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The combined effect of fundamental results about neurocognitive processes and

advancements in decoding mental states from ongoing brain signals has brought forth

a whole range of potential neurotechnological applications. In this article, we review

our developments in this area and put them into perspective. These examples cover

a wide range of maturity levels with respect to their applicability. While we assume we

are still a long way away from integrating Brain-Computer Interface (BCI) technology in

general interaction with computers, or from implementing neurotechnological measures

in safety-critical workplaces, results have already now been obtained involving a BCI as

research tool. In this article, we discuss the reasons why, in some of the prospective

application domains, considerable effort is still required to make the systems ready to

deal with the full complexity of the real world.

Keywords: Brain-Computer Interfacing (BCI), electroencephalography (EEG), covert user states,machine learning,

mental workload, video quality, implicit information, cognitive neuroscience

1. INTRODUCTION

Since the discovery of electrical brain activity and the invention of the Electroencephalogram
(EEG), byHans Berger in 1924 (Berger, 1929), there have beenmany ideas and dreams about how to
exploit this access to the center of human thoughts and emotions and the control of actions. Gray
Walter developed the toposcope in 1951 which visualized rhythmic brain activity in 22 spatially
laid out cathode ray tubes, each of which showing amplitude and phase in spiral displays (Walter
and Shipton, 1951; Bladin, 2006). In the 1960s, realtime EEG was used in artistic performances
(e.g., Lucier, 1965; Straebel and Thoben, 2014) and for neurofeedback training (Kamiya, 1969).
The latter laid the foundation for possible clinical applications by neurofeedback (Sterman and
Friar, 1972). This research led to the idea that human intentions could be transmitted directly
from brain to computer (Vidal, 1973). By voluntarily acquiring certain mental states, the user of
such a Brain-Computer Interface (BCI) could communicate or control a technical device while
circumventing the need for any muscular activity (Dornhege et al., 2007; Wolpaw and Wolpaw,
2012). Clinical application has been the principal goal of BCI research for about four decades (Elbert
et al., 1980; Kübler et al., 2005; Shih et al., 2012; Faller et al., 2014; Gallegos-Ayala et al., 2014; Hill
et al., 2014; Morone et al., 2015; Soekadar et al., 2015).

In the last decade, the potential of non-medical applications of BCI technology has increasingly
drawn renewed attention (Müller et al., 2008; Blankertz et al., 2010; van Erp et al., 2012). Two of

http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org/Neuroscience/editorialboard
http://www.frontiersin.org/Neuroscience/editorialboard
http://www.frontiersin.org/Neuroscience/editorialboard
http://www.frontiersin.org/Neuroscience/editorialboard
https://doi.org/10.3389/fnins.2016.00530
http://crossmark.crossref.org/dialog/?doi=10.3389/fnins.2016.00530&domain=pdf&date_stamp=2016-11-21
http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Neuroscience/archive
https://creativecommons.org/licenses/by/4.0/
mailto:benjamin.blankertz@tu-berlin.de
mailto:klaus-robert.mueller@tu-berlin.de
https://doi.org/10.3389/fnins.2016.00530
http://journal.frontiersin.org/article/10.3389/fnins.2016.00530/abstract
http://loop.frontiersin.org/people/17744/overview
http://loop.frontiersin.org/people/17505/overview
http://loop.frontiersin.org/people/38964/overview
http://loop.frontiersin.org/people/17507/overview
http://loop.frontiersin.org/people/171979/overview
http://loop.frontiersin.org/people/284695/overview
http://loop.frontiersin.org/people/17508/overview
http://loop.frontiersin.org/people/4885/overview


Blankertz et al. BCIs Beyond Communication and Control

the five application scenarios defined in the roadmap of
brain/neural-computer interaction (BNCI Horizon 2020, 2015;
Brunner et al., 2015), primarily target non-medical areas. The
enhance scenario comprises applications that enhance human
functions or user interactivity by adapting the device to their
momentary mental state, for example, and by exploiting implicit
information about the user’s intention. The research tool scenario
utilizes real-time analysis of neural signals to investigate and
understand brain and cognitive functions.

In this review, we deliberately focus on certain developments
that we discuss in some detail. We hope that this focused view
on our own work will nevertheless be of use to the interested
reader and still provide a broad account of the developments of
BCI-enhanced neurotechnology. We leave aside a wide range of
other relevant research, though it is no less important, pointing
here exemplarily just at a few: One potentially interesting aspect
for enhancing human-computer interaction is the possibility of
predicting the subject confidence of participants (Graziano et al.,
2015). Research on memory encoding processes is converging
toward the feasibility of predicting the success of memorization
by observing brain signals before and/or during encoding
(Noh et al., 2014; Cohen et al., 2015). An elaboration of
these techniques toward online prediction based on single-trial
data would have interesting applications in adaptive learning
software. A collective computer game was used to collect data
sets from 523 participants in a single night who controlled an
immersive art environment with the mental states of relaxation
and concentration (Kovacevic et al., 2015).

2. OVERVIEW OF THE APPLICATIONS

Since our first review (Blankertz et al., 2010), 6 years have passed,
bringing a wealth of novel developments. In this article, we
review a selection of our research in this direction. Unlike inmost
medical applications, these approaches do not employ BCIs to
let the user consciously transmit information to the computer.
Instead, they use BCIs to infer covert user states and implicit
information.

2.1. Types and Components of Brain
Signals Being Exploited
Brain signals are either of the exogenous type, in which
corresponding processes are elicited by external stimuli, or they
are endogenous, originating from the participant independently
of external events. Examples of endogenous brain signals include
preparatory signals, such as the readiness potential (RP) and
ongoing oscillations, like the alpha rhythm of the visual cortex.
The exogenous signals that originate from the cortex can be
roughly divided into those that are as being perception related,
e.g., the visual evoked potential (VEP), the N1–P2 complex, and
the steady-state visual evoked potential (SSVEP) or as being
related to cognitive processes such as the P300 or the late
positive component. The BCI applications that are reviewed
here exploit all of these different types of brain signals—
sometimes they are used in combination, sometimes just one
alone.

2.2. Stratification of Use Cases
2.2.1. Type I: BCI as a Tool for Research
BCIs can provide an instantaneous estimate of the mental state
and processing of an experimental subject. This possibility offers
novel opportunities for (notably non-BCI-related) research. In
Section 7, we show how closed-loop technology can be harnessed
to study the relationship between preparatory signals (the RP)
and corresponding actions—particularly the vetoing of such
actions—and how it can thereby contribute to a fundamental
question in cognitive neuroscience. The studies reviewed in
Section 8 similarly target research questions in a different
domain: the cognition and processing of music. In contrast to
previous studies, it is not the real-time aspect that is exploited
here, but rather the increased sensitivity to the methods that have
been developed in BCI contexts. These algorithms enable a step
forward in the analysis of music perception from fundamental
studies with artificial and repeated stimuli toward investigating
more natural behavior in music listening.

2.2.2. Type II: BCI as a Tool to Improve Devices,

Interfaces, or Infrastructure
By providing brain-based measures while a participant is using
a certain interface or product, or is interacting in a certain
environment, one can assess and compare different variants
and settings. A navigation system for a car may be tested and
optimized with respect to how little it distracts the driver from
the driving task as quantified by neural measures of workload
or focused attention (Kohlmorgen et al., 2007; Blankertz et al.,
2010). This is an example of an effect about which it is
difficult to obtain reliable and unbiased measures through means
such as questionnaires. The quantification of mental workload
under real world conditions, however, is still a challenge for
neurotechnologies. This ability would open an attractive range
of applications. Section 5 presents some novel data analysis
techniques that can be useful in this context. A workload
index could also be employed to assess safety-critical aspects
of infrastructure, such as harbors and bridges that require
demanding maneuvers (Miklody et al., 2016).

An example of this application type in a quite different domain
is given in Section 4. Visual perception of slight distortions in
videos is probed and quantified as SSVEP amplitude, giving rise
to a potential means of assessing the quality of video codecs. We
contrast this approach with alternatives that employ cognitive
event-related potential (ERP) components.

2.2.3. Type III: BCI as a Device to Enhance or

Facilitate Human Actions
The direct control of computer applications with a BCI does
not seem to be a realistic objective for healthy users. Yet some
mileage could well be gained from using a BCI to obtain
implicit information from a user during computer use. Added
to the explicit information the computer obtains during an
interaction, such implicit information should enable computers
to understand human users better.We summarize studies dealing
with various aspects of such implicit interactions in Section 6.

Section 3 explores the potential of BCI technology to provide
information about an intended action before its execution. This
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potential is exemplified in the prediction of emergency braking
when driving. A similar methodology is used in Section 7 as
described above. But whereas the allter[PS1] use case exploits
endogenous signals only, the prediction of emergency braking
is based on a combination of different components, including
perceptual and cognitive exogenous signals. For potential
applications of the possibility of speeding up actions with BCIs,
however, one needs to consider that this by-pass bears the risk of
triggering actions on premature intentions and that it eliminates
the possibility of vetoing the respective action in the last moment.
This aspect is backed by the results reviewed in Section 7.
The techniques for establishing a neural workload index, as
mentioned above, may also be employed in a closed-loop fashion.
Section 7 demonstrates such a type of application in the context
of adapting working environments to the human factor.

2.3. Comparisons of the Categories of Use
Cases

Type I. The use of BCIs as a tool for research is an easier case,
in several ways. Experiments are conducted under laboratory
conditions, complexity is often reduced to one variable of
interest, standard EEG equipment with lengthy preparation times
does not pose a serious problem, and it is not problematic
if the system does not work for all participants. Still, specific
requirements of a given use case can make the enterprise a
challenge. In this category, the end users of the BCI are the
researchers.

Type II. Using BCI technology in this way seems realistic in
the medium term. The scenarios are often complex (e.g., driving
a car), with mingled interactions between various perceptual
and cognitive processes, calling for advanced decoding methods.
On the other hand, there is no strict requirement for an easily
deployable setup, the experimental conditions are somewhat
controlled, and the experimental subjects can be selected
according to the decodability of the given brain processes
(provided that the selection criterion does not imply a bias
with respect to the subject of investigation). Applications in this
category mostly do not critically rely on the real-time aspect. In
this case, the end users are the companies that develop the devices
or interfaces, as well as the institutions that are responsible for the
infrastructure.

Type III. BCI applications in this category are mostly
rather far-reaching. The concepts are not yet ready for the
dynamics and complexity of the real world, the measurement
devices need to be easily deployable, yet also to provide
robust signals, and the system should work preferably for
anyone, as all human beings[PS3] are the end users in this
category.

3. DETECTION OF EMERGENCY BRAKING
INTENTION DURING DRIVING

This section summarizes two studies that investigate the
possibility of predicting upcoming emergency braking from
neural signals. The method makes use of exogenous ERPs related
to perception and cognition in combination with an endogenous

signal that indicates the preparation of a movement. We discuss
potential benefits and caveats.

3.1. Context: Neurotechnology in the
Context of Driving a Car
Neurotechnology can detect specific brain states before they
reach consciousness and before they trigger behavioral actions
(Section 7). Neuroergonomic approaches are therefore of interest
for increasing our understanding of physiological aspects in time-
and safety-critical applications, because a potentially dangerous
situation may be detected before the user is aware of it and/or
able to respond to it. In this section, we explore the feasibility
and utility of this approach in driving a car. Kohlmorgen
et al. (2007) and Dijksterhuis et al. (2013) study EEG correlates
of mental workload during real-world and simulated driving,
while (Kecklund and Åkerstedt, 1993; Papadelis et al., 2007;
Schmidt et al., 2007, 2009; Gugler et al., 2010; Simon et al.,
2011; Sonnleitner et al., 2012) study fatigue and attention
during monotonous real-world driving. Reaction time in lane
changing tasks has been investigated with EEG (Zhang et al.,
2015a). Further studies demonstrate the detection of error and
anticipatory potentials that could potentially be harnessed to
increase driving safety (Khaliliardali et al., 2015; Zhang et al.,
2015b). In emergency situations caused by obstacles on the
road, drivers need to react quickly by braking. Such events
lead to a cascade of mental responses from the perception and
evaluation of the emergency-inducing stimulus to the activation
of the lower limb muscles initiating the release of the gas pedal
and the activation of the brake pedal. Due to the latencies
inherent in motor responses, and due to the complexity of the
required movement, the time spent between the stimulus and an
effective deceleration of the vehicle can easily be on the order
of 1 s, even if the decision to brake is made several hundred
milliseconds earlier. This delay has led to attempts to retrieve the
driver’s braking intent earlier, which can be done by considering
additional behavioral inputs such as gas pedal release, steering
angle, foot position, and head movements (McCall and Trivedi,
2007; Trivedi and Cheng, 2007). Neuroergonomic approaches
have the potential to prompt the user’s decision even earlier—
at the time of its very emergence—by tapping directly into the
brain. This extra timemight in principle either be used to prevent
crashes through automatic braking, or to perform preparatory
measures aimed at mitigating the impact of a crash through an
automated response such as tightening the seat belts.

3.2. Two Studies on Predicting Emergency
Braking
The first study to describe such a system was Haufe et al. (2011).
In a driving simulator, N = 18 participants were instructed
to follow a computer-controlled vehicle. The distance between
vehicles was 20 m; the speed was 100 km/h. Occasionally (20–
40 s inter-stimulus-interval, randomized), a rapid braking of the
leading vehicle would induce an emergency braking situation. In
order to avoid a crash, participants were required to perform
immediate emergency braking in these situations. The onset
of the lead vehicle’s braking (and brake light flashing) is here
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referred to as the stimulus. The experiment comprised three
blocks (45 min each) of driving with 10–15 min periods of rest
in-between.

The authors measured myoelectric (EMG) activity using two
bipolar electrodes located at theM. tibialis anterior and the knee
of the right leg, as well as electroencephalography (EEG) from
64 scalp sites (nose reference). Behavioral and technical data—
including brake and gas pedal deflections, the acceleration of
the participant’s vehicle, and the distance between vehicles—were
alsomeasured and synchronized with the physiological data. This
yielded a multivariate, multi-modal time series from which the
segments reflecting induced emergency situations and normal
driving periods, respectively, were extracted.

Using univariate analysis, the authors discovered a
characteristic event-related potential (ERP) signature preceding
executed emergency braking in the EEG data. They then
used multivariate machine learning to compare the predictive
power (derived by distinguishing emergency braking from
normal driving episodes) of a system utilizing all measurement
modalities to systems either omitting EEG, EMG, or both. The
study was later replicated with N = 20 subjects in a real car on a
non-public test track (Haufe et al., 2014a).

Figure 1 depicts the event-related potentials that are
characteristic of forced emergency braking. In both studies, a
spatio-temporal ERP complex composed of the three overlapping
subcomponents was observed: an early symmetric negative
deflection in occipito-temporal areas, a negativity at central
scalp sites, and a positive deflection in centro-parietal areas. The
early occipital negativity is a visual-evoked potential (VEP) that
can be attributed to low-level processing of the flashing of the
brake light of the leading vehicle, which initiates the emergency
situation. Higher-level processing of the importance of this
flashing is reflected in the later centro-parietal positivity (P300).

The late central negativity amounts to the readiness potential
(RP), which reflects the motor preparation and execution related
to pressing the brake pedal.

Figure 2 shows the detection accuracy of single-trial braking
intention using a multivariate classifier as achieved on hold-
out data and measured using the area under the curve (AUC)
score. The classifier was evaluated at each stage of emergency
braking between 0 and 1200 ms post-stimulus using data from
the preceding 1500 ms. Without the EEG and EMG channels,
the performance significantly dropped between approximately
200 and 1000 ms post-stimulus in both studies, indicating
that EEG and EMG contain important information about the
driver’s intention that is not available in the combined remaining
channels in the early stage of dealing with an emergency.

3.3. Conclusion and Outlook
Summarizing, Haufe et al. (2011) showed that EEG and EMG
recordings reach the predictive accuracy of behavioral channels
at earlier stages of the emergency situation. Their laboratory
results were reproduced during real-world driving (Haufe et al.,
2014a), demonstrating that well-designed simulator studies can
be a useful proxy for real world studies. The results have also been
confirmed under more diversified traffic conditions (Kim et al.,
2014; Khaliliardali et al., 2015).

The robustness of our findings motivates the use of
neuroergonomic approaches to driving assistance. Such a system
may detect a driver’s intention to brake before any of their
actions become observable, andmay thereby reduce the time after
which appropriate action can be carried out. Haufe et al. (2011)
evaluated a simplistic implementation of an online emergency
braking detector in their simulation environment, and estimated
that the time that can be saved by the system is around 130 ms.
At 100 km/h, this amounts to a reduction of the braking

FIGURE 1 | Grand-average stimulus-aligned EEG responses to forced emergency braking during real-world (upper panel) and laboratory driving

(lower panel). Potentials are visualized as topographical maps of grand-average ERPs in five temporal intervals. The stimulus onset (t = 0 ms) is the time of the brake

lightbrake light flashing of the lead vehicle. Figure taken from Haufe et al. (2014a) with permission.
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FIGURE 2 | Grand-average area under the curve (AUC) scores calculated from the outputs of linear classifiers that were optimized to distinguish

normal driving intervals from stimulus-aligned target intervals representing different stages of emergency braking situations. STIM denotes the onset of

braking (brake light flashing) of the lead vehicle. Thick lines represent the results of the real-world driving study (Haufe et al., 2014a), while thin lines represent results

obtained in the driving simulator study of Haufe et al. (2011). The distribution of pooled braking response times in both datasets is indicated by box plots showing the

5th, 25th, 50th (median), 75th, and 95th percentiles. Classification was based on (spatio-) temporal features observed prior to the decision points. Performance of

combinations of modalities. Blue: EEG+EMG+Gas+Brake (electrophysiological and behavioral channels). Red: Gas+Brake (only behavioral channels). The intervals, in

which the inclusion of electrophysiological channels significantly improved classification accuracy are marked as square boxes (no filling for simulated driving, light gray

filling for real-world driving). Figure taken from Haufe et al. (2014a) with permission.

distance by 3.66 m. With respect to practical implementation,
another aspect has also to be considered. While anticipatory
brain signals allow for an early prediction of an action, they do
not necessarily reflect the final decision as shown in the study
discussed in Section 7. In the presence of motor predictive brain
signals, the participant may still change their mind and cancel
the movement or act differently. In the scenario of emergency
situations, this could be caused by the insight that under the
given condition the avoidance of an obstruction might be a better
option than braking.

4. EEG-BASED CLASSIFICATION OF VIDEO
QUALITY PERCEPTION

By the virtue of a specific experimental paradigm, the watchers’
SSVEP amplitudes weremodulated by degradations in the quality
of videos. Classification methods derived neural indices that
correlated with the mean opinion scores (MOS) given by the
participants in the standard behavioral assessment, giving rise to
a new approach to video quality assessment.

4.1. Context: Brain-Guided Quality
Assessment
As we elaborated in our first review (Blankertz et al., 2010), there
is a good outlook for using neurotechnology in usability studies
because it allows for an effortless continuous acquisition of
usability parameters without requiring any action on the part of
the user. It may also include aspects that are difficult to quantify
objectively with conventional methods and access variables

unknown to the test subjects themselves. In a similar vein,
neurotechnology may prove useful for the quality assessment of
such multi-media content (Moldovan et al., 2013; Antons et al.,
2014). Such an approach may capitalize on neural correlates
of perceptual or cognitive processes. The assessment of audio
quality based on EEG was pioneered in Porbadnigk et al. (2010).
Their results showed that the methodology taken from BCI
research has the potential to detect changes in the brain signals
of listeners, who were presented with audio signals that had
quality degradations below the threshold of perception, (cf. also
Antons et al., 2012; Porbadnigk et al., 2013). This demonstrated
an increased sensitivity compared to behavioral measures, which
was also found in studies on the visual domain (Porbadnigk
et al., 2011). In this section, we review studies investigating the
neurotechnology-based assessment of video quality with the aim
of improving video codecs.

4.2. Studies on Neural Measures of Video
Quality
For the transmission of video signals at today’s high bit rates,
video codecs usually employ high levels of compression, which
might introduce distortions visible to the human eye. It is
therefore desirable to measure the perceived distortions through
the assessment of the visual quality of compressed video. This
assessment is usually done through so-called mean opinion
scores (MOS) that are obtained through questionnaires, in which
participants are asked to rate the quality of a visual stimulus
on a rating scale (ITU, 2002, 2008). These behavioral tests
have many limitations, including large inter-subject variance and
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the requirement of a high number of participants to achieve
statistical significance. The judgment of the participants can
also be biased by several factors not related to the quality of
the stimulus itself. In recent years, therefore, there has been
increasing interest in investigating novel paradigms for video
quality assessment through the direct measurement of neural
activity via EEG (Hayashi et al., 2000; Babiloni et al., 2006; Arndt
et al., 2011; Lindemann et al., 2011; Mustafa et al., 2012; Arndt
et al., 2014; Kroupi et al., 2014).

The authors of Scholler et al. (2012) used an experimental
design that capitalized on the ERP component P3 to quantify
the perception of the human observer when being confronted
with a change in video quality. As stimuli, they showed 8 s video
clips based on a synthetic image of a textured checkerboard,
which was deformed over time by simulating a swaying water
surface on the top. The quality change was introduced by
lossy compression, while its magnitude was controlled by the
quantization parameter of the video coder. Participants had to
acknowledge the perception of the quality change via button
press. They found that quality changes elicited a P3 component
that was positively correlated with the magnitude of the change,
which could be classified on a single-trial basis using LDA. They
report a single-trial classification with AUC-values close to 1 for
the highest level of distortion in most subjects, referring only
to trials correctly identified by the participants at the behavioral
level. They also report, for three participants, an average 65%
accuracy in classifying the trials in which the quality change was
present but not detected by the subjects, advancing the hypothesis
of higher sensitivity of the EEG compared to the behavioral
response.

All the previously mentioned studies are based on the
detection of the P3 component, which is a cognitive ERP
not directly linked to sensory processing. Complementarily,
we investigated a paradigm based on Steady-State Visual
Evoked Potentials (SSVEPs) that reflect perceptual processes. The

basic suitability of the SSVEP-based design for video quality
assessment has been demonstrated (Norcia et al., 2014). Here, we
review a systematic follow-up study (Acqualagna et al., 2015).

As stimuli, six gray-level natural images in six levels of
degradation (corresponding to six compression rates) were used.
The degradation levels were controlled by the quantization
parameter, as in Scholler et al. (2012). The experiment comprised
51 videos in which all the textures in all the levels of degradation
were displayed (Figure 3). The original and distorted textures
were presented in alternating order with a stimulus onset
asynchrony (SOA) of 333 ms (i.e., at a frequency of 3 Hz). The
flickering effect of the sequence of quality changes caused the
elicitation of SSVEPs in the occipital cortex, the amplitude of
which increased with increased distortion levels.

In the first approach, single VEPs of the steady-state signal
were classified using spatio-temporal features (Blankertz et al.,
2011) applied to epochs without and with a time-lag of 160ms
(Figure 4, left). Single-trial classification achieved an average
maximum AUC of 0.84 for the maximum distortion level.
Figure 4 (right) shows that the first three distortion levels (D1–
D3), which were chosen to be below the threshold of perception,
did not modulate the SSVEPs and classification stayed at chance
level. Further on, classification performance linearly increases
with the distortion level. AUC scores significantly linearly
correlated with MOS-values for all the participants (p < 0.01).

The same trend was obtained for the classification of spectral
features at 3 and 6 Hz (i.e., the frequencies of the EEG spectrum
that showed the highest modulation). CSP filters were calculated
on the training data between the epochs referred to themaximum
distortion level (D6) and those referred to the original textures
(D0). CSP filters were then applied on the test data for all
distortion levels. Features consisted of the log-variance of the CSP
filtered data. Epochs locked to the distorted textures (D1–D6)
were classified vs. epochs locked to D0 using LDA, achieving the
maximum average AUC of 0.74 for D6.

FIGURE 3 | SSVEP-based paradigm for video quality assessment. Each video comprised the six textures presented in all the levels of distortion (D1, ... , D6) in

random order. Each texture was displayed distorted for 333 ms, followed by the undistorted form for 333 ms (D0) and the same succession was repeated four times

for each level. Figure adapted from Acqualagna et al. (2015) with permission.
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FIGURE 4 | Single-trial classification of VEPs based on spatio-temporal features. (A) Grand average brain activity over all participants at channel Oz, at

maximum distortion level D6. The magenta line represents “Class 1” and the gray line “Class 2.” Scalp plots underneath refer to the shaded areas in the time plot and

display the magnitude of the sign− r2 for each channel. (B) Classification performances using shrinkage LDA for all participants (colored lines) and mean (black thick

line). Figure adapted from Acqualagna et al. (2015) with permission.

4.3. Concluding Remarks
Importantly, this study showed that an SSVEP-based paradigm
allows a much quicker collection of trials than previous P3-
based paradigms for quality assessment. The results of the neural
assessment also correlated significantly with the MOS-values.
The study thus demonstrated that an SSVEP-based video quality
assessment can be considered a viable complement to behavioral-
based assessments and a presumably faster alternative tomethods
based on the P3 component. For further details about the study
and complementary analysis, please refer to Bosse et al. (2014,
2015) and Acqualagna et al. (2015). More generally, the results
indicate the utility of the brain-based approach for usability
testing and related quality assessment.

5. ADVANCED MONITORING OF
WORKLOAD

This section reports methodological advancements in the context
of brain-based mental state monitoring (Blankertz et al., 2010)
and neuroergonomics (Mehta and Parasuraman, 2013). We
take the estimation of the so-called operator workload as an
application scenario, although the methodology is much more
widely applicable. We explored estimates based on spectral
features of endogenous brain rhythms that differ with respect
to the label information required for training, including entirely
unsupervised approaches. The explored estimators also differed
with respect to the level at which the spectral features are
extracted, thereby comparing traditional single-channel based
approaches to approaches that employ recent advances in spatial
filtering methods (Schultze-Kraft et al., 2016b).

5.1. Context: Neuroergonomics and
Physiology of Operator Workload
Many work places with high levels of automation require human
operators to perform monotonous but attention-demanding
tasks, such as driving and air traffic control, or as in industrial
contexts. In such work environments, the demand for high levels
of alertness can lead to an overload of the human operator,
which in turn can have critical consequences for health, safety,
and efficiency. An assessment of the operator’s workload (Gevins
et al., 1995; Gevins and Smith, 2003) can be utilized to prevent
overload and can lead to adaptive systems that automatically self-
regulate the level of human-machine interaction (Pope et al.,
1995; Prinzel et al., 2003; Parasuraman and Wilson, 2008).
Another area of application is in training procedures, in which
displaying the current workload level to the trainer as well as
to the trainee her/himself is expected to facilitate learning or to
make the alignment of difficulty levels to the trainee’s progress
more efficient (Borghini et al., 2016). This possibility has been
explored for pilots (Borghini et al., 2013), air traffic controllers
(Di Flumeri et al., 2015), and shipmasters (Miklody et al., 2016).
The technique could similarly be used to improve infrastructure,
by testing, for example, which features of streets, harbors, and the
like require maneuvers that are likely to induce high workload.

The human EEG has been shown to provide reliable
estimators of workload, based on the fact that changes in
workload are associated with characteristic modulations in the
power of oscillatory activity in particular frequency bands of
the EEG (Buzsáki and Draguhn, 2004). The most prominent
frequency bands with power changes related to workload are
theta (4–7Hz) and alpha (8–12Hz). Theta power has been shown
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to be positively correlated with workload, most notably in frontal
regions (Gevins et al., 1998; Smith et al., 2001; Holm et al., 2009),
whereas alpha power is typically found to be negatively correlated
with workload, in parietal regions in particular (Gevins and
Smith, 2003; Holm et al., 2009). This effect cannot be expected
in general, however, as these results refer to the visual modality
only (see the discussion Section 9).

5.2. Study Comparing Methodologies for
Estimating Workload
The experiment setup in Schultze-Kraft et al. (2016b) was
designed to emulate an industrial working scenario in which an
operator performs tasks requiring a continuous effort of visual
and motor processing with alternating difficulty. Ten healthy
male subjects, aged 26–40, participated in the experiments.
Subjects were instructed to carry out a task on a 21-inch touch
screen lying on a table in front of them (Figure 5A).

The task was designed as a computer game in which objects
consisting of three vertically aligned screws (screw triplets) were
falling from random positions at top of the screen and had to be
caught in a bucket at the bottom of the screen. Subjects could
move the bucket horizontally by sliding it with one of their
index fingers. The coloring of the bucket could be adjusted by
touching colored buttons that were positioned on either side of

the screen. The catching task was further complicated by the
constraint that the coloring of the bucket had to match the
coloring of a screw triplet before catching it. Not catching a screw
triplet was considered an error and so was catching a triplet
with a color scheme that did not match the color scheme of the
bucket. In the low workload condition (L), the interval between
falling screw triples was constant, whereas in the high workload
condition (H) the intervals were shorter and were randomly
varied. The experiment was conducted in four runs, where each
run lasted 24min and consisted of alternating low and high
workload blocks, with each block lasting 90 s. See Figure 5B for
the experimental design.

In addition to 64-channel EEG, we also determined task
performance (error rate) and measured the following peripheral
physiological measures (PPM): respiratory frequency, cardiac
frequency, and electrodermal response. See Figures 5C–F for the
task-induced effects on error rate and PPMs. Switching from low
to high workload induced consistent and significant increases in
error rate and all PPMs.

In order to classify (or predict) workload levels, we compared
six different predictive models. Three of them are based on
spectral features at channel-level, whereas the other three
used specific data-driven spatial filters. In the channel-level
approaches, spectral features are computed for each recording

FIGURE 5 | Experimental task and impact of the experimental paradigm on task performance and peripheral physiological measures (PPM). (A)

Snapshot from one of the experiments showing a subject playing the game on the touch screen. (B) Block structure of the experiment. Participants performed four

runs of 24 min, each consisting of 90-s blocks of alternating low (L) and high (H) workload conditions. (C) Error rate. (D) Respiratory frequency in breaths per minute.

(E) Cardiac frequency in beats per minute. (F) Electrodermal response in Galvanic skin potential. Shown are the grand averages of the mean over all L–H block pairs.

The light blue shadings indicate the standard error of the mean. Due to large inter-subject differences in the average of the PPMs, the grand average and standard

error were computed after subtracting the mean in the indicated bar. Thus, the plotted values represent changes from this baseline. Figure taken from Schultze-Kraft

et al. (2016b) with permission.
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channel separately. In the spatial-filter-level approaches, the
data are first projected onto a set of optimized spatial filters.
Spectral features are then computed based on the output of
the spatial filters. Each of the channel-level and spatial-filter-
level approaches fall into one out of three sub-categories,
depending on the amount of information required by the
approach. These sub-categories include (a) use of binary class
labels (classification models, tag cfy), (b) use of a continuous
error measure (regression models, tag regr), and (c) no
use of a supervision signal at all (unsupervised models, tag
unsup). In the classification models, spectral features were
combined using regularized linear discriminant analysis (LDA)
in combination with binary labels. In the regression models,
spectral features were combined using regularized least-squares
regression (LSR) in combination with the subject’s error rate
as a supervision signal. Finally, the output of the unsupervised
models was simply the difference between theta and alpha
features (Power diff). These three sub-categories represent a
progression from (a) controlled laboratory conditions in which
full label information is available to more realistic settings in
which either (b) only a proxy-variable, such as the error rate is
available, or (c) no external information about the variable of
interest is available at all. This last scenario requires assumptions
about the nature of the expected spectral changes in the EEG,
which, in our case, is associated with workload (Gevins et al.,
1998; Gevins and Smith, 2003; Holm et al., 2009).

Matching the level of additional information provided,
we employed the following spatial filter methods. For the
classification model, we used the Common Spatial Pattern (CSP)
algorithm (Fukunaga, 1990; Koles, 1991; Blankertz et al., 2008)
to train the spatial filters. For the regression model, we used the
Source Power Co-modulation (SPoC) algorithm (Dähne et al.,
2014a). For the unsupervised model, we used the canonical
Source Power Co-modulation (cSPoC) algorithm (Dähne et al.,
2014b). While CSP is a well-established method in the field
of BCI, SPoC, and cSPoC represent recent advances in the
development of spatial filtering methods. See Dähne et al. (2015)
and Fazli et al. (2015) for further information on the background
of these methods.

Figure 6A shows the mean classification accuracies for the six
models, averaged across subjects. Both groups of models, with
andwithout spatial filtering, show a decrease of performance with
a decreasing amount of exploited label information. Between the
groups, models using spatial filtering show a clear advantage that
becomes greater the smaller the amount of label information
that is available: 3.8% (CSP), 4.2% (SPoC), and 8.2% (cSPoC),
compared to the respective channel-based method.

Given the modulation of PPMs by the workload condition
(Figures 5C,D) and given that PPM features can be extracted
from the data as an unsupervised signal, we assessed whether
PPM features constitute an added value to the features extracted
in the unsupervised models. We first of all found that the
mean classification accuracy using only PPM features was 81.8%
(Figure 6B, white bar). We then repeated the analysis with
unsupervised models. This time, however, we augmented the
EEG features with PPM features. This resulted in enhanced
classification accuracies: a 3.6% increase for the channel-
based (n.s.) and a significant increase of 4.3% for the spatial

FIGURE 6 | Results. (A) Mean classification accuracy and standard error of

the six models across subjects. (B) Added value of peripheral physiological

measures. Mean classification accuracy and standard error across subjects

when using only PPM features (white) and comparison to the two

unsupervised predictive models before (dotted) and after (solid) augmenting

with PPM features. Figure taken from Schultze-Kraft et al. (2016b) with

permission. **Indicates a significance level of p < 0.01.

filtering-based method. Note that the unsupervised but PPM-
augmented model outperformed the supervised channel-based
model and even nearly equaled the performance of the supervised
model, which used spatial filters. These results support the
assumption that peripheral physiology can indeed provide an
added value to the unsupervised model for the classification of
workload.

Next to an increased signal-to-noise ratio, a further benefit
of using spatial filtering methods is that they allow for the
inspection and interpretation of spatial activation patterns,
which are associated with the extracted signals (Haufe et al.,
2014b). It is thus possible to verify that the signals extracted
by the CSP, SPoC, and cSPoC filters were of cortical origin, as
opposed to possibly stemming from ocular or other artifactual
sources. For this purpose, we examined the spatial activation
patterns that correspond to the components found using the
three methods, as well as the corresponding power envelopes
of the components’ time series. Figure 7 shows the activation
patterns and corresponding power envelopes for one example
subject. The activation patterns indicate that frontal theta activity
and parietal/occipital alpha activity are the sources of workload
modulated signals.

5.3. Conclusion and Outlook
In summary, we find that using established and, in particular,
recently developed spatial filtering methods, it has become
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FIGURE 7 | Spatial activation patterns and power envelopes of components extracted by the three EEG spatial filtering methods. The shown activation

patterns (scalp maps) and power envelopes correspond to the components with the highest value of the optimization criterion of the respective method. The left and

middle column show the activation patterns of components obtained from the theta (blue) and alpha (red) bandpassed data, respectively. The color coding and sign of

the activation patterns were adjusted to be consistent across methods, but are arbitrary otherwise. The power envelopes (right column) are color-coded accordingly

(theta: blue; alpha: red), the x-axis shows time in seconds. Due to standardizing to z-scores, the amplitudes of the curves do not relate to discriminative power. Figure

taken from Schultze-Kraft et al. (2016b) with permission.

possible to estimate an operator’s workload based on brain signals
and peripheral measures. Additionally, we would like to point
out that we observed similarly promising results in a workload-
related study (Naumann et al., 2016) in which subjects played
the classical Tetris video game. In contrast to most workload-
related studies, the task in Naumann et al. (2016) was not to
classify workload into one of two categories (typically high vs.
low workload). Instead, we aimed to predict the player’s current
game level, purely on the basis of spectral features from the
brain. We employed the model outlined above (SPoC combined
with regression) and we were able to predict the current gaming
level with high precision (Naumann et al., 2016), results that are
comparable with the findings presented in Schultze-Kraft et al.
(2016b).

6. BRAIN-COMPUTER INTERFACES FOR
HUMAN-COMPUTER INTERACTION

While intentional control of computer applications is the target
of classic BCI research for patients, this approach does not seem
promising for general users. Instead, it seems worthwhile to
employ BCIs to infer implicit information during software usage
and to use that information to augment the explicit interaction.

In other words, tomake the computer better at understanding the
human user on the basis of soft skills. In view of this far-reaching
goal, we have investigated several studies that pave the way.

6.1. Context: BCIs for General
Human-Computer Interaction
The interaction with a complex interface might be facilitated
if the system is able to exploit implicit information about
the cognitive state of its user inferred from physiological
signals. Measures from eye movement patterns, pupil size,
electrodermal activity (EDA), facial electromyography (fEMG),
and other peripheral physiological signals can provide insights
into the user’s mind with respect to relevance, attention, or
intent (Oliveira et al., 2009; Hardoon and Pasupa, 2010; Cole
et al., 2011a,b; Gwizdka and Cole, 2011; Haji Mirza et al.,
2011; Hajimirza et al., 2012; Barral et al., 2015). However,
electrophysiology may provide a more direct access to the
cognition of the user in comparison to eye tracking or peripheral
physiology (Zander and Kothe, 2011; Eugster et al., 2014;
Ušćumlić and Blankertz, 2016; Wenzel et al., 2016).

Transferring the decoding results from the classic (fixed-gaze)
BCI systems toward general human-computer interaction (HCI)
applications, in which complex displays are explored in
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an unconstrained free-viewing manner, holds a number of
challenges that we discuss in this section. These scenarios,
which allow natural behavior, essentially require co-registration
of eye-movements and EEG, since free viewing implies self-
paced scene exploration. The emerging research on eye fixation-
related potentials has shown that fixations on the object of
search evoke EEG responses similar to the one evoked in the
classical visual oddball paradigm with fixed gaze (Rämä and
Baccino, 2010; Kamienkowski et al., 2012; Brouwer et al., 2013;
Kaunitz et al., 2014), which motivated an expansion of potential
BCI applications. The joint EEG and eye-tracking studies, such
as those addressing active visual search of the target face in
images of crowds (Kaunitz et al., 2014), or during navigation
of 3D naturalistic environments (Jangraw et al., 2014), provide
evidence for the feasibility of EEG-based intention decoding in
realistic active visual search tasks. Both studies, however, impose
certain constraints, either in terms of subjects’ behavior (i.e.,
promoting longer fixations Kaunitz et al., 2014) or in terms of
stimuli that prevent the overlap of target responses (Jangraw
et al., 2014). Neither of these studies, moreover, address the
system’s performance with respect to the content of scenes, i.e., its
semantic and spatial distribution, clutter, and temporal dynamic.

We conducted various experiments to approach these issues,
taking as a guiding example the assessment of the relevance
of the items on screen with regard to the user’s task (e.g.,
information seeking). The goal is to obtain implicit information
about the user’s intention from the brain signals (as co-registered
eye-tracker data) to supplement the explicit interaction with
computer software via mouse and keyboard. Implicit relevance
measures can be captured unobtrusively in the background and
consume less time and effort in comparison to a laboriousmanual
evaluation of the relevance of each item. In this transfer of BCI
technology to realistic settings of human-computer interaction,
we face a number of challenges that we address in the following
section.

6.2. Variable Neural Latency in Dynamic
Scenes
On the one hand, applications for information seeking and
retrieval are nowadays characterized by rich and dynamic
visual interfaces. Such interfaces inevitably engage different
attentional and perceptual brain processes (e.g., covert attention
and peripheral vision) to sample the relevant content of
scenes through consecutive eye-fixations. On the other hand,
information is typically provided as semantic concepts that are
richer than a simple symbol or a plain word; they may be
contained in data of different modalities (e.g., text, image, and
video). While a semantic concept may be ambiguous or vague,
its recognition may require integration of evidence over time.
Typical examples of the latter case are action and behavior
recognition, or the recognition of new content on a screen
when transition visual effects are applied, as it is often the
case in visual interfaces. Altogether, in real world applications
the cognitive processing may vary in both duration and onset
time with reference to fixations. Our recently published study
(Ušćumlić and Blankertz, 2016), which was motivated by the

non-stationarity of our natural visual environment, addressed
the EEG correlates of visual recognition while participants
overtly performed visual search in non-stationary scenes. Our
research particularly concerned whether scene dynamics might
intensify the temporal uncertainty of ERPs with reference to
fixations, introducing an extra challenge for state-of-the-art EEG
decoding methods. We designed three free-view visual search
tasks mimicking the type of visual effects that may appear in real
world human-computer visual interfaces. Alongside popping-
up stimuli, two composite appearance styles based on fading-
in, enlarging, and motion effects were considered (Figure 8).
In the Pop-Up (PU) and Smooth Appearance (SA) conditions,
stimuli appear at random but fixed positions on the screen. In
the Motion Appearance (MA) condition, the constant stimuli
motion causes the entire scene to continuously change (for
details, see Ušćumlić and Blankertz, 2016). First, we investigated
the performance of the state-of-the-art EEG decoding method
hierarchical discriminant components analysis (HDCA) (Gerson
et al., 2006) across different conditions. The results confirmed
our concerns, indicating a drop in decoding performance when
facing less certain timing of visual events (i.e., the appearance
of new content in a scene) due to the transitional changes (cf.
Figure 9 upper panel). We showed, however, that the knowledge
obtained from the paradigm characterized by less temporal
uncertainty (i.e., popping-up stimuli) can be exploited to boost
the EEG decoding performance in more challenging conditions.
This is done by estimating posterior probabilities across different
time lags with reference to fixation onset, using the classifier
trained on popping-up condition, and by making the final
decision based on a maximum of the estimated posteriors.
The improved decoding performance, estimated in a 10-fold
validation setting, is presented in Figure 9 (lower panel), for
fading-in and motion conditions, respectively.

6.3. Variable Neural Latency Due to
Variable Saliency
In typical BCI experiments, different stimuli are flashed one-
by-one (cf. Figure 10A) and the EEG is segmented in stimulus-
aligned epochs that are used to predict the selected stimulus of
interest (e.g., Treder et al., 2011). In regular software applications,
several items are usually presented in parallel, rather than one-
by-one. In this case, the saccades to the items, as measured with
an eye tracker, can serve as time points of reference for the EEG
segmentation (cf. Figure 10B). Using this approach, it is possible
to estimate which items displayed on the screen are task-relevant
and which are not (e.g., Brouwer et al., 2013; Kaunitz et al., 2014;
Ušćumlić and Blankertz, 2016; Wenzel et al., 2016).

Pictograms and words shown in real software applications
are usually diverse and feature different colors, shapes, and
sizes. Saliency, which enables the recognition of relevant items,
varies accordingly, such that recognition can happen either
before the saccade (when the item is still in peripheral vision)
or after the saccade to the item (when the item is in foveal
vision; cf. Figure 10C). Accordingly, neural activity related to
recognition can exhibit a temporal variability with respect to the
saccades, which are used as time point of reference for the EEG
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FIGURE 8 | (A) Left: A standard Landolt broken ring. Right: Eight modified Landolt rings that we used in our study. (B) Illustration of the stimuli presentation flow for

different conditions. Top-left: In the PU condition, stimuli appear in one step. Top-right: Three intermediate steps of stimulus evolution in time are presented for the

SA condition, followed by a completely revealed stimulus. Bottom-right The dashed line indicates the order of the appearance of stimuli in the PU and SA conditions.

Bottom-left Several intermediate steps in the evolution of two successive stimuli are illustrated for the MA condition. The arrows indicate the direction of their

continuous motion. This illustration is simplified, since multiple objects were present on the screen during the motion condition (MA). Stimuli are enlarged in

comparison to the real screen dimensions. Figure taken from Ušćumlić and Blankertz (2016) with permission.

segmentation. BCI prediction algorithms are not required to deal
with this temporal variability because the stimulus onset serves as
reference and the eyes are not moved in typical BCI experiments.
An experiment with unrestricted eye gaze was performed in order
to systematically investigate whether the algorithms can cope
with this issue, which can be expected in realistic HCI settings
(Wenzel et al., 2016). The participants were asked to find and
count certain items that were presented in parallel on the screen
and that were sometimes more and sometimes less salient. The
continuous EEG data were segmented in epochs aligned to the
(ends of the) saccades toward the items. Salient task-relevant
items evoked an earlier neural response in comparison to less
salient task-relevant items, presumably because recognition was
possible already in peripheral vision. Nevertheless, even when the
item saliency was mixed, a typical BCI prediction algorithm was
suited to deal with the resulting temporal variability and was able
to detect the task-relevant items in this search task.

6.4. Interference of Eye Movements with
the EEG
EEG epochs used for the predictions in BCI experiments are
usually set at several hundred milliseconds long in order to
capture the P300 wave. But fixations often last only few hundred
milliseconds and the subsequent saccade can occur during the
same EEG epoch. This is problematic because eyemovements can
interfere with the EEG data. Yet, even when the eye movements
were unrestricted, it was possible to capture neural signals
related to recognition when the discriminative information was
not (primarily) a result of eye movements (Wenzel et al.,
2016). Interestingly, information from the two modalities of
EEG and eye tracking were found to be complementary. An
investigation of target detection with moving objects that require
smooth-pursuit eye-movements showed no decrease of decoding
performance if the timing of the event was known (Ušćumlić
et al., 2015).
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FIGURE 9 | Upper plot: Intra-protocol classification with an HDCA was

cross-validated on the three conditions. Lower plot: For the inter-protocol

classifier transfer, the HDCA was trained on the training data (PU condition) on

a fixed time interval. The intermediate results of the testing datasets

(conditions SA and MA), obtained for different positions of the sliding window

(small boxplots), are combined to give the results indicated by the broad bars.

Figure adapted from Ušćumlić and Blankertz (2016).

6.5. Insufficient Accuracy in Single-Trials
EEG and eye tracking data can be informative about item
relevance, but they are not sufficient for a reliable relevance
estimate after a single fixation of an item. Brain-Computer
Interfaces have to deal with a similar uncertainty and address
this problem usually by combining predictions from several
EEG epochs for class selection. The same strategy could
be followed for the transfer to human-computer interaction.
Practical applications should be designed such that evidence
about user relevance is accumulated over time. This approach is
favored naturally, because humans frequently move their eyes,
which may result in a large number of saccade-aligned EEG
epochs. For instance, when subjects scanned a mosaic of images
that belonged to two classes, it was possible to reliably estimate,
based on EEG and eye tracking data, which of the two classes of
images was more relevant for the user, even if the predictions
for the single images were not accurate. This strategy allowed
the implicit resolution of ambiguities in an image web search
(Golenia et al., 2015).

6.6. Conclusion and Outlook
Taken together, these results indicate the basic feasibility
of exploiting implicit information through the use of BCI
techniques for human-computer interaction. This holds also
if the targets are not previously known stimuli, but rather
semantically described categories consisting of a large variety
of previously unseen stimuli (Acqualagna and Blankertz, 2015).

FIGURE 10 | (A) Sequential centered “BCI presentation.” A simplified “mental

typewriter” serves as example for an ERP-based BCI (cf. Treder et al., 2011).

Different items (square, triangle, disc, pentagon) are flashed one-by-one, on

the same spot on the screen. Each item stands for a (group of) letter(s). The

subject selects a letter and silently counts the flashes of the corresponding

item in order to direct their attention toward it. The selected (group of) letter(s)

can be decoded from the EEG data using the flashes as time points of

reference. (B) Item scanning in free-viewing. In an HCI scenario, words or

pictograms (symbolized in the illustration) are displayed in parallel on the

screen and are not flashed one-by-one. Items of particular interest for the user

shall be decoded from the EEG data. The saccades (white arrow) to the items,

as measured with an eye tracker, can serve as time points of reference for the

EEG analysis. (C) The stimulus saliency may vary in HCI settings. An item of

little saliency (here represented by a blue disc with indistinct interior) can only

be recognized after a saccade when the item is in foveal vision. In contrast, a

salient item (red crown) can be recognized already in peripheral vision, before a

saccade toward it. A variable timing of recognition can therefore be expected

with respect to the saccades, which are used as time points of reference for

the EEG analysis.

Apart from relevance, estimating the “depth of cognitive
processing” would be useful in HCI when, for example, interfaces
can adapt according to whether displayed information was
adequately processed by the user or not. Recent work indicates
that this variable can also be estimated sufficiently from the EEG
(Nicolae et al., 2015a,b).

For a realistic perspective of using BCI technology in
general human-computer interaction, the extraction of implicit
information needs to be further improved, as in the context of,
for example, more complex visual stimuli (Wenzel et al., 2015).
Moreover, the co-registered acquisition of EEG and eye tracking
data needs to be simplified to a deployable setup. We briefly
discuss this aspect in a paragraph in the concluding Section 9.

7. BCI AS A RESEARCH TOOL IN
COGNITIVE NEUROSCIENCE

Employing a BCI to obtain early predictions of motor intentions
in a gaming scenario required participants to cancel self-initiated
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button presses upon seeing a stop signal. By virtue of this
paradigm, conclusions about the deterministic coupling between
preparatory brain signals and the corresponding motor actions
could be drawn that have a number of important implications
ranging from the debate over free will to ethical considerations
about applications that potentially speed up human behavior.

7.1. Context: Preparatory Signals and
Research Questions in Cognitive
Neuroscience
The readiness potential (RP) is a slow, negative cortical potential
that is observed over motor areas in the EEG and can start
more than one second before voluntary, self-initiatedmovements
(Kornhuber and Deecke, 1965). It gained particular fame in the
work of Libet et al. (1983), who found that the conscious decision
to move occurs several hundred milliseconds after the onset of
the RP, thereby initiating a still-ongoing heated debate about free
will (Libet, 1985). One particular question that has remained
unanswered is whether a person can still exert a veto by inhibiting
a voluntary movement after onset of the RP (Haynes, 2011). One
possibility is that once that RP begins to build up the planned
movement must occur and cannot be canceled (De Jong et al.,
1990). Another possibility is that people can still exert a veto by
canceling or altering the movement after the onset of the RP. If
the latter is the case, a follow-up question is whether there exists
a point of no return along the time course of the RP, after which
people cannot stop the planned movement. In order to test this,
we devised an experiment that required subjects to cancel a self-
paced movement once an RP had been detected by a BCI in real
time.

7.2. Study on the Coupling of Preparatory
Signals and Corresponding Actions
The experimental task was designed as a “duel” between the
subject and the computer. Subjects (N = 10) were confronted
with a floor-mounted button and a light presented on a computer
screen. If the subject pressed the button while the light on the
screen was green, they would win a point. If they pressed the
button after the computer had turned the light red (stop signal),
they would lose a point. The experiment had three consecutive
stages. In stage I, stop signals were elicited at random onset
times. The EEG data from stage I were then used to train a
classifier to predict upcoming movements. In stages II and III,
movement predictions were made in real time by the BCI with
the aim of turning on the stop signal in time to interrupt the
subject’s movement. EEG signals were continuously classified
by the Berlin Brain-Computer Interface toolbox (https://github.
com/bbci/bbci_public) in order to control the stop signal.
Additionally, EMG was recorded from the calf muscle of the
moving foot in order to determine the time of movement onset.
For details on experimental procedures, please refer to Schultze-
Kraft et al. (2016a).

Each trial could end in one of four possible ways (Figure 11A):
In “missed button press” trials subjects, won a point when
they pressed the button while the light was green, whereas in
“predicted button press” trials, they lost a point when they

pressed the button after the stop signal had been turned on.
Another possibility is that the BCI indicated an RP, elicited a stop
signal, and the subject started to move (as indicated by EMG
activity), but canceled the movement early enough (“aborted
button press” trials). In the last case, the stop signal was elicited,
but the participant showed no overt sign of movement. This
trial type is ambiguous because it could either result from a
prepared movement being terminated at an early stage (“early
cancelation”) or it could reflect false positive detections by the
classifier (“false alarm”).

We first of all examined the efficiency of the BCI predictor to
detect RPs and elicit stop signals in real time. Figure 11B shows
that while during stage I (random predictions), roughly 2 out of
3 trials were “missed button press” trials, during stages II and
III only 1 out of 3 button presses were missed. Furthermore,
predicted or aborted button press trials occurred very rarely
during stage I, while during stages II and III they occurred in
roughly 20 and 15% of trials, respectively. “Early cancelation/false
alarm” trials occurred at comparable rates in all three stages.

Next, we assessed how the timing of stop signals was related
to movement onsets (as assessed by EMG). The distribution of
stop signals in “predicted button press” trials (Figure 12A, red,
top panel) shows that the vast majority of stop signals occurred
after EMG onset. Since the movement was completed by pressing
the button, the stop signal presumably came too late for a veto.
Stop signals in “aborted button press” trials (Figure 12A, green,
middle panel) occurred earlier (starting around 200 ms before
EMG). Thus, when stop signals were presented at late stages of
movement, preparation subjects could not stop themselves from
beginning to move, even though they could abort the movement,
once started. There was a gradual transition between stop signal
times in which movements could be aborted and those in which
they could not be aborted (Figure 12A, bottom panel).

It is interesting that there were rarely any cases in which
subjects moved despite seeing stop signals earlier than 200 ms
before EMG, even though RP onset occurred more than 1000
ms before EMG onset. We therefore examined the timing of
predictions in “silent trials,” which occurred in 40% of trials
during stages II and III. Here, when the BCI predicted a
movement, the time was silently recorded, but the stop signal
was not turned on and the trial continued until the button was
pressed. As a detailed investigation of those silent trials shows (cf.,
Schultze-Kraft et al., 2016a), although a majority of predictions
also in silent trials occurred aroundmovement onset, many silent
predictions occurred more than 200 ms before movement onset.
The fact that these early predictions were absent for predicted
button press trials or aborted button press trials suggests that
the BCI was indeed able to predict movements at such early
stages and that subjects were caught early enough to cancel their
decision without any overt sign of movement.

In order to further investigate this assumption and assert
whether predictions in the ambiguous trial type were early
cancelations or false alarms, we looked for the occurrence
of event-related desynchronization (ERD) in these ambiguous
trials at the time of prediction. ERD occurs before and during
movements in particular frequency bands in the EEG and has
been shown to have a different generator in the brain than the
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FIGURE 11 | (A) Possible trial outcomes during the experiment. See text for details. (B) Percentage of trial outcomes across stages for the four trial categories (as in

panel (A)). All trial categories in one stage (bars of same color) add up to 100%. Shown is the average across subjects (error bars = SEM). Figure taken from

Schultze-Kraft et al. (2016a) with permission.

FIGURE 12 | (A) Distribution of BCI predictions time-locked to EMG onset (vertical line). The three panels show the distribution of stop signal timings in predicted

button press trials (top, red) and in aborted button press trials (middle, green). The bottom panel (red and green) shows their joint distribution. The gray distribution

superimposed as outline in all three panels shows the stop signal distribution in silent trials, adjusted to account for the imbalanced probability of a trial being silent

(40%) or not (60%). All bins comprised intervals of 100 ms and counts were pooled across stages II and III of all subjects. (B) Accuracies of a classifier trained to

detect an impending movement based on event-related desynchronization (ERD) occurring before stop signals. Bars show the mean accuracies of subjects (error

bars = SEM) for four different trial types. Figure taken from Schultze-Kraft et al. (2016a) with permission. Significance above chance level is indicated by **p < 0.01

and ***p < 0.0001.

RP, therefore making ERD an index for motor preparation that
is independent of the RP (Pfurtscheller and Aranibar, 1979; Bai
et al., 2006). The analyses revealed that ERD was detected in
ambiguous trials, but not in the random stop signal trials from
stage I (Figure 12B). Thus, at least a subset of ambiguous trials
had likely already reached movement preparation and were not
false alarms, but rather early cancelations.

7.3. Conclusion
Our findings suggest that subjects were able to cancel self-
initiated movements, even after onset of the readiness potential.
If a stop signal is elicited before a point of no return around 200
ms before movement onset, subjects are able to veto the prepared

movement, while subjects cannot avoid moving when a stop
signal occurs after that time point. Note, however, that the point
of no return can be expected to vary from trial to trial, and that it
might be impossible to determine when the point of no return has
passed in single trials. This has the important implication that no
critical actions should be triggered in this way, because the speed-
up comes at the price of losing the opportunity to reevaluate the
situation and possibly veto the action.

BCI technology offers the unique possibility of intervening in
an experimental paradigm based on the momentary mental state
(including intention and decision processes) of the test subject.
This intriguing opportunity opens the potential for employing
real-time BCIs as a research tool. While this perspective was
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mentioned already in the BNCI Roadmap (BNCI Horizon 2020,
2015), the presented study (Schultze-Kraft et al., 2016a) is, to
the best of our knowledge, its first realization. The key point
in our study is the capability of allowing for instantaneous
feedback of motor intentions to subjects in real time (Blankertz
et al., 2006; Salvaris and Haggard, 2014), thereby extending the
important line of experimental work on the nature of predictive
brain activity preceding self-initiated movements (Haggard and
Eimer, 1999). This novel approach allowed us to elucidate
a fundamental question in cognitive neuroscience, thereby
demonstrating the potential of a Brain-Computer Interface as a
powerful research tool.

8. ANALYZING NATURAL MUSIC
LISTENING

In this section, we show how BCI technology can be applied to
the study of the processing of music. In particular, we propose
a regression-based method that enables the extraction of cortical
responses to note onsets in music from the continuous EEG. The
extracted continuous brain responses are used to assess the brain-
stimulus synchronization with ameasure called Cortico-Acoustic
Correlation (CACor). Several examples show the application
of CACor in a range of analysis scenarios related to music
perception.

8.1. Context: Neural Processes in Real
World Experiences
Brain states during real-word experiences have attracted growing
research interest in the past decade (Hasson, 2004; Hasson
et al., 2010; Dmochowski et al., 2012; Hasson and Honey,
2012; Gaebler et al., 2014); Listening to music is one example
of an ongoing real world experience that relies on structured
auditory input that can be subject to many forms of audio
signal analysis. At the same time, listening to music is one
of the richest human experiences (Altenmüller and Schlaug,
2013) encompassing sensory, sensorimotor, cognitive, affective,
and memory-related processes. Studying how brain dynamics

underlying perceptual and cognitive processes unfold along
the structure of a naturalistic music stimulus has therefore
been recognized as a fruitful approach for deepening the
understanding of the transformation of sensory input into
human experience (Alluri et al., 2012, 2013; Sturm et al., 2014;
Jäncke et al., 2015).

In the music domain, linear classification methods have,
beyond measures of discriminability, provided knowledge about
the neural representations of complex musical sounds (Schaefer
et al., 2011; Treder et al., 2014). Unsupervised ICA-based
approaches identified common features in the EEG of music
listeners (Cong et al., 2012, 2013; Thompson, 2013). The results
support the idea that the waveform envelope (which contains
information about the timing of note onsets) is reflected in EEG
and therefore provides a good starting point for linking music
signals and brain signals. Likewise, in the domain of speech
processing, cortical onset responses that reflect changes in the
waveform envelope (termed Envelope Following Responses or
EFRs), have been a target of interest for a long time (Purcell et al.,
2004; Aiken and Picton, 2006, 2008).

8.2. Two Studies Investigating Continuous
Listening Experience
Here, we review a novel approach that utilizes the relationship of
the EEG signal to the audio waveform envelope in an analysis
framework that is applicable in any experimental setting in
which EEG recordings and stimulus waveforms are available. As
shown schematically in Figure 13 Linear Ridge Regression with
the audio power slope as a target function is used to extract
continuous cortical onset responses from the EEG signal of the
music listener. Note that regression with the audio power slope
capitalizes on the brain’s sensitivity to change and represents
a further refinement of previous EFR-related methods. Two
examples of EEG projections and the respective power slope
are given in Figure 14. Based on the extracted EEG projections,
a measure of brain-stimulus synchronization called Cortico-
Acoustic correlation (CACor) is developed (for details of the
method see Sturm et al., 2015a; Sturm, 2016). We demonstrate

FIGURE 13 | Regression approach for extracting neural correlates of music perception. The perception of sound is reflected in the brain signals, the power

slope of the sound waves being a crucial factor. Linear Ridge Regression is applied to the temporally embedded multichannel EEG signal using the audio power slope

as a target function. This results in a spatio-temporal filter (regression weight matrix) that can be applied to new data. It reduces the multichannel EEG to a

one-dimensional projection that can subsequently be examined with respect to Cortico-Acoustic correlation (CACor).
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FIGURE 14 | EEG projections reflecting cortical responses to note onsets. The two examples of keyboard (A) and bass (B) show segments of an extracted

EEG projection (blue) for a single stimulus presentation and a single subject and the respective audio power slope (red). Note that in the optimization procedure a time

lag between stimulus and brain response is integrated in the spatio-temporal filter, and that, consequently, the EEG projections shown here are not delayed with

respect to the audio power slope. Figure adapted from Sturm et al. (2015b).

that CACor can be applied for investigating brain-stimulus
synchronization in experimental settings related to different
aspects ofmusic perception (Sturm et al., 2015b).We also provide
examples of how CACor can be employed in the complementary
analysis of EEG signals, behavioral measures, and audio signal
analysis (Sturm et al., 2015a).

In a first study that explored the perception of naturalistic
music, nine subjects passively listened to auditory stimuli
from various sound categories, including full-length romantic
piano pieces as well as simple tone sequences and natural
(non-music) soundscapes (Sturm et al., 2015a). In a separate
behavioral experiment, continuous ratings of the perceived
tension in the same stimuli were obtained from an independent
listener group. The regression approach (Figure 13) reduced
the 61-channel EEG to one-time course optimally reflecting
note onsets. The EEG projection was utilized to determine
the Cortico-Acoustic Correlation (CACor). Significant CACor
was detected in the individual listener’s EEG signals of single
presentations of full-length complex naturalistic music stimuli.
The reliability of the occurrence of significant CACor in the
group of participants differed among stimuli. It co-varied with
the stimuli’s average magnitudes of sharpness, spectral centroid,
and rhythmic complexity. In particular, the subset of stimuli
effecting a consistently strong CACor in the EEG participants
(indicated by a high CACor score in Figure 15) also produced
strongly coordinated tension ratings in the (independent) group

of participants of the behavioral experiment. This relation
between CACor and behavioral measures provides a first
tentative link between neurophysiological responses to low-level
acoustic events and the more cognitive-affective experience of
tension in music. It is a first step toward bridging the gap
between behavioral studies related to the perception of complex
music and electrophysiological studies that use simplifiedmusical
stimulus material. If CACor scores are viewed as a measure of
neural reliability, our findings add an interesting novel aspect to
previous findings in which between-subject reliability of neural
processing of naturalistic audiovisual stimuli indicates arousing
and threatening passages (Dmochowski et al., 2012) and predicts
the behavioral responses of large audiences (Dmochowski et al.,
2014). Within this scope, our results indicate a more global, but
very specific link between neural reliability and music stimulus
features that might be useful for predicting listener behavior in
the future.

In a second EEG study, music clips representing “rudimentary
music” were presented to 11 subjects (Sturm et al., 2015b).
These clips featured three instruments (keyboard, drums, and
bass) playing repetitive music sound patterns, either in an
ensemble version (resembling minimalistic electro-pop) or in
the corresponding three solo versions (for details on stimuli
and paradigm see also Treder et al., 2014). In the ensemble
presentations, subjects were instructed to focus on just one of
the instruments during each clip. For each instrument, a Linear
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FIGURE 15 | The CACor score profile for the set of nine stimuli can be interpreted as a measure of reliability of the occurrence of significant CACor

that can be compared across stimuli. The distribution of CACor scores for the set of nine stimuli is significantly correlated (r = 0.9,p = 0.005) with the distribution

of coordination scores (not shown here) that quantify how strongly coordinated behavioral responses a stimulus produces (for details on the calculation of CACor and

coordination scores see Sturm et al. (2015a)). The description on the right suggests that stimuli from the same category have similar CACor measures. Figure adapted

from Sturm et al. (2015a) with permission.

Ridge Regression model was trained that extracted the EEG
projection that represented the sequence of note onsets in the
audio signal of the respective solo voice in an optimal way. In
a second step, these instrument-specific filters were applied to
EEG recorded during the ensemble presentations. CACor of the
extracted EEG projections and the solo version of the music clip
were assessed in order to probe whether a neural representation
of the solo parts is present that is congruent to the natural
ability of the subjects to perceive the single instrument’s “voices”
within the ensemble. Our results showed that the reflection of the
melody instrument keyboard in the EEG exceeds that of the other
instruments by far, suggesting a high-voice superiority effect
in the neural representation of note onsets. The results further
indicate that focusing attention on a particular instrument can
enhance this reflection.We conclude that, in principle, the neural
representation of tone onsets at the level of early auditory ERPs
can parallel the perceptual segregation of ensemble music.

8.3. Conclusion and Outlook
In summary, the machine learning based multivariate methods
for EEG analysis obviates the need to present a high number
of stimulus repetitions, thereby paving the avenue for studying
the physiological effect of long, complex stimuli, such as full-
length pieces of natural music. The approach can provide
a neural representation that parallels the separate streams a
listener perceives in multi-voiced music. The proposed method
therefore represents a promising tool for investigating auditory
stream segregation in naturalistic listening scenarios. While
the investigations discussed in this section do not require
the real-time capability of BCI technology, closely related
research may profit from the techniques presented here. EEG-
enhanced assistive listening technology aims at recognizing
cortical responses to the sound envelope as a promising way
to determine the attended speech stream in complex listening

situations (Ding and Simon, 2012; O’Sullivan et al., 2015; Akram
et al., 2016). Through this, the function of hearing aids/auditory
prostheses may be adapted in a situation-dependent manner
(Mirkovic et al., 2015; O’Sullivan et al., 2015).

9. DISCUSSION

Most of the work on applications of BCI technology beyond
communication and control is based on fundamental studies
in cognitive science, psychophysics, and neuroscience. The
results have been achieved in experimental studies that were
confined to carefully controlled situations that limit fluctuating
factors of natural tasks and behavior in order to exclude
confounding variables. This is a reasonable approach for a
rigorous investigation of fundamental concepts. In order to
pave the way for incorporating neurotechnology into real-life
applications, however, there needs to be a paradigm shift toward
allowing more complex scenarios in neurocognitive studies. In
this respect, it is important to note that increased noise (e.g.,
movement artifacts) is just one of the problems being faced.

To illustrate a more severe kind of challenge, we take the
example of monitoring cognitive workload. There is a wealth of
literature on the fundamental aspects of this topic, and a reliable
system for real-time estimation of the current level of the user’s
workload would have useful applications in many areas. Studies
have shown that the power of parietal alpha activity is negatively
correlated with cognitive workload in visual tasks (Gevins and
Smith, 2003; Holm et al., 2009). But in a complex scenario with a
continuously changing visual background (such as driving a car),
the alpha rhythm might be completely blocked already, such that
no further decrease due to additional workload can be detected
(Kohlmorgen et al., 2007). Other studies have shown that the
parietal alpha amplitude increases with workload in non-visual
tasks (Legewie et al., 1969; Galin et al., 1978; Markand, 1990),
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presumably as a cause of inhibition in order to focus resources
to the relevant neural processes (Klimesch et al., 1999). In a
natural task of high workload, the demands can change between
themodalities. Theremight be phases when retrieving experience
frommemory ormotor programs is critical, while in other phases
the focus is on the analysis of the visual scene. The expected effect
on parietal alpha is then reversed, such that this feature might be
difficult to exploit in a natural task context.

A related challenge in the transfer to more complex scenarios
is the sensitivity vs. specificity trade-off. Fundamental studies
with confined settings have repeatedly demonstrated the high
sensitivity of EEG for retrieving certain aspects of perception or
cognition. Potential applications of neurotechnology often refer
to this fact, e.g., when promising higher precision compared to
behavioral measures. The effects found in the EEG, however, are
often not very specific; the interpretation of the effect is only valid
under the highly constrained experimental setting. In situations
of more complex scenes or tasks there might be other factors,
unrelated to the variable of interest, that can cause either the
same or a reversed effect, potentially annihilating the usability
of the EEG-based measure that was previously found viable in
a laboratory setting.

This review excluded the aspect of a deployable setup
for acquiring the brain signals. For some of the discussed
applications the usual EEG hardware is appropriate (BCI as
research tool, Section 7), for others a less intrusive setup is
desirable (Neurousability, Section 4), while still others critically
depend on the future availability of truly deployable devices
(HCI applications, Section 6). Developments in this directions
are the recently developed, invisible (Nikulin et al., 2010), and
easy to set up, gel-free EEG electrodes (Zander et al., 2011; Guger
et al., 2012; Mullen et al., 2015). Electrodes can also be placed
so that they are barely visible in the ear (Looney et al., 2014;
Goverdovsky et al., 2016), on the ear (Norton et al., 2015), or, as
printed electrode arrays, around the ears (Debener et al., 2015).
In addition, miniaturized mobile EEG systems (De Vos et al.,
2014; Stopczynski et al., 2014) and NIRS systems are presently
being developed (Piper et al., 2014; Von Lühmann et al., 2015).
New affordable eye trackers (Dalmaijer, 2014) and the increasing
commercial interest in wearable physiological sensors, such as
heart-rate sensors in smart watches or a glucose sensor in a
contact lens (“Google Contact Lens”), likewise promise to be
beneficial for further development.

The (potential) applications of BCI technology beyond
communication and control presented here have different
levels of maturity. BCIs are ready for use as research tools

(Sections 7 and 8). Using BCI technology to access certain user
variables based on neural signals within a development cycle in
order to optimize devices and interfaces is within reach for some
application areas (Section 4). For other fields of applications
(Sections 5 and 6), we expect that intense and challenging
research is still necessary to pave the way to actual applications.
The studies reviewed in this article are just the beginning (resp.
already the second step) in this enterprise, which will hopefully
be interesting and attractive to many researchers.
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