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The aim of this study was to analyze how measurement error affects the validity of

modeling studies in computational neuroscience. A synthetic validity test was created

using simulated P300 event-related potentials as an example. The model space

comprised four computational models of single-trial P300 amplitude fluctuations which

differed in terms of complexity and dependency. The single-trial fluctuation of simulated

P300 amplitudes was computed on the basis of one of the models, at various levels of

measurement error and at various numbers of data points. Bayesian model selection was

performed based on exceedance probabilities. At very low numbers of data points, the

least complex model generally outperformed the data-generating model. Invalid model

identification also occurred at low levels of data quality and under low numbers of data

points if the winning model’s predictors were closely correlated with the predictors from

the data-generating model. Given sufficient data quality and numbers of data points, the

data-generating model could be correctly identified, even against models which were

very similar to the data-generating model. Thus, a number of variables affects the validity

of computational modeling studies, and data quality and numbers of data points are

among the main factors relevant to the issue. Further, the nature of the model space (i.e.,

model complexity, model dependency) should not be neglected. This study provided

quantitative results which show the importance of ensuring the validity of computational

modeling via adequately prepared studies. The accomplishment of synthetic validity

tests is recommended for future applications. Beyond that, we propose to render the

demonstration of sufficient validity via adequate simulations mandatory to computational

modeling studies.

Keywords: computational modeling, functional brain imaging, event-related potentials, signal-to-noise ratio,

validity, model identifiability, design optimization

1. INTRODUCTION

Computational biology involves mathematical modeling techniques to study biological systems.
For example, computational neuroscience is the study of brain function in terms of quantitative
models of information processing in the nervous system (e.g., Sejnowski et al., 1988).
Computational cognitive neuroscience (CCN) represents an emerging subfield of computational
neuroscience which aims to identify computational models of cognition from measures of brain
activity (e.g., Knill and Pouget, 2004; Friston, 2005; O’Reilly et al., 2012, 2013; Koechlin, 2014;
Gerstner and Frémaux, 2015; Kira et al., 2015; Pecevski and Maass, 2016). The general framework
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of CCN rapidly gains popularity because of both its
overwhelming advantages compared to non-computational
methods and its potential clinical importance. The emergence of
new fields, such as for example computational psychiatry (e.g.,
Montague et al., 2012; Corlett and Fletcher, 2014; Stephan and
Mathys, 2014; Adams et al., 2016; Huys et al., 2016), may serve
as an indicator of these developments. Still another reason why
CCN rapidly gains popularity is that it represents a modality-
general approach in that it deals with all functional brain
imaging modalities such as, for example, functional magnetic
resonance imaging (fMRI), magnetoencephalography (MEG),
and electroencephalography (EEG).

CCN includes many techniques for computational modeling,
i.e., for analyzing relationships between observed data and latent
variables. The common approach is forward modeling which
expresses the observed data as functions of some predictors.
Since forward models provide a model for the generation of the
observed data, they are also referred to as generative models in
the machine learning literature (Haufe et al., 2014). In contrast,
backward models “extract” latent variables as functions of the
observed data, i.e., they reverse the direction of the functional
dependency between latent variables and data compared to
forward models. They are typically used if there is no need
to model the generation of the data, i.e., when one is only
interested in transforming observed data into a (potentially low-
dimensional) representation in which they exhibit certain desired
characteristics (a familiar example is brain-computer interfaces;
e.g., Nicolelis, 2001; Blankertz et al., 2007).

In this article, we present a simulation study evaluating
methodological issues related to the validity of forward modeling
studies. Validity implies in the context of CCN that a forward
modeling study renders it possible to identify from observed
brain activities the proper generative model which usually
corresponds to a computational model of cognition. A major
threat to the validity of forward modeling studies lies in the fact
that observed brain activities are a combination of many sources
of variation some of which are systematically related to the latent
variables (i.e., the desired signal), but some of which represent
measurement error and background noise. Our study is the first
to handle the noise problem as a validity problem of identifying
the proper data-generative model.

We recognized that the effects of the signal-to-noise ratio
(SNR) on the validity of forward modeling studies are still not
dealt with in the literature. In order to fill that gap, our study
used synthetic EEG data of varying data quality (i.e., degrees of
noise) to examine the circumstances under which the proper,
rather than an improper, generative model can be identified,
thereby providing formal insights into the relationship between
variations in data quality and the validity of forward modeling
studies.

We chose single-trial P300 (or P3, also P3b) amplitudes of
the event-related brain potential (ERP) mainly for two reasons
as an example. First, it is well-established that single-trial
P300 amplitudes are sensitive to the degree to which eliciting
stimuli are surprising (Donchin, 1981), and surprise is a well-
defined information theoretic metric (Shannon and Weaver,
1948). Second, the relevant model space is comparatively limited:

Squires et al. (1976) presented a model of P300 amplitude
fluctuations, based on the concept of expectancy, see below.
Basically following that lead, we suggested a computational
model (Kolossa et al., 2013) which represents a refinement of
Squires et al. (1976). An alternative to these two multifactorial
computational models was proposed by Mars et al. (2008) who
suggested a simple unifactorial computational model that keeps
track of the relative frequency of stimuli.

We chose our own model (Kolossa et al., 2013) as the
generative model of the synthetic EEG data, and we analyzed
whether Bayesian model comparison techniques (Friston et al.,
2007; Stephan et al., 2009; Penny, 2012)—which are commonly
used for model selection of ERP data (Mars et al., 2008; Ostwald
et al., 2012; Kolossa et al., 2013, 2015; Lieder et al., 2013)—were
capable to identify the proper generative model under varying
degrees of noise. For sake of simplicity, we consider single-
channel EEG data (i.e., single-trial amplitude measures obtained
from one single recording channel) rather than multichannel
EEG data. Note that multivariate methods combine information
from different channels and thus render it possible to cancel out
some degree of noise (Makeig et al., 1996; Haufe et al., 2014).
However, the application of multivariate methods does not solve,
but merely ameliorates the noise problem.

2. MATERIALS AND METHODS

2.1. System Model
Single-trial ERPs can be extracted from the EEG and they are
measurable traces of cognitive processes (Luck, 2014). Here, we
used synthetic ERPs that have the advantage of providing well-
defined observables, i.e., data = signal + noise. Thus, this study
explores the framework of CCN by starting with known signals
and by adding various levels of noise in order to see whether
the signal-generating model can be re-established against a
background of alternative models (see below for details). We are
mainly interested to see how the validity of the model selection
hinges upon (a) the SNR ratio, (b) the number of data, (c) the
dependency in the model space, and (d) model complexity.

Three related models of single-trial P300 amplitude
fluctuations are taken from the literature, namely the SQUmodel
proposed by Squires et al. (1976), the MAR model proposed
by Mars et al. (2008), and the DIF model published in Kolossa
et al. (2013). These models, along with the null model (NUL),
constitute a model space M= {NUL,MAR, SQU,DIF}. A series
of N random events k = {1, ...,K}, here with K=2, is drawn to
form observations o(n) = k, with trial index n ∈ {1, ...,N}. The
DIF model (see below) is used to calculate the surprise IP(n) over
the observation o(n) = k. An offset ϑ is added to IP(n) to yield
the signal s(n)

s(n) = ϑ + IP(n). (1)

Artificial noise ǫ(n) is then added to s(n) to yield the synthetic
ERP (sERP) y(n) following

y(n) = s(n)+ ǫ(n). (2)
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This procedure is repeated for L = 16 virtual subjects ℓ =

{1, ..., L}. Random effects Bayesian model selection for group
studies (Stephan et al., 2009) is then used to evaluate which of the
modelsm∈M actually generated the ERP sequence IP(n). These
analyses are repeated for different levels of noise and various
numbers of data points N.

In the following, Bayesian model selection (BMS) is shortly
introduced before the model space is formally defined. An
introduction to SNR estimation for ERPs precedes the detailed
description of the analysis framework. A short note on notation:
small bold symbols refer to vectors, capital bold symbols to
matrices, and []T denotes the transpose. Thus, the vector y =

[y(n = 1), ..., y(n = N)]T captures the synthetic data over trials,
while ǫ = [ǫ(n= 1), ..., ǫ(n=N)]T represents the corresponding
noise. All simulations were performed usingMATLAB 7.11.0 and
the Statistical Parametric Mapping (SPM8) software.

2.2. Bayesian Model Selection
BMS methods are widely applied in many fields (Raftery, 1995;
Hoeting et al., 1999; Penny and Roberts, 2002; Pitt and Myung,
2002; Beal and Ghahramani, 2003; Kemp et al., 2007; Hoijtink
et al., 2008; Vyshemirsky and Girolami, 2008; Toni et al., 2009;
Penny et al., 2010; Kolossa et al., 2016). We used a two-level
hierarchical general linear model (GLM) with the Parametric
Empirical Bayesian (PEB) scheme and random effects BMS for
group studies as implemented in the SPM software (Friston
et al., 2002, 2007; Stephan et al., 2009). The two-level hierarchical
model equips a standard general linear model with a second
level that places constraints on the parameter estimates of the
first level. For each subject ℓ and model m of the model
space M, the log-evidence is approximated with a variational
free energy bound Fm,ℓ which consists of an accuracy and a
complexity term (Penny et al., 2004; Friston et al., 2007; Penny,
2012). Random effects (RFX) BMS for group studies computes
exceedance probabilities ϕm for all models, which equals the
probability that model m is more likely than all other models
(Stephan et al., 2009).

The two-level GLM is of the form

y = X(1)θ + ǫ(1)

θ = ǫ(2). (3)

The first level of the GLM contains two parameters θ =

[θ1 θ2]
T which model intercept and slope, respectively. The

model-dependent compositions of the first-level design matrices
X(1) will be shown in the model-specific sections below. The
second level of the GLM sets an unconstrained prior on the first-
level parameters θ and allows for single-level Bayesian inference
(Ostwald et al., 2012).

All errors are assumed to be normally distributed with
ǫ(1) ∼ N (0,6(1)

ǫ ) and ǫ(2) ∼ N (0,6(2)
ǫ ). The covariance is

parameterized following 6(1)
ǫ = λ(1)IN and 6(2)

ǫ = λ(2)I2,
with IN ∈ R

N×N being an identity matrix. The parameters θ

and the hyper-parameters λ(1) and λ(2) are estimated using an
expectation maximization (EM) algorithm. After convergence of
the EM, the conditional means of the first-level parameters µθ |y

are used as point estimates (Friston et al., 2002) for model fitting
to yield the sERP estimates

ŝ = X(1)
µθ |y (4)

before calculation of the Spearman correlation and the explained
variance (see below).

2.3. Spearman Correlation
We use the Spearman correlation ρ as a measure of similarity
between two modelsm=1 andm=2. It follows

ρ = 1−
6
∑N

n= 1 d
2(n)

N(N2 − 1)
, (5)

with d(n) being the distance between the ranks of the sERP
predictors from two models ŝm= 1(n) and ŝm= 2(n) on trial n.

2.4. Explained Variance
As an absolute measure of fit of the models to the data, we
use the explained variance calculated as the squared correlation
coefficient

R2 =





∑N
n= 1(ŝ(n)− ŝ)(y(n)− y)

√

∑N
n= 1(ŝ(n)− ŝ)2

∑N
n= 1(y(n)− y)2





2

, (6)

with ŝ and y as the means of ŝ and y, respectively.

2.5. Model Space
This section details the four models which constitute the model
space M = {NUL,MAR, SQU,DIF}. It also specifies the
respective first-level design matrices X(1) which are input to the
model estimation and selection framework. For all models except
for the NUL model, the first-level design matrices consist of a
constant term and the respective ERP predictor, as will be detailed
below.

2.5.1. NUL Model
The NUL model represents the null hypothesis that the signal is
constant and variation in the data is solely due to noise. Thus, the
first level design matrix is an all one column vector

X(1) = x(1) =







1
...
1






∈ R

N . (7)

Notice that the GLM (3) for the NUL model consists only of an
intercept θ1, thus greatly reducing the complexity of this model.

2.5.2. MAR Model
TheMARmodel as proposed byMars et al. (2008) uses predictive
surprise IP(n) over observations to predict the sERP. This model
keeps track of the observation probability Pk(n) according to

Pk(n) =
c̃L,k(n)+ 1

(n− 1)+ K
, (8)
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with the long-term memory count function c̃L,k(n) counting the
number of occurrences of event k until trial n− 1. Please refer
to Mars et al. (2008) or Kolossa et al. (2013) for further details on
the count function. After an observation is made, the observation
probability is transformed to predictive surprise following

IP(n) = − log2(Pk = o(n)(n)). (9)

The first-level design matrix for the MAR model has the form

X(1) =







1 IP(n=1)
...

...
1 IP(n=N)






∈ R

N×2, (10)

thus modeling the sERP to be composed of an offset as in (1) and
predictive surprise.

2.5.3. SQU Model
The SQUmodel uses expectancy Ek(n) for event k∈{1, 2} on trial
n as sERP predictor. While Squires et al. (1976) originally did
not provide a complete analytical form of their model, Kolossa
et al. (2013) present a thoroughly mathematical reformulation
of their approach. The expectancy that event k ∈ {1, 2} will
be observed on trial n ∈ {1, ...,N} consists of an exponentially
decaying count function for short-term memory, c̆S,k(n), a count
function for alternation expectancy, c̆A,k(n), along with the global
event probability, Pk, which combine to

Ek(n) = 0.235 · c̆S,k(n)+0.033 · c̆A,k(n)+0.505 ·Pk−0.027. (11)

The constants are empirically derived best-fitting parameters.
The interested reader is referred to Kolossa et al. (2013) for a
detailed derivation of the count functions c̆S,k(n) and c̆A,k(n).
Analogously to the MAR model, the first-level design matrix for
the SQU model is of the form

X(1) =







1 Ek = o(n)(n=1)
...

...
1 Ek = o(n)(n=N)






∈ R

N×2. (12)

2.5.4. DIF Model
The digital filtering (DIF) model predicts the sERP with
predictive surprise akin to the MAR model. It keeps track of the
observation probability Pk(n) but with an exponentially decaying
short-term memory count function, cS,k(n), an alternation
expectation contribution, cA,k(n), and exponentially decaying
long-term memory count function, cL,k(n). It thus combines
properties of the SQU and MAR model. The three contributions
and an additive probability-normalizing constant 1

C combine to

Pk(n) = 0.83 · cL,k(n)+0.12 · cS,k(n)+0.05 ·
[

cA,k(n)+
1
C

]

. (13)

The interested reader is referred to Kolossa et al. (2013) for
details on the count functions and the empirical derivation of
the constants. Once event k on trial n has been observed, the

observation probability is transformed to predictive surprise (9),
yielding the first-level design matrix

X(1) =







1 IP(n=1)
...

...
1 IP(n=N)






∈ R

N×2, (14)

akin to the MAR and SQU models.

2.6. Signal-to-Noise Ratio (SNR)
Though often neglected, the SNR (power) ratio of the EEG
defines the boundary conditions in ERP research. It depends
on the SNR how many trials are necessary for meaningful ERP
estimates (Luck, 2004) and reliable BMS (Penny, 2012). Early
methods for SNR estimation for ERPs go back to the times of
the discovery of the P300 (Sutton et al., 1965; Schimmel, 1967).
Only few approaches were presented in later years (Coppola
et al., 1978; Başar, 1980; Raz et al., 1988; Puce et al., 1994). The
one proposed by Möcks et al. (1988) is still used as the basis
for current developments (beim Graben, 2001; Paukkunen et al.,
2010).

2.6.1. Estimating the SNR
We follow the approach from Möcks et al. (1988) which we now
briefly describe. Notice that the SNR is calculated for each event
type k separately and averaged afterwards. So first, the sERP
amplitudes y(n) are separated according to their event type k,
yielding yk(n), with n ∈ {1, ...,Nk} and Nk as the total number
of trials in which event k was observed. The sERPs yk(n) are
assumed to be composed of the signal sk and stationary ergodic
noise ǫk(n) with variance σ 2

ǫk
(beim Graben, 2001), yielding

yk(n) = sk + ǫk(n), (15)

with sk as constant over trials. These assumptions are not met
for real ERP amplitudes, but they are nevertheless accepted as
useful simplifications (Möcks et al., 1988). The SNR for event k
is defined as the ratio of the power of the signal over the noise
power (beim Graben, 2001)

SNRk =
Psk
Pǫk

=
s2
k

σ 2
ǫk

. (16)

Möcks et al. (1988) propose the noise power estimate

P̂ǫk =
1

Nk − 1

Nk
∑

n= 1

(

yk(n)− yk
)2
, (17)

with

yk =
1

Nk

Nk
∑

n = 1

yk(n). (18)

The power of the sERP follows (beim Graben, 2001)

Pyk = y2
k
=

1

Nk

Nk
∑

n = 1

y2k(n) (19)
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and, assuming statistical independence between signal and noise,
it is composed of the power of the signal Psk and the power of the
noise Pǫk according to

Pyk = Psk +
1

Nk
Pǫk . (20)

Notice that the noise left in Pyk is attenuated by the factor Nk,

therefore the scaling of the noise power Pǫk by
1
Nk

in (20) (Möcks

et al., 1988; Paukkunen et al., 2010; Czanner et al., 2015). The
signal power can now be estimated from (20)

P̂sk = Pyk −
1

Nk
P̂ǫk (21)

and the SNR estimate ˆSNRk in [dB] follows

ˆSNRk [dB] = 10 log10
P̂sk

P̂ǫk

. (22)

2.6.2. Setting the SNR
We employ the SNR estimation methods described above for
generating sERPs with a specific SNR. Notice that even in
response to the same event type k, real ERPs are not constant
over trials (Squires et al., 1976; Mars et al., 2008; Ostwald et al.,
2012; Kolossa et al., 2013, 2015; Lieder et al., 2013). In order to
make this work applicable to real ERPs we use a trial-variable
signal sk(n) in (15) instead of a constant sk. The signal power then
follows

Psk =
1

N

N
∑

n= 1

s2k(n) (23)

and the noise power is known as

Pǫk = σ 2
ǫk
. (24)

Inserting (24) in (22) and solving for σ 2
ǫk
yields

σ 2
ǫk
=

Psk

10
SNR [dB]

10

(25)

which is the sought after error variance σ 2
ǫk

for a desired
SNR [dB], given sk(n).

2.7. sERP Generation
The sERP y(n) is generated following (2) in Section 2.1. Notice
that due to the event type-dependent nature of the SNR
estimation for ERPs, the signal s(n) is first separated according to
the event type k before zero-mean Gaussian noise ǫk∼N (0, σ 2

ǫk
)

is added to the sub-signals sk(n) to yield yk(n)

yk(n) = sk(n)+ ǫk(n). (26)

The values of σ 2
ǫk

are determined in dependence on the SNR
condition according to (25). After the addition of noise to the
sub-signals, the sERP y(n) is derived by combining yk(n) for

both event types in their original trial order. We created noise
conditions of SNR [dB] ∈ {10, 8, 6, 4, 2, 0} which are reasonable
for ERP data (Kolossa, 2016). For each of the L = 16 subjects
ℓ ∈ L = {1, ..., L}, the SNR is drawn from a normal distribution
with 2 dB variance SNRℓ ∼ N (SNR, σ 2

SNR = 2 dB) to model
variability of SNRs over subjects. For each SNR condition, ten
different numbers of data points N ∈ {50, 100, 150, 200, 250,
300, 350, 400, 450, 500} are used, yielding a total of 60 scenarios
with different combinations of SNR and N.

In each scenario, a sequence of N events is randomly drawn,
with a probability for the frequent event of Pk= 1 = 0.7 and for
the rare event of Pk= 2 = 0.3. The DIF model is used to calculate
predictive surprise values which are then degraded by noise as
described above in Section 2.1 to yield the sERP. All modelsm of
the model spaceM={NUL,MAR, SQU,DIF} are then subjected
to BMS (see Section 2.2). After fitting the models, the Spearman
correlation (see Section 2.3) between theDIFmodel and theMAR
model as well as between the DIF model and the SQUmodel plus
the explained variance (see Section 2.4) of the MAR, SQU, and
DIF model are calculated. When a scenario is completed for all
L subjects, exceedance probabilities ϕ and the median Spearman
correlation ρ and explained variance R2 are calculated to obtain
group-level results. Each scenario is simulated five hundred times
with new sampling of stimuli and errors (Penny, 2012). Finally,
the medians of exceedance probabilities, Spearman correlations
and percentages of explained variance over all 500 repetitions are
obtained. The following pseudocode summarizes the simulation
procedure:

start

for SNR = 0,...,10 [dB]

for num. data = 50,...,500

for 500 simulations

for 16 subjects

SNR sampling

stimulus sampling

noise sampling

Spearman correlation

expl. variance

model evidence

end over subjects

exceedance probabilities

median Spearman correlation

median expl. variance

end over simulations

median exceedance probabilities

median Spearman correlation

median expl. variance

end over num. data

end over SNR

end

3. RESULTS

Figure 1 shows the median Spearman correlations ρ (5) between
predictors from the data-generating DIF model and the SQU
model (( ) and the MAR model (( ), respectively, as a
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FIGURE 1 | Spearman correlations ρ (5) between predictors from the data-generating DIF model and predictors from the SQU and the MAR model,

respectively. They are shown as a function of the number of data N and separately for noise conditions SNR [dB]∈ {10, 8, 6, 4, 2, 0}.

function of the number of data N (per individual) and separately
for noise conditions SNR [dB] ∈ {10, 8, 6, 4, 2, 0}. Overall, the
values of these correlations are quite high, and they are largely
independent from variations in data quality (SNR). It is clearly
visible that the predictors from the DIF model and from the
SQU model were generally much closer correlated than were the
predictors from the DIF model and from the MAR model. As an
exception from that rule, the DIFmodel and the SQUmodel were
closer correlated than were the DIF model and the MAR model
for the simulations under 2 dB and 0 dB for 50 trials. The DIF–
MAR correlation under these circumstances may be attributable
to the surprise metric (9) that both models incorporate, while
the SQU does not make use of the surprise metric. Thus, for
low data quality and low numbers of data points, the shared
surprise metric seems to drive the dependency, whereas the
model’s parameter structure (multifactorial in case of the DIF
and SQU models, unifactorial in case of the MAR model) is
the stronger determinant of the dependency between the models
under all other circumstances. Finally, the dissimilarity between
the MAR and SQU model becomes more and more apparent
with increasing numbers of data points N throughout all SNR
conditions.

Figure 2 shows the explained variance R2 (6) for the DIF
( ), SQU (( ), and MAR (( ) models as a function of
the number of data N for noise conditions SNR [dB] ∈

{10, 8, 6, 4, 2, 0}. As expected, the amount of explained variance

decreased with decreasing SNRs (Penny, 2012). At highest levels
of data quality, the maximum amount of explained variance
approached around 25%, while at lowest levels of data quality,
the maximum amount of explained variance approached less
than 5%. Throughout the full range of SNRs and numbers
of data points, the data-generating DIF model accounted for
the maximum amount of variance. However, the DIF model’s
superiority in explaining variance decreased with decreasing
SNRs. Finally, while the SQU model and the MAR model were
clearly dissimilar with respect to their inter-correlations with the
data-generating DIFmodel (see Figure 1), these twomodels were
by-and-large indistinguishable in terms of the amount of variance
that they accounted for.

Figure 3 shows the exceedance probabilities ϕ for the DIF
( ), SQU (( ), MAR (( ), and NUL ( ) models as a
function of the number of data N separately for noise conditions
SNR [dB] ∈ {10, 8, 6, 4, 2, 0}. At the lowest numbers of data
points N (between 50 and 200, depending on the SNR), the NUL
model achieved maximum exceedance probabilities, while the
MAR model never achieved maximum exceedance probabilities.
At higher numbers of data points N, the data-generating DIF
model rapidly achieved superiority for the highest levels of data
quality (i.e., SNR condition 10 dB to 6 dB). At the lowest levels
of data quality (i.e., SNR condition 4 dB to 0 dB), the SQU model
transiently achieved higher exceedance probabilities than did the
data-generating DIF model: At a level of data quality of 4 dB, this
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FIGURE 2 | Explained variance R2 (6) for the DIF, SQU, and MAR models as a function of the number of data N separately for noise conditions

SNR [dB]∈{10, 8, 6, 4, 2, 0}.

held true at N = 150 trials; at 2 dB, the range of SQU model
superiority extended to N = 200 to 350 trials; and at 0 dB, the
range of SQUmodel superiority extended toN=250 to 500 trials.

Putatively, the SQU model’s superiority across low SNRs
and numbers of data points stems from two facts. First, the
predictors from the data-generating DIF model and those from
the SQU model were highly redundant (see Figure 1). Second,
the SQU model incorporates event probabilities, while the
data-generating DIF model estimates event probabilities via
relative frequencies across trials, and this trial-by-trial variability
contributes additional variance to the model’s predictors. At
relatively low data quality and at low numbers of data points,
the PEB scheme probably misattributes this additional variability
to noise rather than to the clean signal, rendering the SQU
model superior to the data-generating DIF model under these
circumstances.

4. DISCUSSION

The validity of forward modeling studies in CCN has, in the
past, been culpably neglected in the literature albeit that topic
is of utmost importance for our ability to identify proper
computational models of cognition from studies of brain activity.
Here, we showed in a synthetic EEG study that the validity of
model selection varies with the data quality, with the numbers
of data points, and with complexity and the dependency in the
model space. Figure 3 depicts themain findings of our simulation

study in terms of exceedance probabilities, a main outcome
measure of BMS.

To begin with, the least complex model (i.e., the NUL model)
had a competitive advantage at very low numbers of data points
throughout the full range of the SNRs that we examined. The
data-generating (DIF) model could be easily identified even at
relatively low numbers of data points (i.e., around 100 to 200
trials) when SNRs surmounted 7 dB. Below that point of data
quality, the SQU model had a competitive advantage over the
data-generating DIF model at intermediate (at 2 to 6 dB SNR)
or even high (at 0 dB SNR) numbers of data points, such that
the paradoxical advantage of the SQUmodel over the DIF model
decreased with rising SNRs.

To summarize, we mis-identified a putative data-generating
model at very low numbers of data points at all SNRs (i.e.,
the NUL model) and throughout intermediate, or even high,
numbers of data points as a function of decreasing SNRs (i.e.,
the SQU model). On the other hand, it is important that

we succeeded in identifying the data-generating (DIF) model,
provided a sufficient SNRs and/or a sufficient number of data,
while a more dissimilar model (i.e., the MAR model) remained

less probable than the data-generating model throughout the
full range of scenarios. The bottom line from our study is that

simulation studies akin to our work should be made mandatory
in designing and reporting CCN studies in order to substantiate,
rather than merely to suppose, sufficient validity of any given
forward modeling study, irrespective of its modality.
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FIGURE 3 | Exceedance probabilities ϕ for the DIF, SQU, MAR, and NUL models as a function of the number of data N separately for noise conditions

SNR [dB]∈{10, 8, 6, 4, 2, 0}. The green areas depict the range of valid inference (i.e., the maximum exceedance probability is assigned to the data-generating DIF

model) separately for each SNR condition. It can be seen that the range of valid inference shrinks with decreasing SNRs such that no valid inference remains possible

at the lowest level of data quality (i.e., at 0 dB) within the given numbers of data points.

One of the basic problems of CCN to date is that the
number of data measured in typical forward modeling studies
is usually planned without any formal consideration of data
quality variations. Consequently, the effects of measurement
error remain subject to variation which—as shown—affects the
validity of the model selection. Several methods have been
suggested for cleaning data (e.g., Turetsky et al., 1989; Effern
et al., 2000; Quiroga, 2000; He et al., 2004; Gonzalez-Moreno
et al., 2014; Ouyang et al., 2015). However, even though the
average data quality can be improved, this does not compensate
the insufficiency of the data in potentially many studies.
Alternatively, it would also be possible to generally increase
the number of data points toward high numbers. In practice,
however, fatigue, for example, may affect the neuropsychological
phenomena which are under scrutiny (Picton et al., 1995; Boksem
et al., 2005; Muller-Gass et al., 2005; Thornton, 2008), and the
risks of equipment-related errors also increase with time (Rahne
et al., 2008).

Our study provided quantitative results to support the idea
that the sufficiency of the number of data points can be
better guaranteed by application of a synthetic validity test. For
example, the number of data points (Nℓ = 1152) in the forward
modeling study of Kolossa et al. (2013) was in fact sufficient for
selecting between the SQU, MAR, and DIF models, given the
empirical data quality (SNR≈ 2 dB) since inspection of Figure 3

reveals that such a model selection with an SNR = 2 dB falls
within the range of valid inference if it is based on N > 400
data points per individual. In addition to data quality variations,
the model complexity (see the comparison between the NUL vs.
the DIF model) and the dependency of the model predictors
(compare the comparison between the SQU vs. the DIF model
and the comparison between the MAR vs. the DIF model) affect
the sufficiency of the number of data points that are required in a
valid forward modeling study.

The conductance of a synthetic validity test should
incorporate four main variables, i.e., complexity of the models,
dependency of the quantitative predictors from the model space,
reasonable data quality variations, and feasible numbers of
data points (trials). Synthetic validity tests answer the question
whether a given number of data points is sufficient or not,
given the particular model space under consideration, and given
specific assumptions about data quality.

One of our reviewers raised a concern, namely that our
explanation why the SQU model (i.e., not the model that was
actually used to simulate the data) won the model comparison
at very low SNR (and insufficient numbers of data points). We
had argued that this can be explained by the way the model
works, i.e., in terms of the way the SQU model incorporates
event probabilities. An alternative reason why the SQU model
might have won our BMS may be related to the hierarchical
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priors of the PEB approach (Friston et al., 2002; see e.g., Boos
et al., 2016 for an example of hierarchical Bayesian modeling).
In particular, the prior on the group variance (i.e., the variance
of ǫ(2) in 3) might induce more or less “shrinkage around
the mean” on PEB estimates, eventually favoring the wrong
model in low SNR situations. Thus, the specification of different
hierarchical priors at the group level constitutes a variable, which
was not explored systematically in our study, but which can be
examined in appropriate follow-up studies. In these studies, one
could also construct a factorial model space, where DIF, SQU,
MAR and NUL would be one model dimension, and different
prior variances would induce a orthogonal dimensions. One
could then marginalize over prior variances to obtain family-
wise exceedance probabilities, which do not depend upon the
hierarchical priors (Penny et al., 2010). The same reviewer
made the point that exceedance probabilities are but one of
many summary statistics in BMS, including posterior estimates
of model frequencies and protected exceedance probabilities
(Rigoux et al., 2014) that are associated with different levels of
statistical risk.

The reviewer also raised the concern that our approach misses
a critical aspect of group studies, where data quality refers to
the number of trials N and data quantity to the number of
subjects L. Our study does not provide an answer to the question
whether one should use, for example, two subjects with 300
trials each (maximizing data quality), or 20 subjects with 30
trials each (maximizing data quantitiy; e.g., Maus et al., 2011).
A conceivable extension of our study to evaluate if BMS is
more sensitive to data quality or data quantity would be varying
(in a factorial way) the within-subject SNR (and/or number
of trials per subject) and the group sample size, both chosen
within typical ranges. Still another extension would be variations
in group heterogeneity (e.g., a group could be composed of
individuals best described by different models) which is of
particular importance for random-effects BMS. A related issue
is the clinical application of BMS, because clinical populations
typically differ from normal control populations with regard to
SNR (Sackett, 2001;Winterer andWeinberger, 2003), demanding
additional strategies for paralleling the SNRs that can be obtained
in clinical and normal samples.

We advocated here the idea of using numerical simulations
to aid the interpretation of BMS. We showed that one should be
cautious about the results of BMS, in case these simulations detect
that some of the models may be confused with each other (as is
the case for the DIF, SQU, and NUL models here). However, we
have not formalized how one would (formally and/or practically)
use this information to scaffold one’s BMS. In other words: how
should one integrate the results of a confusion analysis (derived
from realistic numerical simulations) with one’s BMS results
(performed on experimental data)?

Our idea of conducting a confusion analysis during the design
phase of an experiment can be extended to address this issue,
as suggested by the reviewer (see Text S1 in Devaine et al.,
2014 or Marković and Kiebel, 2016 for examples). To that end,
one would derive the full quadratic confusion matrices C ∈

R
M×M , with M denoting the number of models in the model

space M. This M × M confusion matrix yields the exceedence

probabilities of having inferred each model, having simulated
the data under each model (not just under one of the models,
as in our simulation). In such a confusion matrix, the elements
on the main diagonal represent the probability of inferring the
true (data-generating) model, while the non-diagonal elements
represent the probability of inferring a model that did not
generate the data. Non-diagnonal elements in this confusion
matrix signal potential confusions between the inferred model
and the true (data-generating) model; hence, perfect model
identifiability should exhibit no extra-diagonal non-zero element,
i.e., an identity matrix.

There are many criteria conceivable, which may serve as
minimum standards for acceptable levels of model identifiability.
An exemplary cut-off criterion may be seen in the requirement
that all diagonal elements>0.50 (or alternatively, any other value
above 0.50). In this case, however, the chosen cut-off value
should strongly depend on the size of the model space. The
determinant of the confusion matrix |C| may be considered as
a more sophisticated approach to quantify model identifiability,
because, e.g., |C|=1 for perfect identifiability, while |C|= 0 if all
models are equally probable. The dependency of the determinant
of the confusion matrix on data quality and quantity should be
analyzed during a-priori examination of model identifiability,
because for any given level of data quantity L = L′ we get
|C|

∣

∣

L = L′ ,N→∞
= 1, while the value of 0 ≤ |C|

∣

∣

L→∞,N = N′ ≤ 1

depends on the given level of data quality N = N′. Minimum
determinants may be defined as cut-off criteria, with lower limits
being associated with less confidence in the conclusions that can
be drawn from a forward modeling study. While one may leave
the choice of a particular cut-off criterion for acceptable levels of
model identifiability to the discretion of the authors, CCN would
certainly profit from such an explicit treatment of a-priori model
identifiability.

But what if the most plausible model for one’s experimental
data is easily confused with another model? As far as we know,
there are no existing solutions to this issue once the experiment
has already been carried out. However, the a-priori calculation
of confusion matrices renders it possible to quantify the overall
risk of model confusion, which decreases with increasing data
quantity and quality. These calculations enable one to conduct
a feasible experiment, while controlling for the overall risk of
model confusion, as discussed above. However, it may simply
not be feasible to collect data with sufficient levels of quality
and quantity to surmount the pre-defined cut-off criteria. In this
case, the model space may be partitioned into model families,
and reasonable amounts of data may suffice for an acceptable
confusion risk within the respective model families.

Another solution to this problem would be to strengthen the
informativeness of the experimental design, e.g., by applying
the technique of adaptive design optimization as proposed in
cognitive science (Myung and Pitt, 2009; Cavagnaro et al., 2010,
2011; Myung et al., 2013; Kim et al., 2014). In the context
of model identifiability in BMS, adaptive design optimization
implies maximizing the determinants of the M × M confusion
matrices under fixed levels of data quality and quantity. This goal
can be achieved through the employment of the experimental
design that yields the best possible discrimination betweenmodel
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outputs. Engineering solutions for system identification rely
on pre-experimental optimization as well, e.g., pseudo random
input sequences in non-linear system identification (Billings
and Fakhouri, 1980; Vincent et al., 2010) or so-called perfect
sequences in acoustic system identification (Ipatov, 1979; Lüke
and Schotten, 1995). In the context of CCN, these techniques
may be employed to guarantee maximum orthogonality between
model outputs, which would enable BMS to better discriminate
between the models. Given that these two proposals complement
each other, one should first optimize the experimental design,
and subsequently analyze minimum levels of data quality and
quantity that are necessary for acceptable levels of model
identifiability. Those are some of the routes for more systematic
efforts toward a-priori calculation of confusion matrices, which

may eventually lead to novel solutions to the problem of model
identifiability that begins to fan out.

Despite the discussed shortcomings of our work, we
recommend for researchers who plan to conduct a forward
modeling CCN study, to run an unsolicited a-priori synthetic
validity test in order to guarantee sufficiency of the to be gathered
data. We further propose that this kind of synthetic validity tests
should be made mandatory to all forward modeling studies in the
future with the goal to improve the validity of these CCN studies.
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