.
uoregon.edu/downloads/mriconvert/mriconvert-and-mcverter)
and NiBabel (http://nipy.org/nibabel/index.html)].

Initial Stabilization, Slice-Timing, and
Motion Correction
Upon beginning an acquisition, the scanner typically takes some
seconds to completely stabilize its gradients, and the tissue being
imaged requires some time to reach the necessary excitation. To
remove the influence of these factors, it is common to discard
the initial volumes (usually around the 10 initial seconds) of the
fMRI acquisitions whether for task-based or rs-fMRI. Because
fMRI volumes are acquired as 2D images, one slice at a time,
and even though short and fixed TRs are utilized, there is an
intrinsic delay between the real and the expected slice acquisition
times, which may substantially decrease the ability to discern a
given effect. The interval between the first and the last acquisition
slice depends on the TR selected. Slice timing correction adjusts
the time-course of voxel data in each slice to account for these
differences by interpolating the information in each slice to
match the timing of a reference slice (first or mean TR slice)
(Calhoun et al., 2000; Sladky et al., 2011) (Figure 1J). The impact
of using slice-time correction is described as quite variable,

depending on the type of study, ranging from very important
for event-related designs (especially for time-course analysis), to
less important for block designs, to having minimal effect on rs-
fMRI. However, it seems that it never has a negative impact on the
results (Henson et al., 1999; Sladky et al., 2011; Wu et al., 2011).
In addition to the debate about whether or not to employ slice
timing correction is the issue of, if used, when such correction
ought be done, as this step can interact strongly with motion
correction (described below). Common suggestions include: for
interleaved acquisitions, it is usually performed before motion
correction and for sequential acquisitions thereafter; for subjects
with low head motion performed before motion correction
and with high head motion after (it is recommended to keep
the order consistent for all the study subjects) (Sladky et al.,
2011). Nevertheless, the issue remains poorly addressed as slice
timing and motion correction are two inextricably linked steps
(Bannister et al., 2007). An alternative option is to perform
slice timing and motion simultaneously through 4d realignments
using the Nypipe 4d realignment function (Roche, 2011) or with
the Seshamani data reconstruction framework (Seshamani et al.,
2016). Additional methods exist for slice timing adjustment,
such as adding regressors as nuisance variables (Henson et al.,
1999) or altering the model rather than the data, as in dynamic
causal modeling (DCM) (Kiebel et al., 2007), though that specific
approach is not suitable for interleaved acquisitions.

Head motion during scanning is probably the most common
and critical confound for both task and rs-fMRI studies, both
of which are dependent upon precise spatial correspondence
between voxels and anatomical areas over time (Friston et al.,
1996; Satterthwaite et al., 2012; Maclaren et al., 2013; Zeng
et al., 2014; Power et al., 2015). The most common strategy
used to perform motion correction is first to realign each
volume to a reference volume (mean image, first, or last volume)
using a rigid body transformation (x, y, and z rotations and
translations) (Jiang et al., 1995) (Figure 1K). While there is
no standard rule about the motion threshold to be used, it
is a rule of thumb to discard data sets with motion greater
than the dimensions of a single voxel (Formisano et al., 2005;
Johnstone et al., 2006). Because most traditional realignment
strategies take into account each volume at a single point in time,
and due to the fact that residual motion-induced fluctuations
still are present in the data set and decrease the reliability
and statistical sensitivity of the study, a different strategy was
proposed. This technique was to include in the subject-level
general linear model (GLM) the motion parameters estimated
during the realignment step as “nuisance variables” (covariates
of no interest), possibly also including the temporal derivatives
of those variables (Friston et al., 1996; Johnstone et al., 2006;
Power et al., 2012). Most of the commonly used fMRI packages
include motion correction tools, and significant differences in
their performance are not evident (Oakes et al., 2005; Morgan
et al., 2007). Several groups have recently demonstrated that
small headmotion produces spurious but structured noise, which
then triggers distance-dependent changes in signal correlations
(Power et al., 2012, 2015; Satterthwaite et al., 2012; Van Dijk et al.,
2012; Siegel et al., 2014). The method proposed to reduce these
effects has been called Scrubbing, and is based on two measures
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to capture the head displacements, Framewise Displacement
(FD) or the brain-wide BOLD signal displacements (temporal
Derivative VARiance—DVARS) derived from volume to volume
measurements over all brain voxels (Power et al., 2012). After
FD or DVARS calculation, a threshold is applied and, despite a
lack of standardization, it is common to use FD > 0.2–1 mm and
DVARS > 0.3–0.5% of BOLD signal in order to identify outliers.
Scrubbing corrections can be implemented with several tools
including the C-PAC, Artifact Detection Tools (Mazaika et al.,
2007), DPARSF (Yan and Zang, 2010) and fsl_motion_outliers
tool. By default, fsl_motion_outliers detects outliers if FD or
DVARS exceeds the 75th percentile+ 1.5 times the InterQuartile
Range. The identified outliers are commonly regressed out later
in the preprocessing pipeline (but before temporal filtering) from
the data with a GLM where each outlier is entered as a nuisance
regressor. Additional alternative motion correction strategies are
available, such as the use of slice derived information (Beall
and Lowe, 2014), task associated motion (Artifact Detection
Tool), expansion to 24–36 motion regressors (Power et al., 2014),
independent component analysis de-noising (Mowinckel et al.,
2012; Griffanti et al., 2014; Pruim et al., 2015), and group-
level motion covariates (Van Dijk et al., 2012). Furthermore,
the use of non-gray matter nuisance signals (Behzadi et al.,
2007; Jo et al., 2013) and regression of global signal (Power
et al., 2014) have been shown to help reducing the impact of
motion.

Spatial Transformations
Performing spatial transformations to align the images from
the individual’s native space with those acquired from a
different modality or subject [(co-)registration] or into a
common standard space (normalization) is a fundamental step
of the fMRI preprocessing (Brett et al., 2002) (Figure 1L). If
homologous brain regions are not properly aligned between
individuals, sensitivity is lost and leads to an increase in the
false negatives rate. On the other hand, systematic normalization
errors between groups may trigger false positive activations. In
fMRI studies there are two main standard coordinate systems
which have been used in order to reduce intersubject variability
and to facilitate the reporting of results in the form of standard
stereotactic (x,y,z) coordinates. These are the Talairach space,
where the principal axis corresponds to the anterior commissure-
posterior commissure (AC-PC) line, and which is based upon
the brain of a single individual (Talairach and Tournoux, 1988),
and the Montreal Neurological Institute (MNI) templates (there
are several MNI templates available, being the MNI152 the most
commonly used), which are based on the average of T1-weighted
MRI scans of a large number of subjects (Mazziotta et al.,
1995, 2001). These templates normally are associated with an
atlas (Cabezas et al., 2011; Evans et al., 2012) and allow the
localization of designated anatomical features in coordinate
space, as well as the association of functional results to identified
anatomical regions. The Automated Anatomic Labelling (AAL)
(Tzourio-Mazoyer et al., 2002), the Talairach atlas (Lancaster
et al., 2000), and the Harvard-Oxford atlas (Desikan et al., 2006)
are amongst the most commonly used. It is important to note
that the Talairach and MNI coordinates do not refer to the same

brain regions or structures (Laird et al., 2010), and it is frequently
necessary to convert between the two (e.g., for meta-analyses).
Available tools to implement transformation between the two
coordinate spaces include the “icbm2tal” (Lancaster et al.,
2007; Laird et al., 2010) (GingerALE, http://www.brainmap.
org/icbm2tal/) and the “mni2tal” (Brett et al., 2002) (BioImage
Suite, http://bioimagesuite.yale.edu/mni2tal/). Tools also are
available to localize and label brain regions according to the
MNI (MRIcron, http://www.mccauslandcenter.sc.edu/mricro/
mricron/, Neurosynth, http://neurosynth.org/) or Talairach
(Talairach software, http://www.talairach.org/, WFU_PickAtlas,
http://www.nitrc.org/projects/wfu_pickatlas/) coordinates.
Normalization strategies rely on optimization functions which
maximize the similarity between two images (Jenkinson and
Smith, 2001) by applying translations, rotations, and scaling
in multiple axes. Transformations are usually divided into two
subtypes: linear, applied uniformly along an axis and usually
represented as affine matrices, and non-linear, defined locally
(meaning that different points along an axis undergo unique
transformations) usually defined by warp or distortion maps.
Several deformation algorithms are available which can be
applied to MRI registrations (Klein et al., 2009). An alternative
registration method is the use of surface registration techniques,
in which the functional time series are mapped onto cortical
surface models [e.g., automatically implemented by Freesurfer
(Fischl et al., 1999)], improving the computational efficiency and
the mapping of the cortical surface, beneficial for subsequent
processing and analysis steps (surface-based smoothing kernels
and surface-registration can be used) (Klein et al., 2010; Khan
et al., 2011).

In fMRI there are two commonly used processing streams
for spatial normalization. In one, a single step strategy is
used to normalize directly to a standard EPI template, while
the other employs a multi-step method which first aligns
to the matching structural image using rigid-body or affine
transformations, following which the composite image is then
registered to the reference space, using either affine or non-
linear transformations (Poldrack et al., 2011). Complementary
techniques for removing non-brain areas from the analysis and
reducing the data size, such as skull striping or masking, may
also help to improve the normalization step (Tsang et al., 2007;
Andersen et al., 2010; Fischmeister et al., 2013). The choice of
the optimal atlas template and mapping function depends on a
multitude of factors and is influenced by age, gender, hemispheric
asymmetry, normalization methodology, and disease-specificity
(Crinion et al., 2007). Following the normalization step, it is
always important to perform visual quality control, for example
by displaying the fMRI data of each participant along with a
reference EPI template.

Spatial Smoothing and Filtering
The next preprocessing step normally implemented is that of
spatial smoothing/filtering, a process during which data points
are averaged with their neighbors, suppressing high frequency
signal while enhancing low frequency ones, and results in the
blurring of sharp edges (Figure 1M). Smoothing simultaneously
increases the SNR and the validity of the statistical tests (from
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random field theory) by providing a better fit to expected
assumptions while reducing the anatomical differences. On the
other hand, smoothing reduces the effective spatial resolution,
may displace activation peaks (Reimold et al., 2006) and
extinguish small but meaningful local activations depending
on the filter parameters chosen (Yue et al., 2010; Poldrack
et al., 2011; Sacchet and Knutson, 2013). The standard spatial
smoothing procedure consists of convolving the fMRI signal
with a Gaussian function of a specific width (as, spatially, the
BOLD signal is expected to follow a Gaussian distribution). The
choice of the proper size of the Gaussian kernel [Full Width
at Half Maximum (FWHM)], which determines the extent to
which the data is smoothed, will be dependent on specific
features of the study undertaken, such as type of paradigm and
inference expected, as well as on the primary image resolution.
The amount of smoothing always should be the minimum
necessary to achieve the intended results, and a reasonable
starting point is a FWHM of twice the voxel dimension (care
must be taken when using large smoothing kernels as they
make the detection of smaller patterns of activation harder).
The typical smoothing values used range between 5 and 10
mm for group analyses (Beckmann and Smith, 2004; Mikl
et al., 2008; Poldrack et al., 2011). Alternative approaches to
smoothing are the use of varying kernel widths (Worsley et al.,
1996), adaptive smoothing (Yue et al., 2010; Bartés-Serrallonga
et al., 2015), wavelet transforms (Van De Ville et al., 2007),
and prolate spheroidal wave functions (Lindquist et al., 2006).
Despite its common use, care must be taken when performing
smoothing due to its effects on the final results (Geissler et al.,
2005; Molloy et al., 2014), its interaction with motion correction
(Scheinost et al., 2014) and impact upon analyses which are
sensitive to the activation of individual voxels (such as ROI-to-
ROI analysis, Regional Homogeneity and Multi-voxel Pattern
Analysis). This step is not recommended for connectomic
approaches in order to prevent the BOLD signal from extending
across different regions of interest (Zuo et al., 2012; Tomasi et al.,
2016).

A final step in the data preprocessing pipeline is temporal
filtering (Figure 1N). This step is performed in order to remove
the effects of confounding signals with known or expected
frequencies. The use of frequency filtering (and/or spatial
smoothing) may help attenuate noise and thus increase the
SNR (White et al., 2001). Functional MRI time-courses often
manifest low-frequency drifts whichmay reduce substantially the
statistical power of the results. It is therefore of great relevance to
attempt to identify which frequencies are those of interest and
which are noise (Kruggel et al., 1999). For example, fMRI noise
may be associated with slow scanner drifts (∼ <0.01 Hz), as well
as cardiac (∼ 0.15 Hz) and respiratory (∼ 0.3 Hz) effects (Cordes
et al., 2001, 2014). The most frequently used filters for task-based
fMRI acquisitions are high-pass filters (typically ∼ 0.008–0.01
Hz, 100–128 s), generally deployed with a rough rule of using
a cut-off value at least 2 times that of the fundamental task-
frequency (the interval between one trial start and the next one).
With rs-fMRI the standard strategy is to apply a band-pass filter
(0.01–0.08 Hz) following the reports of Biswal and colleagues
(among others), which have shown that spontaneous BOLD

low frequency (∼ <0.1 Hz) fluctuations were physiologically
meaningful and reflect spontaneous neural activity (Biswal et al.,
1995; Fransson, 2005; Shirer et al., 2015). Nevertheless, high
frequency signals (>0.1 Hz) have also been shown to present
functional significance (Chen and Glover, 2015; Gohel and
Biswal, 2015). Exploring such frequency band requires extra
caution in controlling for physiological sources of noise (e.g.,
respiratory and cardiac effects) as these are known to present
frequencies greater than 0.1 Hz. This can be achieved using
simultaneous monitoring of pulse oximetry, electrocardiogram
and/or breathing belt.

Normally associated with the filtering step, detrending
methods also are used to reduce the effects of noise (Tanabe
et al., 2002; Friman et al., 2004). Complex spatio-temporal filters
(Kriegeskorte et al., 2010), cross-validation (Ngan et al., 2000),
adaptive filters (Deckers et al., 2006), matched-filter acquisitions
(Kasper et al., 2014), bilateral filtering (Rydell et al., 2008), and
multifiltering (Hui et al., 2013) are alternatives to the standard
fMRI temporal filters.

Effective quality control is of fundamental importance in
the optimization of data usability reliability and reproducibility.
Software tools have been developed in order to implement
quality control procedures complementary to the ones already
mentioned, such as BIRN QA (http://www.nitrc.org/projects/
bxh_xcede_tools/), NYU CBI Data Quality tool (http://cbi.nyu.
edu/software/dataQuality.php), and the CANLAB Diagnostic
Tools (http://wagerlab.colorado.edu/tools).

ANALYSIS METHODS

The next stage in the fMRI workflow is the selection of the most
suitable method to extract the relevant functional information.
There are many fMRI analysis methods and software tools for
both task-based (Figure 1O) and rs-fMRI (Figure 1P). Thus,
choosing the one most suitable for a specific study may be a
complex, often confusing and time-consuming task. In order to
assist with this choice, we herein present a table with the most
commonly used software tools for the analysis of task-based
and rs-fMRI data (Table 4). Some existing reviews have already
explored fMRI analysis methods (van den Heuvel and Hulshoff
Pol, 2010; Lohmann et al., 2013; Smith et al., 2013; Sporns,
2014; Haynes, 2015; Zhan and Yu, 2015; Pauli et al., 2016). In
the following sections we distinguish between task-based and
resting-state fMRI analysis according to the prominence use
of each method, nevertheless, some are suitable for both fMRI
acquisitions. Other distinctions could be performed, namely
between methods suitable for localization and for connectivity
approaches. The appropriateness application of each method will
also be discussed below.

Typical Task-Based Analyses Methods
The most employed method in the analysis of task-based
fMRI is Statistical Parametric Mapping (SPM), which is based
on the GLM (Figure 2A) (Friston et al., 1994a; Kiebel and
Holmes, 2003; Poline and Brett, 2012). GLM’s popularity is
based on its straightforward implementation, interpretability and
computability. It incorporates most data modeling structures
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FIGURE 2 | Commonly used analysis methods in functional MRI studies. For task-based analyses, implementing the General Linear Model (GLM, A),

Psychophysiological interactions (PPI, B), Structural Equation Modeling (SEM, C), Dynamic Causal Modelling (DCM, D), Granger Causality Mapping (GCM, E), and

Multi-voxel Pattern Analysis (MVPA, F) are common strategies. To analyze resting-state fMRI data, methods such as seed-based correlations (G), Regional

homogeneity (ReHo, H), Amplitude of Low Frequency Fluctuations (ALFF, I), Principal Component Analysis (PCA, J), Independent Component Analysis (ICA, K),

Clustering (L), Graph Theory (M), or dynamic Functional Connectivity (dFC, N) can be implemented.

and provides the means for minimizing/controlling the effects
of confounding factors such as motion, respiratory and cardiac
and HRF derivatives (Calhoun et al., 2004; Lund et al., 2006;
Bright and Murphy, 2015). One common approach in the use of
this technique is to convolve the stimulus onsets and durations
with a canonical HRF, which results in quantifying an estimate of
the expected BOLD signal for any condition of interest. These
estimates are then defined, along with intrinsic confounding
factors (e.g., motion parameters), as the independent variables
of the GLM. Each voxel time-series is then set as the dependent
variable. The result of this process is to generate a test statistic for
each voxel in the brain, which makes possible the creation of a
parametric map (SPM). The process is performed separately for
each subject and is commonly designated as first-level analysis.
The GLM can be used very generally, ranging from the simplest
subtractionmethod to parametric correlations with behavior, and
also serves as the reference for several methods used to estimate
connectivity. The main criticism of the GLM is based upon the
intrinsic assumptions which must be made related to parametric

testing in general, and the GLM in particular, and which are
not usually verified nor are they tested (Monti, 2011). Despite
these reservations, GLM analysis remains extremely popular
for fMRI.

Task based connectivity analysis is being performed with
increasing frequency and its results are quite sensitive to the
choice of analysis tool. For it to be used appropriately, it
is necessary to distinguish undirected associations between
brain regions (functional connectivity—FC) from directed and
causal relationships (effective connectivity) (Horwitz et al., 2005;
Friston, 2011). Functional connectivity will be discussed in
greater detail below, since the methods involved are more widely
used for rs-fMRI, although some of the same principles apply
also to task-based analysis. Also closely related to the GLM,
and concerned with effective connectivity, psychophysiological
interaction (PPI) is a method used to quantify how task-
specific FC between a particular brain ROI (source/seed) and
the rest of the brain voxels are affected by psychophysiological
variables (Figure 2B) (Friston et al., 1997; O’Reilly et al., 2012).
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Some caveats when using PPI analyses are the hemodynamic
deconvolution, the low power, and the difficulties intrinsic to
event-related designs (Gitelman et al., 2003; O’Reilly et al.,
2012).

Similar to PPI analysis in that it explores how the experimental
context affects connectivity between a group of regions, the
structural equation model (SEM) is used to assess the effective
connectivity based on an a priori model of causality (Figure 2C)
(McLntosh and Gonzalez-Lima, 1994; Büchel and Friston, 1997;
Kline, 2011). It starts with the definition of a set of ROIs, and then
tries to determine the connection strength between those ROIs
that best fit the model. SEM allows the investigation of several
brain regions simultaneously, and incorporates prior anatomical
and functional knowledge to determine causal relationships, but
assumes that the interactions are linear and, (similar to PPI)
it cannot take into account the dynamic changes of the BOLD
signal (Tomarken and Waller, 2005). Most often used for task-
based fMRI, SEM has seen application with rs-fMRI (James et al.,
2009).

DCM allows estimation of the effective connectivity (model
states) between brain regions by determining hemodynamic
response (model output) as a function of specified external
experimental variables (model input) (Figure 2D). One of the
primary characteristics of DCM is that it allows exploration
of the brain as a dynamic system, accounting for changes in
populations of neurons, and is able to build non-linear models
of interacting regions (Friston et al., 2003; Penny et al., 2004;
Stephan et al., 2008; Friston, 2009). DCM is a reliable and
potentially a more biologically realistic method for fMRI in that
it deals with function at the neuronal level. It does require pre-
specified models and based on its non-linearity and complexity,
involves the estimation of many parameters (using Bayesian
estimation) and thus considerably more processing time. Each
region ultimately is characterized by a single parameter (neuronal
activity) (Friston et al., 2003; Frässle et al., 2015). DCM is
primarily used for task-based fMRI but can also be applied to rs-
fMRI analyses (Friston et al., 2014a; Razi et al., 2015; Rigoux and
Daunizeau, 2015).

Another method which may be used to investigate effective
connectivity is Granger Causality Mapping (GCM) (Figure 2E).
The process is based upon determining temporal precedence
in neural time-series and infers causality from time-lagged
correlation (Goebel et al., 2003; Friston et al., 2013; Seth et al.,
2015). GCM does not require the specification of an a priori
model, but does have significant limitations imposed by inherent
latency differences in the HRF across different brain regions, low-
sampling rates and noise (Wen et al., 2013). It has been applied
both to task-based (Anderson et al., 2015) and rs-fMRI (Liao
et al., 2011).

Enjoying increasing popularity, Multivoxel Pattern Analysis
(MVPA) uses pattern-classification algorithms (classifiers)
(Haynes, 2015) in the attempt to delineate different mental
states, as well as to correlate the patterns with specific perceptual,
cognitive, or disease states (Figure 2F) (Norman et al., 2006;
Mahmoudi et al., 2012; Premi et al., 2016). In contrast to
the standard GLM approach (focus on patterns of activity
of individual voxels), MVPA incorporates the signal from

the distributed activity or connectivity across multiple voxels
simultaneously, allowing to infer mental states from patterns
of distributed neural activity and the formulation of proper
reverse inferences (Poldrack et al., 2009). Furthermore, enables
a greater sensitivity and specificity, as well as the possibility
to test hypothesis with designs that cannot be implemented
in mass-univariate methods implemented with the standard
GLM approach (Etzel et al., 2013). Another difference between
the approaches relies on the fact that while t-tests model
the complete set of time points, a classification trains on a
subset of data (Coutanche, 2013). MVPA analyses are typically
implemented using a “decoding” approach, which is based on
the use of classifiers, such as neural networks (Polyn et al.,
2005; Nickl-Jockschat et al., 2015), support vector machines
(Meier et al., 2012; Månsson et al., 2015), and linear discriminant
analysis (Cox and Savoy, 2003;Mandelkow et al., 2016), as amean
to differentiate between different classes or groups of individuals.
Despite its popularity in the neuroimaging field, the “decoding”
approach has some limitations, particularly related with the
different results obtained with different parameters and/or
algorithms. An alternative approach, the “searchlight” mapping,
performs multivariate analysis on a spherical “searchlight”
centered on each voxel in turn, resulting in a statistical map of
local multivariate effects (Allefeld and Haynes, 2014), which
can be interpreted similarly to a GLM statistics output map
(Kriegeskorte et al., 2006). MVPA analyses can be applied both
to task-based and rs-fMRI and, with their high sensitivity and
effective use of spatial information, allow pattern detection of
increasingly complex scenarios. On the other hand, the use of
complex and specific classifiers may make it difficult to generalize
the results of employing this technique (Dosenbach et al., 2010;
Cole et al., 2013).

Typical Resting State Analyses Methods
Historically, the first method applied to rs-fMRI was seed-
based correlational analysis (Figure 2G) (Biswal et al., 1995).
The method is based on the activity in an a priori defined
ROI (the seed region) which may be a volume or a single
voxel, which is compared to that in all other voxels in the
brain (Lee et al., 2013). Seed-based analyses are characterized
by simple implementation and statistics and are straightforward
to interpret, but do require an a priori selection of ROI. Such
selection can be optimized using the data itself (Golestani and
Goodyear, 2011). This form of analysis is widely used for rs-
fMRI (each RSN can be extracted from a specific associated ROI),
but can additionally be applied to fMRI tasks (Schurz et al.,
2015) and to PPI analysis, which is in principle a seed-based
analysis.

Regional Homogeneity analysis (ReHo) (Figure 2H)
uses Kendall’s coefficient of concordance to measure the
synchronization between the time-series of each voxel and that
of its nearest neighbors (based on a pre-defined ROI) (Zang
et al., 2004). The ReHo method is easy to implement and
interpret, and is normally applied to rs-fMRI determinations
(Zang et al., 2007; Pedersen et al., 2015). The Amplitude
of Low-Frequency Fluctuations (ALFF) and more recently,
the fractional ALFF (fALFF, which has reduced sensitivity
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to physiological noise), measures signal magnitude on a
voxel by voxel basis (Figure 2I) (Zou et al., 2008). ReHo
and (f)ALFF both are methods which reflect properties
of local spontaneous activity and, because they manifest
different properties of the BOLD signal (synchronization and
amplitude), they are usually implemented as complementary
analyses.

In order to overcome the limitations of model-based analyses,
exploratory data-driven methods, which require neither prior
information nor a previously defined model, have been applied
to fMRI. The three primary techniques are Principal Component
Analysis (PCA), Independent Component Analysis (ICA), and
clustering. PCA is a method built on finding a set of orthogonal
axes (identified as principal components) that can maximize the
explained variance of data and separate the relevant information
from the noise (Figure 2J) (Wold et al., 1987; Viviani et al.,
2005; Abdi and Williams, 2010; Smith et al., 2014). The efficacy
of PCA is strongly dependent on assumptions of linearity,
orthogonality of principal components, and high SNR. It can
be applied both to task-based (Nomi et al., 2008) and rs-fMRI
(Zhong et al., 2009). The method most frequently used for
studies of rs-fMRI FC is ICA (an extension of PCA) (Figure 2K)
(Jutten and Herault, 1991). This processing technique separates
individual elements into their underlying components, and
models the fMRI data set as a constant number of spatially or
temporally independent components, which then are linearly
mixed (Kiviniemi et al., 2003; Beckmann, 2012). For fMRI,
ICA maps are normally generated using spatial ICA methods
(spatially independent components) however temporal ICA also
can be implemented and is used primarily for task fMRI.
Limitations to the use of the technique in the temporal
domain are its high computational demands and necessity of
relying on fewer data points than studies considering spatial
components (Calhoun et al., 2001). ICA generates a set of
spatial maps and corresponding time-courses. The selection
of components of interest is not trivial (in the absence of
an a priori hypothesis) and is usually performed by visual
inspection or correlation with a predefined RSN template.
While straightforward to implement in single-subject analyses,
group ICA analyses are more complex and require choosing
between several different workflows and algorithm definitions
(Beckmann and Smith, 2004; Calhoun et al., 2009; Schöpf et al.,
2010; Du et al., 2016). ICA methods also have been used
extensively in rs-fMRI studies (Beckmann et al., 2005; Soares
et al., 2016), task-based fMRI (Calhoun et al., 2008), and for
artifact removal (Perlbarg et al., 2007; Feis et al., 2015; Pruim
et al., 2015).

The use of clustering methods constitutes a different approach
based on mathematical algorithms that groups data into subsets
(clusters) such that parameters of the same cluster are more
similar to one another than they are to those of different clusters
(Figure 2L). Similarly to PCA and ICA, clustering is a totally
data-driven approach that enables, for example, the grouping
of brain voxels with similar connectivity in the same cluster.
The main difference relies on the fact that ICA assumes that
there are spatially independent regions that form a network
through a shared fMRI time-course, while clustering does not

rely on assumptions and simply groups voxels with similar time-
courses. Clustering methods have been successfully implemented
both with rs-fMRI (Mezer et al., 2009; Lee et al., 2012) and
task-based fMRI (Goutte et al., 1999; Heller et al., 2006). The
major challenges associated are the requirements that the spatial
reproducibility of networks be optimized across subjects and
that individual network homogeneity be maximized (Shams
et al., 2015). Clustering can be implemented using hierarchical
techniques (Cordes et al., 2002), partitional clustering (such as
k-means) (Fadili et al., 2000), spectral clustering approaches
(Craddock et al., 2012), or sparse geostatistical analysis (Ye
et al., 2011). Despite serving similar purposes as ICA, clustering
methods were shown to outperform ICA for classification
purposes (Meyer-Baese et al., 2004).

An increasingly prominent and powerful tool for the study of
functional brain networks is graph theory. These methods model
the brain as a network comprised of nodes (voxels or regions) and
edges (connections between nodes, e.g., time-series correlations).
This enables the establishment of functional interactions between
every possible brain region, constituting an extension of the
seed-based analysis where all possible seeds are explored, also
known as the functional connectome. This whole-brain network
is mathematically modeled as graph and, consequently, graph-
theory metrics can be used to study the topological properties
of such network (Figure 2M). Properties such as clustering-
coefficient, characteristic path length, centrality, efficiency,
modularity, among others, provide insights about functional
integration, segregation, resilience or organization of the network
as whole or of its individual nodes (Reijneveld et al., 2007;
Stam and Reijneveld, 2007; Bullmore and Sporns, 2009). The
approach has been used extensively with rs-fMRI (Wang et al.,
2010; Ye et al., 2015; Marques et al., 2016) and, to a lesser
extent, for task-based fMRI (Cao et al., 2014), where it has
been described as sometimes difficult to implement and interpret
(Fornito et al., 2013). Another approach, which is somewhat
more straightforward to implement, is to characterize the edges
of the graph, rather than to consider the topological properties of
the entire network.

In contrast to most rs-fMRI strategies, which are based on
the assumption of stationarity, dynamic functional connectivity
(dFC) addresses the temporal component (fluctuations) of
spontaneous BOLD signals (Figure 2N). Dynamic FC analysis
has the potential to clarify the constant changes in patterns of
neural activity and may be a more appropriate choice for the
analysis of rs-fMRI studies (Bassett et al., 2011; Cabral et al., 2011;
Madhyastha et al., 2015; Kaiser et al., 2016). The technique can
be implemented using the sliding window correlations approach
(most common) (Hindriks et al., 2016), time-frequency analysis
(Chang and Glover, 2010), single-volume co-activation patterns
(Liu et al., 2013), repeating sequences of BOLD activity (Pan et al.,
2013), or through phase synchronization (Glerean et al., 2012).
A number of limitations associated with the approach include
the initial steps of sliding-window specification and specificity of
pre-processing, as well as its sensitivity to physiological noise and
complexity of the attendant statistical analysis (Hutchison et al.,
2013; Leonardi and Van De Ville, 2015; Tagliazucchi and Laufs,
2015).
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STATISTICAL ANALYSES

In a single fMRI experiment, images made up of roughly 100,000
voxels are acquired from hundreds to thousands of times,
resulting in a massive data set which has a complex spatial and
temporal structure (Figure 1Q).

Group-Level Analyses
In order to make inferences at the group-level (i.e., second-
level), the analyses of fMRI data most widely used are performed
within the GLM framework. In general terms, the GLM approach
models the time series of the fMRI signal as a linear combination
of different signal components, in order to test whether the
activity in a defined brain region is systematically associated with
a particular condition of interest (Lindquist, 2008). The GLM is
expressed as:

Y = X ∗ β + ε

where Y is the observed BOLD response, X corresponds to the
design matrix, β is related with the parameter estimates and ǫ

is the error. Hypothesis testing in the GLM framework include
a set of parametric approaches, comprising the familiar T-Tests
(independent and paired), Multiple Regression and ANalysis
Of VAriance (ANOVA) (Friston et al., 2007). Commonly,
the research question leads to more complex experimental
designs which involve both within-subjects (e.g., condition A
vs. B) and between-subjects (e.g., control vs. experimental
group) factors. More than one within-subjects factor or the
analysis of between-subjects factors, cannot be performed
with the traditional tools in a single model. Even though
most allow the parametrization of such models, the results
can be invalid due to the inherent inability of the tools to
incorporate all the factors into a single model (Chen et al.,
2014). An alternative approach, the GLM Flex tool (Harvard
Aging Brain Study, Martinos Center, MGH, Charlestown,
MA, http://mrtools.mgh.harvard.edu/index.php/GLM_Flex) was
developed. The tool can handle multiple within- and between-
subjects’ factors, while also modeling all the possible interactions
between factors within the same model. Parametric tests are
popular due to their simplicity and ease of application. However,
these tests make some strong assumptions that are minimally
met, or not met at all, in fMRI data sets (e.g., assumption of
normality). As a result, it is often more appropriate to use non-
parametric tests. Such tests estimate the null distribution from
the data itself. The most common non-parametric tests used in
fMRI analysis are permutation (randomization) tests. Tools that
implement such tests include randomize from FSL (Winkler et al.,
2014) and SnPM (Nichols and Holmes, 2002).

Statistical Significance
As in all standard statistical inference, the evaluation of fMRI
data requires the establishment of a criterion for statistical
significance. In early fMRI studies, the commonly-used standard
for statistical significance was an uncorrected p-value of 0.001
at each voxel, a value that is 50 times more restrictive
than that typically used in scientific research (Lieberman and
Cunningham, 2009). In a typical fMRI experiment, more than

100,000 statistical tests may be performed (one test per voxel).
Because this number of determinations is so great, a p <

0.001 would likely produce up to 100 voxels which would be
erroneously identified as significant. Such a false-positive rate
would clearly be unacceptable, so a variety of methods have been
proposed to cope with the multiple comparisons issue. They can
be divided into two main categories: voxel-based thresholding,
including the family-wise error rate (FWER) and the false-
discovery rate (FDR); and cluster-extent based thresholding
(Forman et al., 1995). A widely used method for voxel-based
thresholding consists of using the FWER in combination with
Random Field Theory (RFT). The technique is implemented by
estimating the smoothness of the image, expressed in the number
of resels (image resolution element), since the neighboring voxels
share statistical dependency. Although it can be thought of as
roughly similar to the Bonferroni correction, FWER control
using the RFT approach has a number of unique attributes
and limitations due to the inherent smoothness of fMRI data.
While enabling a great control over type I error, it often is over-
conservative and may prevent true results from being detected
(Hayasaka and Nichols, 2004). The FDR approach, another
popular technique to control false-positives in neuroimaging
studies (Genovese et al., 2002), considers the proportion of
false positives in all the rejected tests. FDR control is less
stringent than FWER and usually results in increased power.
Because this approach is applied to p-values (rather than to
the test statistics themselves) it can be used with any valid
statistical test, but is highly dependent on the sample size.
The most widely used FDR approach to functional imaging
data is the Benjamini-Hochberg (BH) procedure, which assumes
independence between tests (Benjamini and Hochberg, 1995).
Statistical tests in fMRI are known to be dependent, however,
so concern has been raised regarding its applicability (Chumbley
and Friston, 2009; Chumbley et al., 2010). Most common
software tools, specifically AFNI, FSL, and SPM, implement this
type of correction method.

A significant problem associated with conservative
approaches is the increased probability of committing type
II errors (failure to detect true effects), particularly evident with
small samples (Nichols and Hayasaka, 2003). It has also been
postulated that this approach may favor the extraction of more
obvious effects (such as sensorimotor processes), associated with
signals of large magnitude. While failing to capture more subtle
phenomena (such as complex cognitive and affective processes)
often associated with signals of low amplitude (Lieberman and
Cunningham, 2009), cluster-extent based thresholding has been
put forward in order to address some of these shortcomings. It
detects significant clusters based on the number of contiguous
voxels that surpass a pre-determined primary threshold (Friston
et al., 1994b). The main rationale for its use is that adjacent voxels
are more likely to be involved in the same neuronal processes
and thus are not independent (Smith and Nichols, 2009). The net
result is that instead of estimating the false positive probability of
each voxel, this approach estimates the false positive probability
of the region as a whole (Woo et al., 2014). The cluster size
is determined from the sampling distribution of the largest
null cluster size under the null hypothesis of no signal. The
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reasoning behind this correction is based on the observation
that false-positives are randomly distributed and thus are not
likely to occur in contiguous groups of voxels (Woo et al., 2014).
Cluster-extent approaches also are associated with reduced
spatial specificity, describing the likelihood of finding a cluster of
a given size or greater under the null hypothesis. The implication
is that the larger the cluster, the less spatially specific the
inference, though this is often an overlooked aspect of functional
imaging (Woo et al., 2014). The most well-known cluster-size
estimation methods are based on RFT as implemented in SPM,
or on Monte Carlo simulations such as AlphaSim distributed
with AFNI and with the REST toolbox. All these methods
require the definition of an arbitrary primary cluster-defining
threshold. An alternative method, termed threshold-free
cluster enhancement (TFCE), was developed in order to
eliminate the need for the definition of the primary threshold
and is implemented in FSL (Smith and Nichols, 2009), CAT
toolbox (http://dbm.neuro.uni-jena.de/cat/), and MatlabTFCE
(https://github.com/markallenthornton/MatlabTFCE).

Yet another method of performing fMRI statistical analyses
is through the use of specified ROIs. Analyses of this type
are usually performed when the researcher has some a priori
hypothesis regarding a specific brain region, which renders the
previously discussed corrections for multiple comparisons too
restrictive (see Poldrack, 2007 for other rationales). Generally,
ROI analyses lead to an increased sensitivity (signal is average
across groups of voxels) but a false sense of specificity of a
given activation (activity patterns in regions outside the ROIs
are masked out). The simplest approach consists of averaging
the estimates over the voxels from the ROI and then performing
the statistical testing with the averaged estimate. An alternative
method, commonly named Small-Volume Correction (SVC),
consists of restricting the voxel-wise analysis to the voxels inside
the ROI, thus reducing the number of tests required to account
for multiple comparisons corrections. Most software tools, such
as SPM, FSL, and AFNI, contain routines for ROI-based analysis.
The Marsbar tool (http://marsbar.sourceforge.net) for SPM was
specifically developed for this purpose.

Effect Sizes
Contrary to the standard practice in other research areas,
effect estimates (i.e., the effects’ magnitude) are usually not
provided in most neuroimaging reports. A recent publication
highlighted that the statistic value does not provide information
regarding the actual significance of the findings, serving rather
as auxiliary evidence for the existence of the targeted effect. On
the contrary, the effect estimate provides a clear picture of the
property of interest and, consequently should be the focus of
the investigation. For this reason, the absence or misreporting
of effect-sizes has direct implication on the reliability and
interpretability of fMRI findings (Chen et al., 2016). Taking this
into consideration, it is strongly recommended that effect size
maps/images are made available. With this practice, the whole
range of effects and not only significant findings can be used
to compare and properly aggregate effect sizes across different
studies/research centers, and also allowing the use of power
analysis in future studies (Poldrack et al., 2008).

Meta-Analysis
The number of fMRI publications continues to grow
exponentially, but the results are often not consistent across
studies (Radua and Mataix-Cols, 2012). Therefore, the meta-
analysis of functional imaging studies may be essential for the
continued development of new hypothesis about the neural
mechanisms of cognition, emotion, and social processes (Wager
et al., 2007). Individual studies generally provide evidence about
brain activity rather than mental states, weather meta-analyses
can help to identify consistently activated regions related to the
same psychological state (Wager et al., 2007). Neuroimaging
meta-analysis pools statistically significant results and offers
the potential to improve predictive power, to build analytic
tools and models, and to detect emergent properties of neural
systems through large-scale data mining and computational
modeling (Fox P. T. et al., 2014). The methods work by counting
the number of activation peaks in each local brain area and
comparing the observed number of peaks to a null-hypothesis
distribution in order to establish a criterion for significance.
Functional MRI meta-analysis can be performed using either
full statistical parametric maps—image-based meta-analysis
(IBMA)—or the coordinates of significant findings—coordinate-
based meta-analysis (CBMA). Whereas, IBMA captures
consistent patterns of brain activation across studies, even
though these patterns are not identified as significant in
individual studies, neuroimaging studies rarely provide full
statistical parametric maps, which preclude these analyses.
Thus, the majority of analysis aggregating neuroimaging results
relies on CBMA, in which each eligible study included, reports
using standard atlas or template based, 3-dimensional locations
of peak activations. As a result, CBMA only aggregate results
that are reported as significant across studies, and fail to
capture individually non-significant, but consistent findings
across different studies. A number of different algorithms have
been developed for CMBA analyses, including the Activation
Likelihood Estimation (ALE) (Eickhoff et al., 2012), Kernel
Density Analysis (KDA) (Wager et al., 2004), Multi-level
Kernel Density Analysis (MKDA) (Wager et al., 2007), and the
Effect-size Signed-Differential-Mapping (ES-SDM) (Radua et al.,
2012).

MULTIMODAL STUDIES

Collecting multimodal brain data using different neuroimaging
methods has become increasingly popular and is definitely a
future trend, which provides an opportunity to develop a more
global description of brain structure and function (Figure 1R).
A number of different modalities and techniques have been
used to complement fMRI analysis, either simultaneously or
separated in time, and have been reviewed elsewhere (Biessmann
et al., 2011; Uludag and Roebroeck, 2014; Liu et al., 2015a;
Garcés et al., 2016). One particularly powerful approach to better
understanding the brain is to model it as a network of functional
connections between every possible region. The connectomic
paradigm provides the investigator with an effective framework
with which to study how dynamic changes in function are
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related to structural change, and how both are connected
with brain states. Several extensive studies and worldwide
projects [e.g., Human Connectome Project (Van Essen et al.,
2013), Developing Human Connectome Project (http://www.
developingconnectome.org/), Baby Connectome Project (http://
www.fnih.org/what-we-do/current-research-programs/baby-
connectome), or MyConnectome project (http://myconnectome.
org/wp/)] are currently under way and have been enhancing
multimodal approaches by combining fMRI data with structural
information (e.g., diffusion data, volumetric data, cortical
thickness, and voxel based morphometry) (Labudda et al., 2012;
Crossley et al., 2014; Horn et al., 2014; Frank et al., 2016).
Another approach employing complementary methodology
is the combination of fMRI with the recording of brain
electrical activity (electrophysiological response) using either
electroencephalography (EEG) or magnetoencephalography
(MEG) (Bledowski et al., 2004; Vaudano et al., 2012; Tewarie
et al., 2015). Both techniques add improved temporal resolution
to the very good spatial resolution of fMRI (Huster et al.,
2012; Hall et al., 2014; Jorge et al., 2014). Positron emission
tomography (PET) and single-photon emission computerized
tomography (SPECT) both have a long history of providing
fundamental information regarding brain metabolism. Though
lacking the time resolution of fMRI, they complement that
methodology by having the ability to study such parameters
as neurotransmitter-receptor interactions and local glucose
metabolism for longer periods in time (minutes) (Price, 2012;
Sander et al., 2013; Tousseyn et al., 2015). It is possible to
perform fMRI and functional near-infrared spectroscopy
(fNIRS) simultaneously, and such a multimodal approach may
be used to improve the temporal resolution of the former,
thus allowing better correlation of the BOLD signal with local
hemodynamic changes (Steinbrink et al., 2006; Sato et al., 2013).
Inducing small direct currents in the brain using transcranial
magnetic stimulation (TMS) or transcranial direct current
stimulation (tDCS), make possible relatively focal excitation or
inhibition and, when performed concurrently with fMRI, allows
the study of functional interactions (Ruff et al., 2009; Peters et al.,
2013; Weber et al., 2014; Leitão et al., 2015). The rapid growth of
multimodal neuroimaging techniques has triggered the parallel
development of computing methods and workflows capable of
analyzing the resultant complex data sets (for review Liu et al.,
2015b), and has led to the development of several tools dedicated
to this type of study (Casanova et al., 2007; McFarquhar et al.,
2016).

While the primary focus of this guide has been that of
human neuroimaging, it is useful to note that many of the
concepts and strategies described also can be applied to animal
experimentation. The availability of ultra-high field scanners,
capable of achieving very high resolution, has made feasible
the application of fMRI to brains as small as that of a mouse
(Jonckers et al., 2011; Schlegel et al., 2015). Other animals studied
using this technique are rats (Liang et al., 2012; Henckens et al.,
2015), non-human primates (Hutchison et al., 2015; Petkov et al.,
2015), dogs (Andics et al., 2014; Berns et al., 2015), and cats
(Brown et al., 2013; Hall et al., 2016). Translational research
opportunities allow the investigator to develop animal models for
studies which cannot be undertaken in patients or volunteers.

A number of technical issues which must be considered when
designing protocols for animal work are: the impact of higher
magnetic fields and the ability to detect functional contrasts
(Ciobanu et al., 2015); the use, or not, of anesthesia or sedation
and its effects on regional and global brain activity (Kalthoff et al.,
2013; Schlegel et al., 2015); physiological differences between
animals and humans (Kalthoff et al., 2011; Sumiyoshi et al., 2012);
and the fact that relatively few reference templates and atlases are
available for animals (Stoewer et al., 2012; Nie et al., 2013; Papp
et al., 2014).

REPORT AND INTERPRETATION OF
RESULTS

The results reported for a typical fMRI study include such
information as the peak cluster coordinates (in x, y, and z),
cluster size, the multiple comparisons correction method used,
the statistical score (usually T-statistics or Z-values), and the
brain regions of interest labeled with reference to a standard
atlas and/or visual inspection. The correct interpretation of fMRI
results is never straightforward and is dependent upon factors
which range widely from the technical and methodological
to the conceptual and statistical issues. Because there is such
great variation in the manner with which studies are performed
(Lange et al., 1999; Carp, 2012a; McGonigle, 2012), it is critically
important that researchers/clinicians fully describe and report the
methodological details as well as results, thus allowing replication
as well as the potential incorporation of the findings into meta-
analytic studies (Carp, 2012b). Comprehensive guidelines for
reporting an fMRI study (Poldrack et al., 2008), as well as the
principles of open and reproducible research for neuroimaging
(Nichols et al., 2016) have been proposed, and have been
accompanied by the development of a number of databases (Van
Horn and Ishai, 2007; Poldrack and Gorgolewski, 2014; Poldrack
and Poline, 2015). Specific examples of such data pools include
OpenfMRI (Poldrack and Gorgolewski, 2015), ConnectomeDB
(Hodge et al., 2016), Neuroinformatics Database (NiDB) (Book
et al., 2016), or NeuroVault.org (Gorgolewski et al., 2016b).
Effective communication of the results of fMRI investigations
requires that the information has been organized and described
in a clear and straightforward manner, using an unambiguous
ontology (formal description of all terms and syntax) (Burns
and Turner, 2013; Poldrack and Yarkoni, 2016) and format
(Gorgolewski et al., 2016a).

The BOLD signal itself has a number of characteristics which
present challenges to the accurate interpretation of fMRI data
acquired with its use (Aguirre et al., 1998). BOLD responses
are known to vary with different acquisition parameters (Renvall
et al., 2014) and to be highly dependent on the specific parameters
of neurovascular coupling which are known to vary with age,
medication and in certain pathological states (D’Esposito et al.,
2003; Bangen et al., 2009; Di et al., 2013; Tsvetanov et al., 2015).
In addition, the nature of the BOLD signal has been shown to be
affected by a variety of chemical compounds (e.g., caffeine and
alcohol) (Levin et al., 1998; Mulderink et al., 2002; Perthen et al.,
2008) as well as by respiration (Birn et al., 2008) and oxygen level
(Cardenas et al., 2015).
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The fundamental challenge of fMRI research is to draw
conclusions which are completely supported by the data and
which are unbiased. The literature contains numerous examples
wherein foci of static regional activation are interpreted as
associated with specific cognitive functions. Such empirical
conclusions, termed “reverse inference” (Poldrack, 2006) are
based on the implicit assumption that when a region of activation
changes as a function of the performance of a specific task,
that the region whose activity has changed is responsible for
the associated cognitive process. This assumption fails to take
into account either brain compensatory mechanisms (Sack et al.,
2005; Meade et al., 2016) or plasticity (Poldrack, 2000; Colcombe
et al., 2004; Amad et al., 2016). It is now generally accepted that
a more complete description of brain function must include not
only the notion of causality but also recognize the relationship
between interconnected regions (network properties) through
the characterization both of functional specialization (specific
roles played by the different regions) and integration (how the
regions interact with one another) (Van Horn and Poldrack,
2009). For all these reasons, drawing significant conclusions
about mental states from fMRI data is challenging at best
and the use of classification and predictive models such as
machine learning algorithms have increasingly been tasked
for this purpose (Pereira et al., 2009; Dosenbach et al.,
2010).

As stated often throughout this guide, the statistical analysis
of fMRI data is a complex process and great caution must be
exercised when interpreting the experimental results. Questions
have been raised, for example, about whether certain studies
have reported findings able to be supported by the methodology
used and the data obtained. Some studies purport to find
extremely high degrees of correlation between individual
behavioral characteristics (including personality, emotion, and
social cognition) and specific regions of increased brain activity
(Vul et al., 2009). Critics have pointed out that, considering
the degree of methodological imprecision both of fMRI and in
the measurement of individual characteristics, that the reported
results may not be robust (Vul et al., 2009). Another issue is
that of circular analysis, unfortunately seen with some frequency
in functional studies. The issue arises when the data first are
analyzed, subsets of those data selected, and then the same
subsets are re-analyzed to obtain the results (Kriegeskorte et al.,
2009). An fMRI example might be to define a ROI on the very
basis of a statistical mapping which highlights the voxels of
which it is composed in response to a functional activation state
(Kriegeskorte et al., 2009). Such “double dipping,” the use of the
same data for selection and subsequent selective analysis, results
in an invalid statistical inference. It violates the criterion that
the test statistics must be inherently independent of the selection
criteria under the null hypothesis.

CONCLUSIONS AND FUTURE
DIRECTIONS

Functional MRI currently is enjoying popularity in the study of
brain function and promises to become even more prominent

in the future. A number of factors contributing to the
optimism about the expanding role of fMRI in neuroscience
include: greater understanding of the BOLD and other contrast
mechanisms; higher resolution and increased sensitivity; the use
of new, more optimized preprocessing and analytic techniques;
more powerful computational models; and extensive data
sharing, enabling the design of studies comprised of large
numbers of participants. Strategically, functional neuroimaging
appears to be moving from the description and characterization
of brain states toward predictive models of function based on
the whole brain network. It is hoped that such models will
incorporate behavioral features, genetic factors and biomarkers
and will evolve to play an increasingly prominent clinical role
in diagnosis, monitoring, and treatment of central nervous
system disorders. In order to contribute to future progress,
this article has sought to highlight the typical challenges faced
when performing fMRI studies, and to offer some practical
strategies with which they may be overcome. We have provided
guidelines and references for the tools most commonly used
at each step of the principal fMRI pipeline. As a concluding
remark, we outline a set of general recommendations that we
consider to be of upmost relevance for a better transparency
and reproducibility of neuroimaging studies: before the study,
perform a suitable experimental planning, including a proper
design, power analysis (e.g., use the reported estimates as a means
to estimate the adequate sample size) and identify the specific
targets and analyses to be implemented; during the study, define
the adequate acquisition protocols, identify as soon as possible
and prevent the potential artifacts (in order to avoid losing data),
carefully check the quality of the data, perform an accurate
preprocessing, analysis and statistical testing and organize all the
information in a standardized way, preferably with open-source
software; after having the results, discuss them with caution,
report them as well as the methodological details with great
detail and following the guidelines (allowing study replication)
and share the full statistical maps ideally in open repositories
(allowing meta-analyses and power analyses for other similar
studies). It is our hope that this guide will be of assistance both
to those beginning to explore the potential of functional imaging
as well as those who might appreciate a source book of current
practice.
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