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Gilles de la Tourette syndrome (GTS) is a neuropsychiatric disorder characterized by

multiple motor and vocal tics. GTS is a complex disorder, with environmental factors

and several genes involved. Although variations within a few genes such as AADAC,

NRXN1, SLITRK1, HDC, and IMMP2L have been tentatively associated with GTS (in a

small number of patients), the causative genes underlying GTS pathophysiology remain

unknown. In a previous genome-wide association study (GWAS) a single nucleotide

polymorphism (SNP, rs2060546) near the Netrin-4 (NTN4 - MIM 610401) gene was

shown to be associated with GTS [odds ratio (OR) = 1.7; p-value = 5.8 × 10-7]

thus warranting further investigations. As NTN4 is one of the axon guidance molecules

expressed in the central nervous system and it interacts with the encoded proteins ofSLIT

and WNT genes guiding the growth cone toward its target, it is an attractive candidate

susceptibility gene for GTS. In this study we attempted to replicate the association of

rs2060546 with GTS by genotyping a Danish cohort of 240 GTS patients and 1006

healthy controls. Our results did not reveal an association (OR = 1.363; p-value =

0.3329) in the Danish cohort alone, which may be due to the small sample size. However,

a meta-analysis including the present cohort and a total of 1316 GTS patients and

5023 controls from the GTS GWAS Replication Initiative (GGRI) and the first GTS-GWAS

yielded a significant signal (OR= 3.74; p-value= 0.00018) and same direction of effect in

the three cohorts. Thus, our study strengthens the evidence of the possible involvement

of NTN4 in GTS etiology, suggesting that further studies in even larger samples and

functional studies are warranted to investigate the role of this region in GTS pathogenesis.
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INTRODUCTION

Gilles de la Tourette syndrome (GTS) is a complex juvenile-onset
neuro-developmental disorder characterized by the occurrence
of multiple motor and vocal tics (Nag et al., 2013). Recent
epidemiological studies estimated the worldwide prevalence of
GTS to be approximately 1% with a male:female ratio of 4:1
(Robertson et al., 2009). GTS is often associated with co-
morbidities such as attention-deficit hyperactivity disorder and
obsessive-compulsive disorder (Dietrich et al., 2014). Additional
co-occurring conditions are behavioral and emotional difficulties
(hyperactivity, anxiety, and depression), sleeping disturbances,
intellectual disabilities and autism spectrum disorder (Singer and
Rosenberg, 1988; Wood et al., 2003). Studies so far conducted on
GTS showed that there is a complex interplay of environmental
and genetic factors, confirming the notion that GTS is a
highly complex disorder (Davis et al., 2013; Dietrich et al.,
2014).

To identify the causative genes and the biological pathways
involved in GTS several approaches have been pursued,

FIGURE 1 | Two dimensional PCA plot of Danish GTS cases with selected populations from 1000genomes cohort.

including candidate gene studies, family studies using linkage
analysis, analysis of chromosomal abnormalities including copy
number variants (CNV) and hypothesis-free genome-wide
association studies (GWAS) (Paschou, 2013). For instance,
chromosomal abnormalities have proven useful for identifying
new candidate genes in GTS affected patients (Bertelsen et al.,
2013). Chromosomal abnormalities have probed new candidate
regions containing susceptible genes such as Slit- and Ntrk-Like
Family, Member 1 (SLITRK1—MIM 609678), Neuroligin

TABLE 1 | Summary of the three different cohorts included in the

meta-analysis.

Cohort Cases Controls

Male Female Unknown Total Male Female Unknown Total

Danish 208 53 0 261 649 403 1 1053

GGRI 498 127 11 636 346 284 11 641

GTS-GWAS 1012 273 0 1285 1931 3033 0 4964
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4 (NLGN4—MIM 300427) and Contactin-Associated Protein-
Like2 (CNTNAP2—MIM 604569) (Verkerk et al., 2003; Abelson
et al., 2005; Lawson-Yuen et al., 2008; Patel et al., 2011).
Specific CNV analyses have resulted in the identification
of several other candidate genes, including Arylacetamide
Deacetylase (AADAC—MIM 600338), Collagen, Type VIII,
Alpha-1 (COL8A1—MIM 120251), Neurexin I (NRXN1—MIM
00565), Catenin Alpha-3 (CTNNA3—MIM 607667) and Inner
Mitochondrial Membrane Peptidase, Subunit 2, (IMMP2L—
MIM 605977) (Sundaram et al., 2010; Nag et al., 2013; Bertelsen
et al., 2014, 2015). The first large GWAS for GTS did not
identify any genome-wide significance SNP (Scharf et al., 2013).
A multinational consortium, GTS GWAS Replication Initiative
(GGRI), followed up on the results of the initial GWAS in an
independent cohort of 636 cases and 641 controls, showing an
association between GTS and rs2060546 (OR = 2.41; p-value =
5.8 × 10−7) on chromosome 12q23.1, ∼32 kb upstream to the
transcriptional start site of Netrin-4 (NTN4); a gene encoding

an axon guidance protein expressed in the central nervous
system (Paschou et al., 2014). As NTN4 is an attractive candidate
susceptibility gene, we investigated the association of rs2060546
with GTS in a Danish cohort of 240 GTS patients and 1006
healthy controls.

MATERIALS AND METHODS

Samples
We investigated a Danish cohort and two previously published
datasets (GGRI and GTS-GWAS) (Table 1). The first cohort
(n = 1314) includes 261 deeply phenotyped GTS patients and
1053 healthy controls from Denmark. Danish ancestry was
investigated using the genotype information. The second cohort
from GGRI includes 1277 individuals (636 GTS cases and 641
healthy controls) from different European populations (Paschou
et al., 2014). The third cohort (GTS-GWAS) includes 6249

FIGURE 2 | Two dimensional PCA plots of Danish controls and selected populations of 1000genomes cohort.
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FIGURE 3 | Two dimensional PCA plot of Danish GTS cases and controls to check for population outliers.

individuals (1285 GTS cases and 4964 controls) of European
ancestry (Scharf et al., 2013).

Genotyping
261 GTS cases from Denmark were genotyped on the
Affymetrix CytoScanHD array (Affymetrix, Santa Clara, CA)
covering around 750,000 single nucleotide polymorphisms
(SNPs) and ∼1.9 million single-locus copy number (CN)
markers. 1053 healthy controls were genotyped on Illumina
HumanOmniExpress arrays—18 on HumanOmniExpress12v1
and 1034 on HumanOmniExpress12v1-1 covering around
700,000 SNPs each. SNP calling and pre-processing of the
raw data for Illumina controls were carried out using
Illumina Genomestudio R© software. For GTS cases genotyped
on Affymetrix CytoScanHD SNP calling a pre-processing

was carried out using default parameters for method apt-
copynumber-cyto from Affymetrix Power Tools (APT, version
1.16) software.

Quality Control
A standard GWAS quality control measure (Scharf et al., 2013)
was applied on both cases and controls from the Danish cohort
to filter for population outliers and samples with low call rate;
and to remove systematic bias using the software PLINK (Purcell
et al., 2007). Quality control at SNP level includes removal of
monomorphic SNPs, SNPs with genotyping rate < 98%, SNPs
with no information about chromosome location, SNPs with
absolute minor allele frequency difference > 0.15, SNPs that
fail Hardy-Weinberg Equilibrium and SNPs with AT/CG alleles.
To check the quality of the Danish GTS cases metric values

Frontiers in Neuroscience | www.frontiersin.org 4 November 2016 | Volume 10 | Article 531

http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Neuroscience/archive


Padmanabhuni et al. NTN4 Polymorphism in Danish GTS

for CytoScanHD array recommended by the manufacture was
used in the pre-processing step. Sample call rate calculated using
PLINK (Purcell et al., 2007) was used to filter out samples that
had more than 2% of SNPs missing. F statistic was calculated
using SNPs from the X-chromosome. F < 0.25 was assigned to
female and F > 0.75 was assigned to male. Samples with an F-
value between 0.25 and 0.75 were discarded due to sex ambiguity.
Estimates of pairwise Identity-by-descent from PLINK (Purcell
et al., 2007) were used to remove one of the samples from
each pair which pass the relatedness metrics either pi-hat >

0.1 or Z1 > 0.2. Samples with high rates of heterozygosity Fhet
> ± 0.05 are more likely to be result of contamination and
were removed from the analysis. Principal Component Analysis
(PCA) was applied using EIGENSTRAT (Price et al., 2006) and
remaining samples were merged with the 1000 genomes cohort
to remove European cluster and population outliers. Out of 261
GTS cases, four samples were removed as they did not lie inside
the European cluster in Figure 1. Eleven healthy controls lied
outside of the European cluster in Figure 2 and were removed
from the association analysis. After removing the European
outliers, Danish GTS cases and healthy controls were merged
for 126,821 common SNPs. The PCA plot in Figure 3 was made
using a LD-pruned set of ∼90,000 SNPs to identify Danish
outliers. One GTS case was removed as population outlier seen
in Figure 3 which left in total 240 Danish GTS cases and 1006
healthy controls.

Association Analysis
Standard case control association analysis using PLINK (Purcell
et al., 2007) was performed using χ

2 test comparing SNP
frequency between cases and controls.

TABLE 2 | Quality control steps at sample level with number of samples

failed at each step.

Quality Control (QC) Step Danish GTS Affymetrix

CytoScanHD

Danish Controls

Illumina OmniExpress

Samples before QC 261 1053

Pre-processing SNP quality 10 0

Sample Call Rate < 98% 0 2

Sex ambiguous samples 0 0

Low level related samples 1 26

Abnormal heterozygosity 5 8

European Outliers 4 11

Danish Outliers 1 0

Final Samples after QC 240 1006

Meta-Analysis
Metal (Willer et al., 2010) was used to perform sample weighted
meta-analysis of association results of the SNP rs2060546 from all
three cohorts. Association results for the GGRI and GTS-GWAS
cohorts were taken from the original studies (Scharf et al., 2013;
Paschou et al., 2014).

RESULTS

We attempted to replicate the association of SNP rs2060546
with GTS by investigating quality control passed genotyped data
of 240 GTS patients and 1006 healthy controls from Denmark
(Table 2). We did not find the SNP rs2060546 to be significantly
associated in the Danish cohort (OR =1.363, 95% CI 0.7188-
2.675; p-value = 0.3329) (Table 3). This might be attributed to
the small size of the cohort and we proceeded to perform a
meta-analysis with previously published data (Paschou et al.,
2014). However, meta-analysis of the Danish, the GGRI and
the first GTS-GWAS cohorts, showed significant association to
the studied SNP (OR = 3.74; p-value = 0.00018) and the same
direction of effect in all three cohorts (Table 3). Thus, the results
supported the involvement of this particular chromosomal
region in GTS etiology, and potentially NTN4.

DISCUSSION

Involvement of NTN4 in neurodevelopment makes it an
attractive candidate protein as a contributing factor to GTS
pathology. During the development of the nervous system,
numerous dynamic guidance cues direct the trajectory of the
migrating developed axon toward its suitable target (Killeen
and Sybingco, 2008). Netrins are axon guidance cues which are
composed of six members: Netrin 1-4 Netrin-related molecules,
Netrin-G1 and G2 (Davis et al., 2013). Netrin-4 functions as
guidance cue for axonal growth, neurite elongation, neuronal
remodeling and plasticity (Zhang et al., 2004). The neuronal
growth cones sense Netrin-4 as either attractant or repellent cues,
depending on different receptors expressed on their surface or
differences in the cellular signal transduction machinery (Koch
et al., 2000; Qin et al., 2007). Netrin-4 might mediate axon
outgrowth by attracting actions through deleted in colorectal
carcinoma (DCC) or neogenin (Neo 1) receptors and repulsive
effects through unc-5 homolog (UNC5A) receptors (Qin et al.,
2007; Schubert et al., 2009). Previous imaging studies showed
that changes in the thalamus and cerebral cortex volumes play
a significant role in regulating the severity of tic symptoms
implicated in GTS cases (Rueda et al., 2005; Rickards et al., 2008).
Notably, expression of the NTN4 gene was detected in human

TABLE 3 | The association results for NTN4—rs2060546 SNP in the three different cohorts.

Cohort Minor allele Mino allele frequency in GTS cases Minor allele frequency in controls p-value Odds ratio (OR)

Danish A 0.03099 0.02293 0.3329 1.363

GGRI A 0.04844 0.02131 0.00033 2.41

GTS-GWAS A 0.03834 0.02746 0.02 1.44

Frontiers in Neuroscience | www.frontiersin.org 5 November 2016 | Volume 10 | Article 531

http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Neuroscience/archive


Padmanabhuni et al. NTN4 Polymorphism in Danish GTS

brain regions such as cerebellum, thalamus, cerebral cortex and
olfactory bulb, thus, supporting the role of this gene in GTS
pathogenesis (Zhang et al., 2004; Amat et al., 2006; Lee et al.,
2006).

In this study, we could not identify any association between
rs2060546 SNP andGTS in a relatively small Danish cohort alone,
however, meta-analyses with the GGRI and GTS-GWAS cohorts
provides further support for the possible association of this SNP
with GTS in European populations. The close localization of
rs2060546 to NTN4 and the abundant expression of Netrin-4
in different brain regions, associated with GTS pathogenesis,
rendered further support to the hypothesis thatNTN4might be a
new candidate gene for GTS.

AUTHOR CONTRIBUTIONS

SP, performed data analysis, interpretation, and participated
in manuscript writing. ZT and PP supervised the study,

interpretation of the results, and participated in manuscript
writing. RH participated in biological relevance of result
and manuscript writing. FT participated in data analysis and
manuscript writing. AE, JO, TW, TH, ZT, BB provided the data
and participated in manuscript writing. All authors read and
approved the final version to be published and agreed to be
accountable for all aspects of the work.

FUNDING

This project was supported by FP7-People-2012-ITN, project:
TS-EUROTRAIN, grant number 316978; and Lundbeck
Foundation, grant number R24-A2419 and R100-A9332.

ACKNOWLEDGMENTS

We would like to thank all individuals who participated and
contributed to this work.

REFERENCES

Abelson, J. F., Kwan, K. Y., Roak, B. J. O., Baek, D. Y., Stillman, A. A., Morgan, T.

M., et al. (2005). Sequence Variants in SLITRK1 are associated with Tourette’ s

Syndrome. Science 2126, 317–320. doi: 10.1126/science.1116502

Amat, J. A., Bronen, R. A., Saluja, S., Sato, N., Zhu, H., Gorman, D. A., et al.

(2006). Increased number of subcortical hyperintensities on MRI in children

and adolescents with Tourette’s syndrome, obsessive-compulsive disorder, and

attention deficit hyperactivity disorder. Am. J. Psychiatry 163, 1106–1108.

doi: 10.1176/ajp.2006.163.6.1106

Bertelsen, B., Debes, N. M., Hjermind, L. E., Skov, L., Brøndum-Nielsen, K.,

and Tümer, Z. (2013). Chromosomal rearrangements in Tourette syndrome:

implications for identification of candidate susceptibility genes and review of

the literature. Neurogenetics 14, 197–203. doi: 10.1007/s10048-013-0372-y

Bertelsen, B., Melchior, L., Jensen, L. R., Groth, C., Glenthøj, B., Rizzo, R., et al.

(2014). Intragenic deletions affecting two alternative transcripts of the IMMP2L

gene in patients with Tourette syndrome. Eur. J. Hum. Genet. 22, 1283–1289.

doi: 10.1038/ejhg.2014.24

Bertelsen, B., Stefánsson, H., Riff Jensen, L., Melchior, L., Mol Debes, N., Groth,

C., et al. (2015). Association of AADAC Deletion and Gilles de la Tourette

Syndrome in a Large European Cohort. Biol. Psychiatry 79, 383–391. doi: 10.

1016/j.biopsych.2015.08.027

Davis, L. K., Yu, D., Keenan, C. L., Gamazon, E. R., Konkashbaev, A. I., Derks,

E. M., et al. (2013). Partitioning the Heritability of Tourette Syndrome and

obsessive compulsive disorder reveals differences in Genetic Architecture. PLoS

Genet. 9:e1003864. doi: 10.1371/journal.pgen.1003864

Dietrich, A., Fernandez, T. V., King, R. A., State, M. W., Tischfield, J. A., Hoekstra,

P. J., et al. (2014). The Tourette International Collaborative Genetics (TIC

Genetics) study, finding the genes causing Tourette syndrome: objectives and

methods. Eur. Child Adolesc. Psychiatry 24, 141–151. doi: 10.1007/s00787-014-

0543-x

Killeen, M. T., and Sybingco, S. S. (2008). Netrin, Slit and Wnt receptors allow

axons to choose the axis of migration. Dev. Biol. 323, 143–151. doi: 10.1016/j.

ydbio.2008.08.027

Koch, M., Murrell, J. R., Hunter, D. D., Olson, P. F., Jin, W., Keene, D. R., et al.

(2000). A novel member of the netrin family, beta-netrin, shares homology

with the beta chain of laminin: identification, expression, and functional

characterization. J. Cell Biol. 151, 221–234. doi: 10.1083/jcb.151.2.221

Lawson-Yuen, A., Saldivar, J.-S., Sommer, S., and Picker, J. (2008). Familial deletion

within NLGN4 associated with autism and Tourette syndrome. Eur. J. Hum.

Genet. 16, 614–618. doi: 10.1038/sj.ejhg.5202006

Lee, J. S., Yoo, S. S., Cho, S. Y., Ock, S. M., Lim, M. K., and Panych, L. P.

(2006). Abnormal thalamic volume in treatment-naïve boys with Tourette

syndrome. Acta Psychiatr. Scand. 113, 64–67. doi: 10.1111/j.1600-0447.2005.

00666.x

Nag, A., Bochukova, E. G., Kremeyer, B., Campbell, D. D., Muller, H., Valencia-

Duarte, A. V., et al. (2013). CNV analysis in Tourette syndrome implicates large

genomic rearrangements in COL8A1 andNRXN1. PLoS ONE 8:e59061. doi: 10.

1371/journal.pone.0059061

Paschou, P. (2013). The genetic basis of Gilles de la Tourette Syndrome. Neurosci.

Biobehav. Rev. 37, 1026–1039. doi: 10.1016/j.neubiorev.2013.01.016

Paschou, P., Yu, D., Gerber, G., Evans, P., Tsetsos, F., Davis, L. K., et al. (2014).

Genetic association signal near NTN4 in Tourette syndrome. Ann. Neurol. 76,

310–315. doi: 10.1002/ana.24215

Patel, C., Cooper-Charles, L., McMullan, D. J., Walker, J. M., Davison, V., and

Morton, J. (2011). Translocation breakpoint at 7q31 associated with tics: further

evidence for IMMP2L as a candidate gene for Tourette syndrome. Eur. J. Hum.

Genet. 19, 634–639. doi: 10.1038/ejhg.2010.238

Price, A. L., Patterson, N. J., Plenge, R. M., Weinblatt, M. E., Shadick, N. A., and

Reich, D. (2006). Principal components analysis corrects for stratification in

genome-wide association studies.Nat. Genet. 38, 904–909. doi: 10.1038/ng1847

Purcell, S., Neale, B., Todd-Brown, K., Thomas, L., Ferreira, M. A. R., Bender, D.,

et al. (2007). PLINK: a tool set for whole-genome association and population-

based linkage analyses. Am. J. Hum. Genet. 81, 559–575. doi: 10.1086/

519795

Qin, S., Yu, L., Gao, Y., Zhou, R., and Zhang, C. (2007). Characterization of the

receptors for axon guidance factor netrin-4 and identification of the binding

domains.Mol. Cell. Neurosci. 34, 243–250. doi: 10.1016/j.mcn.2006.11.002

Rickards, H., Wood, C., and Cavanna, A. E. (2008). Hassler and Dieckmann’s

seminal paper on stereotactic thalamotomy for Gilles de la Tourette syndrome:

Translation and critical reappraisal.Mov. Disord. 23, 1966–1972. doi: 10.1002/

mds.22238

Robertson, M. M., Eapen, V., and Cavanna, A. E. (2009). The international

prevalence, epidemiology, and clinical phenomenology of Tourette syndrome:

a cross-cultural perspective. J. Psychosom. Res. 67, 475–483. doi: 10.1016/j.

jpsychores.2009.07.010

Rueda, M. R., Posner, M. I., and Rothbart, M. K. (2005). The development of

executive attention: contributions to the emergence of self-regulation. Dev.

Neuropsychol. 28, 573–594. doi: 10.1207/s15326942dn2802_2

Scharf, J. M., Yu, D., Mathews, C. A., Neale, B. M., Stewart, S. E., Fagerness, J.

A., et al. (2013). Genome-wide association study of Tourette Syndrome. Mol.

Psychiatry 18, 721–728. doi: 10.1038/mp.2012.69

Schubert, T., Denk, A., Mägdefrau, U., Kaufmann, S., Bastone, P., Lowin, T., et al.

(2009). Role of the Netrin system of repellent factors on synovial fibroblasts in

rheumatoid arthritis and osteoarthritis. Int. J. Immunopathol. Pharmacol. 22,

715–722. doi: 10.1177/039463200902200317

Frontiers in Neuroscience | www.frontiersin.org 6 November 2016 | Volume 10 | Article 531

https://doi.org/10.1126/science.1116502
https://doi.org/10.1176/ajp.2006.163.6.1106
https://doi.org/10.1007/s10048-013-0372-y
https://doi.org/10.1038/ejhg.2014.24
https://doi.org/10.1016/j.biopsych.2015.08.027
https://doi.org/10.1371/journal.pgen.1003864
https://doi.org/10.1007/s00787-014-0543-x
https://doi.org/10.1016/j.ydbio.2008.08.027
https://doi.org/10.1083/jcb.151.2.221
https://doi.org/10.1038/sj.ejhg.5202006
https://doi.org/10.1111/j.1600-0447.2005.00666.x
https://doi.org/10.1371/journal.pone.0059061
https://doi.org/10.1016/j.neubiorev.2013.01.016
https://doi.org/10.1002/ana.24215
https://doi.org/10.1038/ejhg.2010.238
https://doi.org/10.1038/ng1847
https://doi.org/10.1086/519795
https://doi.org/10.1016/j.mcn.2006.11.002
https://doi.org/10.1002/mds.22238
https://doi.org/10.1016/j.jpsychores.2009.07.010
https://doi.org/10.1207/s15326942dn2802
https://doi.org/10.1038/mp.2012.69
https://doi.org/10.1177/039463200902200317
http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Neuroscience/archive


Padmanabhuni et al. NTN4 Polymorphism in Danish GTS

Singer, H. S., and Rosenberg, L. A. (1988). Development of behavioral and

emotional problems in Tourette syndrome. Pediatr. Neurol. 5, 41–44. doi: 10.

1016/0887-8994(89)90008-8

Sundaram, S. K., Huq, A. M., Wilson, B. J., and Chugani, H. T. (2010). Tourette

syndrome is associated with recurrent exonic copy number variants. Neurology

74, 1583–1590. doi: 10.1212/WNL.0b013e3181e0f147

Verkerk, A. J. M. H., Mathews, C. A., Joosse, M., Eussen, B. H. J., Heutink, P.,

and Oostra, B. A. (2003). CNTNAP2 is disrupted in a family with Gilles de

la Tourette syndrome and obsessive compulsive disorder. Genomics 82, 1–9.

doi: 10.1016/S0888-7543(03)00097-1

Willer, C. J., Li, Y., and Abecasis, G. R. (2010). METAL: fast and efficient

meta-analysis of genomewide association scans. Bioinformatics 26, 2190–2191.

doi: 10.1093/bioinformatics/btq340

Wood, B. L., Klebba, K., Gbadebo, O., Lichter, D., Kurlan, R., Miller, B., et al.

(2003). Pilot study of effect of emotional stimuli on tic severity in children with

Tourette’s syndrome.Mov. Disord. 18, 1392–1395. doi: 10.1002/mds.10552

Zhang, C., Meng, F., Wang, C., Guo, H., Fan, M., Liu, S., et al. (2004). Identification

of a novel alternative splicing form of human netrin-4 and analyzing the

expression patterns in adult rat brain. Brain Res. Mol. Brain Res. 130, 68–80.

doi: 10.1016/j.molbrainres.2004.07.009

Conflict of Interest Statement: The authors declare that the research was

conducted in the absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Copyright © 2016 Padmanabhuni, Houssari, Esserlind, Olesen, Werge, Hansen,

Bertelsen, Tsetsos, Paschou and Tümer. This is an open-access article distributed

under the terms of the Creative Commons Attribution License (CC BY). The use,

distribution or reproduction in other forums is permitted, provided the original

author(s) or licensor are credited and that the original publication in this journal

is cited, in accordance with accepted academic practice. No use, distribution or

reproduction is permitted which does not comply with these terms.

Frontiers in Neuroscience | www.frontiersin.org 7 November 2016 | Volume 10 | Article 531

https://doi.org/10.1016/0887-8994(89)90008-8
https://doi.org/10.1212/WNL.0b013e3181e0f147
https://doi.org/10.1016/S0888-7543(03)00097-1
https://doi.org/10.1093/bioinformatics/btq340
https://doi.org/10.1002/mds.10552
https://doi.org/10.1016/j.molbrainres.2004.07.009
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Neuroscience/archive

	Investigation of SNP rs2060546 Immediately Upstream to NTN4 in a Danish Gilles de la Tourette Syndrome Cohort
	Introduction
	Materials and Methods
	Samples
	Genotyping
	Quality Control
	Association Analysis
	Meta-Analysis

	Results
	Discussion
	Author Contributions
	Funding
	Acknowledgments
	References


