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Anatomical distance has been widely used to predict functional connectivity because

of the potential relationship between structural connectivity and functional connectivity.

The basic implicit assumption of this method is “distance penalization.” But studies

have shown that one-parameter model (anatomical distance) cannot account for the

small-worldness, modularity, and degree distribution of normal human brain functional

networks. Two local information indices–common neighbor (CN) and preferential

attachment index (PA), are introduced into the prediction model as another parameter

to emulate many key topological of brain functional networks in the previous study.

In addition to these two indices, many other local information indices can be chosen

for investigation. Different indices evaluate local similarity from different perspectives.

Currently, we still have no idea about how to select local information indices to achieve

higher predicted accuracy of functional connectivity. Here, seven local information

indices are chosen, including CN, hub depressed index (HDI), hub promoted index

(HPI), Leicht-Holme-Newman index (LHN-I), Sørensen index (SI), PA, and resource

allocation index (RA). Statistical analyses were performed on eight network topological

properties to evaluate the predictions. Analysis shows that different prediction models

have different performances in terms of simulating topological properties and most of

the predicted network properties are close to the real data. There are four topological

properties whose average relative error is less than 5%, including characteristic path

length, clustering coefficient, global efficiency, and local efficiency. CN model shows

the most accurate predictions. Statistical analysis reveals that five properties within

the CN-predicted network do not differ significantly from the real data (P > 0.05,

false-discovery rate method corrected for seven comparisons). PA model shows the

worst prediction performance which was first applied in models of growth networks.

Our results suggest that PA is not suitable for predicting connectivity in a small-world

network. Furthermore, in order to evaluate the predictions rapidly, prediction power

was proposed as an evaluation metric. The current study compares the predictions of

functional connectivity with seven local information indices and provides a reference of

method selection for construction of prediction models.
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INTRODUCTION

As a combination of non-invasive brain imaging techniques
and complex network theory, brain networks have been
widely used to characterize the morphology (Hagmann et al.,
2008) and functional characteristics (Buldyrev et al., 2010) of
human brain. Recently, increasing number of researchers have
focused on the relationship between structural and functional
networks. Structural connectivity has been defined with diffusion
imaging and tractography, while functional connectivity has
been defined as a time-series correlation between regions of
interest (ROIs). Studies have found out structural connectivity
is closely related to resting-state functional connectivity at both
macro- (Honey et al., 2009; Hermundst et al., 2013) and micro-
scales (Wang et al., 2013). Related studies have demonstrated
that regions with structural connectivity also exhibit a strong
functional connectivity. This finding suggests that functional
connectivity might be predicted by characteristics of brain
topology (Alexander-Bloch et al., 2013b; Ercsey-Ravasz et al.,
2013). Here, “predict” means to deduce the strength or existence
of functional connectivity between two ROIs in a resting-state
network. The prediction model is mathematical expression of the
prediction method.

On the contrary, some studies have shown that strong

functional connectivity may exist among regions lacking

structural connectivity (Honey et al., 2009). This suggests that

information in the network is not only transmitted directly

through structural paths, but may also be affected by network

topology (Adachi et al., 2012). Additionally, analyses of the
anatomical distance (Euclidean distance) between brain regions
have shown that functional connectivity can be interpreted as
a “distance penalty.” That means the closer two brain regions
are, the stronger the functional connectivity is (Alexander-Bloch
et al., 2013a,b).

However, long-distance functional interactions cannot be
explained by the distance penalty (Vértes et al., 2012), implying
that relying solely on anatomical distance is not enough
and we need to combine other factors to achieve better
predictions of resting-state brain functional connectivity. Some
researchers regard neuronal activity as a bridge between
structural and functional connectivity. Several models of
neural activity have been proposed, including neural mass
models (Ponten et al., 2010), neural field models (Power
et al., 2013), the Kuramoto model (Cabral et al., 2011), and
spiking models (Nakagawa et al., 2013). Other researchers have
applied brain network topological information as parameters
to model functional connectivity. Nodal degree is a commonly
used attribute based on the basic assumptions of random
models. The probability of a connection existing between
the two regions is proportional to the product of their
degrees (Newman, 2010). Several different network topological
properties have been proposed to predict the existence of
connectivity in resting-state functional brain networks, including
structural degree (Tewarie et al., 2014), degree distribution
(Friedman et al., 2014), network communication measure
(Goñi et al., 2014), and local information (Vértes et al.,
2012).

Local information is the simplest direct method in link-
prediction research, which utilizes relevant network topological
information to predict the possibility of an edge between two
given nodes in a network (Getoor and Diehl, 2005). Link
prediction reflects the effect of inherent network topology
characteristics during the process of network evolution (Wang
et al., 2012). As a measurement of topological similarity
between two given nodes, local information is the most
commonly used method to predict the probability of connections
between them (Lü and Zhou, 2011). Because of its significant
practical value, local information has been widely used in
several scientific fields including information research (Popescul
and Ungar, 2003), biomedical research (Stumpf et al., 2008),
mobile communications (Dasgupta et al., 2008), and social
networks (Kossinets, 2006; Kumar et al., 2010). In neuroscience,
methods that use local information have been applied to
simulate neural remodeling that occurs during the learning
and memorizing tasks (Ziv and Ahissar, 2009), predicting
connectivity of neuronal synapses in the rat primary visual
cortex (Bock et al., 2011), optimizing component rearrangements
to reduce total wiring length in the macaque nervous system
(Kaiser and Hilgetag, 2006), analyzing network properties in the
Caenorhabditis.elegans neuronal network (Varshney et al., 2011),
and constructing local neuronal circuits in patients with autism
(Markram et al., 2007).

Although neuroscience investigations that apply local
information methods have been conducted at the micro-scale,
few have done macro-scale analyses. Vértes applied local
information methods to connectivity prediction in resting-state
functional brain networks and showed that the best predictions
came from the model that combined anatomical distance
with the indices—“common neighbor” (CN) (Vértes et al.,
2012) among a dozen models. Common neighbor is one of
local information indices whose mathematical definition is the
number of neighbors that two locations x and y have in common.

Local information reveals the topological similarity of nodes
and reflects local topological coherence in networks (Lü et al.,
2015). The basic implicit assumption of local information is
that the more similar the topology between two given nodes,
the higher the probability of an edge existing between them
(Lü and Zhou, 2011). This method has been validated by the
research in which two local information indices—“common
neighbor” and “preferential attachment” (PA)—were introduced
with the mathematical definition of the models for predicting
resting-state functional connectivity (Vértes et al., 2012). In
addition to these two indices, many other local information
indices can be chosen for investigation. Different indices evaluate
nodal similarity from different perspectives. Currently, we still
have no idea about how to select a local information index
to achieve higher predicted accuracy of functional connectivity.
To address this issue, we performed a similar experiment
mentioned above with twomain differences. Firstly, we separately
evaluated the inclusion of seven local information indices
into the model and compared the prediction accuracy among
indices. Secondly, prediction assessment was performed with
a reliable and rapid method that avoided vast amounts of
calculation and contrastive analysis of network topological
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properties. The results showed that adding local information
to the model allowed good simulations of functional brain
network, which reflected its basic characteristics, such as high
clustering coefficient, high local efficiency, hub nodes, and small-
worldness. Among the local information indices that were tested,
“common neighbor” resulted in the best predictions. These
results were consistent with the previous research (Vértes et al.,
2012), despite using different mathematical models, methods
for evaluating topological properties and indices for evaluating
network similarity. The current study compares the predictions
of functional connectivity with seven local information indices
and provides a reference of method selection for construction of
prediction models.

MATERIALS AND METHODS

Data Acquisition and Preprocessing
This study was carried out in accordance with the
recommendations of the medical ethics committee of Shanxi
Province (reference number: 2012013) with written informed
consent from all subjects. All subjects have been given written
informed consent in accordance with the Declaration of
Helsinki. Twenty-eight healthy right-handed volunteers (13
male; mean age: 26.6 ± 9.4 years, range: 17–51 years) underwent
resting-state functional magnetic resonance imaging (fMRI)
in a 3T MR scanner (Siemens Trio 3-Tesla scanner, Siemens,
Erlangen, Germany). Data collection was completed at the
First Hospital of Shanxi Medical University. All scans were
performed by radiologists who were familiar with magnetic
resonance. During the scan, participants were asked to relax
with their eyes closed but not to fall asleep. Each scan consisted
of 248 contiguous EPI functional volumes (33 axial slices,
repetition time (TR) = 2000 ms, echo time (TE) = 30 ms,
thickness/skip = 4/0mm, field of view (FOV) = 192 × 192mm,
matrix = 64 × 64 mm, flip angle = 90◦) and the first 10
volumes of time series were discarded regarding magnetization
stabilization. See Supplemental Text S1 for detail scanning
parameters.

Data preprocessing was performed with SPM8
(http://www.fil.ion.ucl.ac.uk/spm). First, slice-timing correction
and head-movement correction were carried out. Two samples
exhibiting more than 3.0mm of translation and 3.0◦ of rotation
were discarded which were not included in the final 28 samples.
The corrected images were optimized with a 12-dimensional
affine transformation and normalized to 3 × 3 × 3mm voxel
in the Montreal Neurological Institute (MNI) standard space.
Finally, linearly detrending and band-pass filtering (0.01–
0.10Hz) were performed to reduce the effects of low-frequency
drift and high frequency physiological noise.

Network Construction
An automated anatomical labeling atlas was used to define
network nodes (Tzourio-Mazoyer et al., 2002). The whole
brain was divided into 90 regions (45 in each hemisphere)
and each region was defined as a node in the network.
Each regional mean time-series was regressed against the
average cerebral spinal fluid (CSF) and white matter signals

as well as the six parameters from motion correction. The
residuals of these regressions constituted the set of regional
mean time-series used for undirected graph analysis. Pearson
correlation coefficients among all node pairs in the network
were calculated to generate a 90 × 90 correlation matrix.
According to predefined thresholds, the correlation matrix was
converted into a binary matrix. See supplemental Text S2 for
a detailed mathematical definition of the Pearson correlation
coefficient.

In the contrast analysis of the complex networks, the
compared networks must have the same number of nodes
and edges (Bollobás, 2001). Because the quantitative values of
topological metrics will depend on size and connection density
of the graphs. In order to identify topological differences between
graphs pointed to the difference between groups, it is important
to control these general effects before making any quantitative
comparisons. Sparsity (S) was chosen as the threshold to control
the number of edges in the networks. S was defined as the
ratio of real existing edges to the maximum possible number of
existing edges. We set the threshold space to be Sǫ[5%, 40%]
because this is the standard used in similar studies (Bullmore
and Bassett, 2011) and assures the small-worldness of network,
which is one of the most important features in human functional
brain networks (Bullmore and Sporns, 2009). Considering the
high computing costs, we set the interval in threshold space to
5%. Supplemental Figure S2 illustrates the small-world scalar as a
function of sparsity.

Prediction Model Mathematic Definition
Anatomical distance and nodal local information indices were
chosen as parameters to define the mathematical model.
Euclidean distance was chosen to define the distance
between two given ROIs. Although Euclidean distance
between nodal centroids is an imperfect approximation of
the anatomical distance between the regions, it has previously
been shown to be comparable to more refined diffusion
imaging-based measures of connection distance (Supekar et al.,
2009).

Considering the positive influence that similar topology
between nodes has on connections, the introduced nodal local
information indices were those used to measure similarity
between nodes in complex networks (Lü and Zhou, 2011). The
mathematical definition of the prediction model was:

Pi, j = di, j
(

si, j
)γ
,

where Pi, j is the probability that a connection between node i and
node j exists, di, j is the anatomical distance (Euclidean distance)
between node i and node j, si, j represents the local information
indices (seven of which were chosen in the current study), and
γ is a constant parameter. Considering computing costs, γ was
set to [0, 3], with a step length of 0.1. The modeling process is
illustrated in Figure 1.

Local Information Indices
The local information index termed “common neighbors” was
used for resting-state functional connectivity prediction in a
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FIGURE 1 | Illustration of network modeling process with local information indices. For a given real network, we could calculate the local information between

all of the node pairs and generate the corresponding local information matrix (e.g., common neighbor in the illustration), which could be plugged into the model’s

mathematical definition to generate a predicted network. Compared with real data, some missing and spurious edges might exist, which could lead to some changes

in the network’s topological properties. In previous research, differences in the topological properties between real data and the predicted networks are always used to

quantitatively evaluate the model-predicted effect.

previous study (Vértes et al., 2012). “Common neighbors” is
defined as the number of common direct neighbors (nodes
that have edges with both nodes x and y) between the given
nodes x and y. The underlying assumption is that the more
common their direct neighbors are, themore similar the topology
of a node pair will be and the more likely an edge will be
between them. In addition to “common neighbors,” there are
many other local information indices. Different indices describe
similarity in network nodal topology with different perspectives.
We chose to assess seven indices for their usefulness in
functional connectivity prediction, including common neighbors
(CN) (Liben-Nowell and Kleinberg, 2007), hub depressed index
(HDI) (Ravasz et al., 2002), hub promoted index (HPI) (Ravasz
et al., 2002), Leicht-Holme-Newman index (LHN-I) (Leicht
et al., 2006), Sørensen index (SI) (Sørensen, 1948), preferential
attachment index (PA) (Barabasi and Albert, 1999) and resource
allocation index (RA) (Zhou et al., 2009). These indices were
incorporated into the model’s mathematical formula to generate
seven functional connectivity prediction models (Table 1). See

Supplemental Text S3 for detailed mathematical definitions of
the indices. An illustration of prediction networks based on
different local information indices is shown in Supplemental
Figure S1.

Network Topology Properties
Eight common global topological properties were chosen for
prediction: assortativity, clustering coefficient, characteristic path
length, degree distribution, global efficiency, local efficiency,
modularity, and transitivity (Table 2). Each property was plotted
and the area under the curve (AUC) was calculated. This
provided a summarized scalar for the selected threshold space
and was a widely used technique in similar studies (Achard
and Bullmore, 2007). Multiple linear regression analyses were
applied to remove the confounding effects of age, gender
and educational attainments for each network properties
excluded degree distribution (different from other topological
properties, degree distribution shows a distribution function)
(independent variable: the AUC of each network properties;
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TABLE 1 | Local information indices in the current study.

Local information index Index

abbreviation

Mathematical

definition

Description

Common Neighbors (Liben-Nowell and Kleinberg,

2007)

CN si, j =
∣

∣Γi ∩ Γj

∣

∣ The number of neighbors that x and y have in common.

Hub Depressed Index (Ravasz et al., 2002) HDI si, j =

∣

∣Γi ∩ Γj
∣

∣

max[ki , kj ]
Deformation indices of CN. The links adjacent to hubs are probably

assigned high scores since the denominator is determined by the higher

degree only.

Hub Promoted Index (Ravasz et al., 2002) HPI si, j =

∣

∣Γi ∩ Γj
∣

∣

min[ki , kj ]
Deformation indices of CN. An opposite index to HDI.

Leicht-Holme-Newman Index (Leicht et al., 2006) LHN-I si, j =

∣

∣Γi ∩ Γj
∣

∣

ki × kj
Deformation indices of CN. This index gives high similarity to node pairs

that have many common neighbors compared not to the possible

maximum, but to the expected number of such neighbors.

Preferential Attachment (Sørensen, 1948) PA si, j = ki × kj An index can be used to generate evolving scale-free networks. The

probability this new link is connecting x and y is proportional to ki × kj .

Resource Allocation (Barabasi and Albert, 1999) RA si, j =
∑

z∈Γi ∩ Γj

1
kz

This index is motivated by the resource allocation dynamics on complex

networks. The similarity between x and y can be defined as the amount

of resource y received from x.

Sørensen Index (Zhou et al., 2009) SI si, j =
2
∣

∣Γi ∩ Γj
∣

∣

ki + kj
Deformation indices of CN. This index is used mainly for ecological

community data.

In the above formulas, Si, j is the local information between node i and j, Γi is the direct neighbors of node i, ki is the degree of node i, and node z is the common neighbor of node i and

j. See Supplemental Text S3 for a detailed mathematical explanation of the above indices.

TABLE 2 | Network topological properties in the current study.

Property Symbol Description

Assortativity R A measure of the correlation between the degree of a node and the mean degree of its nearest neighbors (Newman, 2002).

Clustering Coefficient C The ratio of the actual number of edges between direct neighbor nodes of given nodes to the number of maximum possible

edges for those nodes (Newman, 2003).

Characteristic Path Length L The average of the shortest path lengths from a given node to other nodes in the network (Newman, 2003).

Degree Distribution P(k) Frequency distribution of nodal degree in the network (Amaral et al., 2000).

Global Efficiency Eglob The efficiency of information transmission in the whole network (Latora and Marchiori, 2001).

Local Efficiency Eloc The efficiency of information transmission from each node to the adjacent nodes (Latora and Marchiori, 2001).

Modularity Q The degree to which the network may be subdivided into clearly delineated and non-overlapping groups (Newman and Girvan,

2004).

Transitivity T A variant of the clustering coefficient (Newman, 2003).

dependent variables: age, gender, and educational attainments).
The result showed the significant correlation had not been
found between network properties and confounding variables
(Table 3).

Evaluation of the Prediction Model
To measure the statistical significance of the prediction, we
compared the predicted topological properties with the real
data using a two-sample paired nonparametric test, which was
corrected with Benjamini and Hochberg false-discovery rate
(FDR) method (q = 0.05) (Benjamini and Hochberg, 1995).
False-discovery rate method, retaining strong control over type
1 error in the context of multiple comparisons, was considered
appropriate to correct the small number of comparisons entailed
by testing the whole 28 subjects. As has been done in similar EEG
(Astolfi et al., 2004), MEG (Fasoula et al., 2013), and structural
MRI (Jovicich et al., 2006) studies, we computed the relative error
(Guimerà and Sales-Pardo, 2009) to quantitatively evaluate the
between-group differences. Relative error was defined as:

re =

∣

∣

∣

∣

(pd − pm)

pd

∣

∣

∣

∣

× 100%,

where pd is the property value of the real network and
pm is the property value of the predicted network. The
evaluation of degree distribution is special. Different from other
topological properties, degree distribution shows a distribution
function. In the current study, the predicted networks and
the real data exhibited an exponential truncated power-
law distribution, but the differences were reflected in two
parameters: the estimated exponent and the cutoff degree.
To quantitatively evaluate the differences between degree
distribution functions, the average relative error of the two
parameters was computed. The average relative error was
defined as:

reP(k) =
reα + rekc

2
× 100%,
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TABLE 3 | Results of multiple linear regression analysis between network properties and confounding variables.

Confounding variables Coefficients Std. Error T Stat. P Lower 95% Upper 95%

ASSORTATIVITY (Adj. Rsqr = −0.579, P = 0.681)

Intercept 0.100 0.087 1.145 0.263 −0.080 0.281

Gender 0.026 0.029 0.876 0.389 −0.035 0.088

Age 0.000 0.001 0.466 0.645 −0.002 0.004

Educational Attainments 0.005 0.013 0.383 0.704 −0.022 0.032

CLUSTERING COEFFICIENT (Adj. Rsqr = 0.004, P = 0.391)

Intercept 0.419 0.014 29.243 <0.001 0.389 0.448

Gender 0.007 0.004 1.472 0.153 −0.002 0.017

Age 0.000 0.000 −1.119 0.274 0.000 0.000

Educational Attainments 0.001 0.002 0.532 0.599 −0.003 0.005

CHARACTERISTIC PATH LENGTH (Adj. Rsqr = 0.064, P = 0.629)

Intercept 0.647 0.065 25.331 <0.001 0.513 0.781

Gender 0.001 0.022 1.890 0.196 −0.003 0.087

Age 0.026 0.029 0.876 0.389 −0.035 0.088

Educational Attainments 0.000 0.009 −0.049 0.961 −0.021 0.020

GLOBAL EFFICIENCY (Adj. Rsqr = 0.074, P = 0.187)

Intercept 0.383 0.015 24.332 <0.001 0.351 0.416

Gender −0.008 0.005 −1.651 0.111 −0.019 0.002

Age 0.000 0.000 −0.915 0.369 0.000 0.000

Educational Attainments −0.001 0.002 −0.518 0.608 −0.006 0.003

LOCAL EFFICIENCY (Adj. Rsqr = −0.046, P = 0.623)

Intercept 0.535 0.018 28.857 <0.001 0.497 0.574

Gender 0.001 0.006 0.213 0.832 −0.011 0.014

Age 0.000 0.000 1.890 0.196 −0.001 0.000

Educational Attainments 0.000 0.002 −0.062 0.951 −0.006 0.005

MODULARITY (Adj. Rsqr = −0.052, P = 0.650)

Intercept 0.279 0.038 7.341 <0.001 0.201 0.358

Gender −0.004 0.013 −0.323 0.749 −0.031 0.022

Age 0.000 0.000 −0.388 0.701 −0.001 0.001

Educational Attainments −0.006 0.005 −1.10 0.278 −0.018 0.005

TRANSITIVITY (Adj. Rsqr = 0.022, P = 0.327)

Intercept 0.393 0.033 11.672 <0.001 0.323 0.463

Gender 0.018 0.011 1.592 0.124 0.000 0.042

Age 0.000 0.000 0.549 0.587 0.000 0.001

Educational Attainments 0.000 0.005 0.087 0.930 −0.010 0.011

The range of age is 17–51 years. Optional values of gender are male and female. Optional values of educational attainments are illiteracy, primary school, junior high school, senior high

school, junior college, college, graduate degree, and above. Adj. Rsqr , adjusted R square; Coefficients, regression coefficient; Std. Error, standard error; T stat., T statistic; Lower 95%,

low bound of 95% confidence limits. Upper 95%, upper bound of 95% confidence limits.

where reα is the relative error of the estimated
exponent and rekc is the relative error of the cutoff
degree.

To measure the similarity between two networks, we
comprehensively considered several network topological
properties and defined the network of similar indices, energy
E, to evaluate the outcome of connectivity prediction. The
definition of the E-value used here did not consider the weight of
the properties. Thus, all of the network’s topology properties had
equal importance in the model. Energy was defined as:

E =
1

reR + reC + reL + reEloc + reEglob + reQ + reT + reP(k)
,

where reR is the relative error in assortativity, reC is the relative
error in the clustering coefficient, reL is the relative error in
the characteristic path length, reEloc is the relative error in local
efficiency, reEglob is the relative error in global efficiency, reQ is the
relative error inmodularity, reT is the relative error in transitivity,
and reP(k) is the relative error in degree distribution.

Faced with numerous local information indices, we needed
a reliable and rapid prediction evaluation method in order to
avoid a large amount of calculation and contrastive analyses
of the topological properties. We hypothesized that the more
covered the edges were between predicted networks and real
data, the better the prediction would be. To test the hypothesis,
prediction power was proposed as a metric and a correlation
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analysis was performed between the E-value and the prediction
power. In similar studies, prediction power is often used to
evaluate link-prediction effects (Cannistraci et al., 2013). Higher
prediction power indicates a better prediction, while the closer
the prediction power is to 0, the more random the prediction is.
Prediction power is defined as:

Prediction Power = 10 × log10
PreM

PreR
,

where PreM is the ratio of the number of correct edges in a
prediction network model to the number of existing edges in real
data, and PreR is the ratio of the number of correct edges in a
network model using random prediction methods to the number
of existing edges in real data. See Supplemental Text S4 for a
detailed mathematical definition and explanation of prediction
power.

RESULTS

The average relative error for each network topological property
was used to evaluate the predictions. Analysis showed that the
different prediction models had different performances in terms
of simulating topological properties and most of the predicted
network properties were close to the real data (Figure 2).
There are four topological properties whose average relative
error is less than 5%, including characteristic path length,
clustering coefficient, global efficiency, and local efficiency.
Modularity and transitivity had relative errors that ranged
from 5 to 10%, while assortativity and degree distribution
had average relative errors around 40%. Thus, most of
the predicted global network properties were close to the
real data, except for assortativity and degree distribution.
See Supplemental Figure S3 for the detailed information
about the distribution of relative errors for each topological
property.

Relative error can be used to quantitatively measure how
different predicted networks are from real data. To determine if
there were any statistically significant between-group differences,
we performed a two-sample paired, nonparametric test with
false-discovery rate correction (q = 0.05; degree distribution
was not statistically analyzed because of its specificity). The
results showed that properties with high relative error were
always significantly different and low relative error did not
necessarily indicate a lack of significant differences. Properties
with high relative error, such as assortativity (Figure 3A) and
modularity (Figure 3G), showed significant differences in most
of the models (P < 0.05, FDR corrected for 7 comparisons),
except for the CN and RA models. Properties with low relative
error, such as characteristic path length (Figure 3B), clustering
coefficient (Figure 3C), global efficiency (Figure 3E), local global
(Figure 3F), and transitivity (Figure 3H), showed significant
differences in some of the models. Degree distribution was
not analyzed because of its particularity (Figure 3D). These
results suggest that although the property values of the predicted
networks were close to those of the real data, the tiny differences
were significant.

FIGURE 2 | Average relative error of seven selected local information

indices for different topological properties. The mathematical definition of

relative error is
∣

∣

∣

(pd−pm )
pd

∣

∣

∣
× 100%. Topological properties were sorted by

average relative error. The results showed that the average relative errors of

four properties were around or below 5%. CN, common neighbor; HDI, hub

depressed index; HDI, hub promoted index; LHN-I, Leicht-Holme-Newman

index; SI, Sørensen index; PA, preferential attachment index; RA, resource

allocation index.

To comprehensively evaluate the predictions of all the
network topological properties in the seven models, we defined
a unified measurement metric termed energy (E). The E-value
considered all eight topological property differences. The higher
the E-value is, the more similar the predicted networks and real
data are. The result of ANOVA analysis showed that there were
significant differences among seven models (F = 30.529, P <

0.0001, uncorrected). The results showed that the performance
for the CN model was the best among the seven models, with the
RA model being second best, and the PA model being the worst
(Figure 4A).

Here, we proposed that prediction power could be used
to rapidly evaluate the predictions immediately after model
generation instead of requiring large computing costs and
contrast analysis of model properties. We compared the
predictions among seven local information indices by prediction
power as well. Significant differences also has been found among
seven models (F = 100.36, P < 0.0001, uncorrected) after
ANOVA analysis. The result was very similar to the E value. Both
the evaluation metrics showed the similar results. CN showed the
best predicted effect and PA showed the worst (Figure 4B). The
only change is that SI showed better performance than HDI by
prediction power.

We performed a correlation analysis between prediction
power and E value and corrected using the Benjamini &
Hochberg false-discovery rate method (q = 0.05) (Figure 5;
Benjamini and Hochberg, 1995). The four models that showed
a significant positive correlation (p < 0.05, FDR corrected for 7
comparisons) were HDI, HPI, and LHN-I. The CN and Sorensen
models showed a marginally significant correlation (0.05 < p
< 0.10, FDR corrected for 7 comparisons). Notably, completely

Frontiers in Neuroscience | www.frontiersin.org 7 December 2016 | Volume 10 | Article 585

http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Neuroscience/archive


Cheng et al. Prediction Method for Brain Functional Connectivity

FIGURE 3 | Topological properties of real data and predicted networks. Error bars show standard deviation. Asterisks indicate a significant difference between

real data and the predicted networks (p < 0.05, FDR corrected for 7 comparisons). The statistical test method was a two-sample paired nonparametric test and the

corrected method was Benjamini and Hochberg false-discovery rate method (q = 0.05). The illustration of degree distribution was on the sparsity of 15%. CN,

common neighbor; HDI, hub depressed index; HDI, hub promoted index; LHN-I, Leicht-Holme-Newman index; SI, Sørensen index; PA, preferential attachment index;

RA, resource allocation index.

Frontiers in Neuroscience | www.frontiersin.org 8 December 2016 | Volume 10 | Article 585

http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Neuroscience/archive


Cheng et al. Prediction Method for Brain Functional Connectivity

FIGURE 4 | E value and prediction power comparison among local information indices. (A) The E-value was used to evaluate the predictions

comprehensively. Local information indices were sorted by E-value. (B) Prediction power was a rapid evaluation metric. Local information indices were sorted by

prediction power. Both the evaluation methods showed the similar results that common neighbor showed the best predicted effect and preferential attachment index

showed the worst in seven selected local information indexes. Error bars show standard deviation. The F-value and P-value was the result of one-way ANOVA

analysis (uncorrected). The right illustration was the P-value of two-sample paired T-test between any two indices (FDR corrected for 21 comparisons, q = 0.05). CN,

common neighbor; HDI, hub depressed index; HDI, hub promoted index; LHN-I, Leicht-Holme-Newman index; SI, Sørensen index; PA, preferential attachment index;

RA, resource allocation index.

different from the other models, the PA model showed a
significantly negative correlation (p < 0.0001, FDR corrected for
7 comparisons).

DISCUSSION

As a characteristic of network topology, we proposed local

information as a fitting parameter for the predicted models.

Local information characterizes network topology and reflects

network’s local similarity. Our research was able to predict the
existence of connections in the brain functional network with
local information. The results showed that local information
improved the accuracy of predictions. Among the eight network
topology properties, most showed good fitting: the relative
errors of six properties (characteristic path length, clustering
coefficient, global efficiency, local efficiency, modularity, and
transitivity) were less than 10%. Additionally, as an efficient type
of information within network topology, local informationmight
provide strong evidence regarding the mechanisms of network

organization as well as a new viewpoint on the understanding and
explanation of network organization (Wang et al., 2012; Zhang
et al., 2013).

The results of analysis of E value were consistent with that of
another study (Vértes et al., 2012), even though the mathematical
model, method of topological property evaluation and indices
for evaluating network similarity were different. Similar to our
results, predictions from that study were best for the CN model
and worst for the PA model (see the detailed comparisons in
Table 4). The previous study focused on different mathematical
definitions of the prediction model, while our current study
focused on comparing prediction ability of a single mathematical
model that incorporated differing local information indexes.

The mathematical definition of CN is the number of
neighbors that two locations x and y have in common.
Among the seven models, CN model showed the most accurate
predictions. Statistical analysis revealed that five properties
(assortativity, clustering coefficient, local efficiency, modularity,
and transitivity) within the CN-predicted network did not differ
significantly from the real data (P > 0.05, FDR corrected for
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FIGURE 5 | The correlation analysis between E-value and prediction power. Prediction power was used to evaluate predicted effect rapidly, whose

mathematical definition was 10× log10
PreM
PreR

. The results showed that there was a strong correlation between E value and prediction power. Adj_Rsqr, adjusted R

square; CN, common neighbor; HDI, hub depressed index; HDI, hub promoted index; LHN-I, Leicht-Holme-Newman index; SI, Sørensen index; PA, preferential

attachment index; RA, resource allocation index.

seven comparisons). Meanwhile, the E-value for CN model was
the highest among all models. As a measurement of network
local connectivity, better predictions by CN model implies a
higher local connected density in the network. This means that a
significant triadic closure structure (Liben-Nowell and Kleinberg,
2007; Zhou et al., 2009) exists in resting-state functional brain
networks, which might cause the high clustering coefficient and
local efficiency that have been found in resting-state functional
brain networks in previous studies (see Bullmore and Bassett,
2011 for a review). This conclusion has been demonstrated
in network models with similar properties in the real world,
including protein–protein interaction networks (Von Mering
et al., 2002), US political blog networks (Ackland, 2005), US
air-transportation system networks (Batageli and Pajek, 2006)
and social collaboration networks (Newman, 2001). On the
contrary, two properties are significantly different between real
data and CN model, including characteristic path length and
global efficiency. Both properties are related to the long-range
links in the network. Compared with regular network, the
long-range links in a small-world network ensure the lower
characteristic path length, the higher global efficiency and the
higher information transferring efficiency. CN evaluated the local
similarity but was not sensitive to the long-range links.

Aside from the basic CN model, we also tested HDI, HPI,
LHN-I, and SI models, which are deformation indices of CN
model. These indices and CN were mentioned as neighborhood-
based measures. These deformation indices were subjected to
the influence of nodal degree (see the mathematical formula in
Table 1). Degree heterogeneity was a measure used to quantify
the amount of variation or dispersion of degree of all the nodes
in a network (Barabasi and Albert, 1999). If nodal degrees
tended to be the same, degree heterogeneity would be very
small and there would be no obvious difference between these

neighborhood-based measures. In the current study, significant
differences in prediction accuracy were found between CN
and other neighborhood-based measures, which suggest a high
degree of heterogeneity in functional brain networks. The high
degree of heterogeneity is an important characteristic of power-
law degree distribution (Espinosa et al., 2012), which has been
found in the resting-state functional brain network in many
studies (see Bullmore and Bassett, 2011 for a review).

Preferential attachment (PA) index was calculated with the
least information (only the nodal degree)and resulted in the least
accurate predictions. PA was first applied to models of growth
networks (Barabasi and Albert, 1999; Mitzenmacher, 2004). The
basic premise was that the probability that an edge has node
x as an endpoint is proportional to the current number of
neighbors of x. Similar mechanisms could also lead to scale-
free networks without growth (Xie et al., 2008). Therefore,
PA resulted in accurate predictions in a scale-free network.
However, PA performance was disappointing, compared with
other indices in small-world networks, such as human functional
brain networks (Vértes et al., 2012) and nervous system networks
for other species (Cannistraci et al., 2013). Studies have shown
that PA performs badly in a rich-club network consisting of many
components (Zhou et al., 2009). The same properties exist in
human functional brain networks (van den Heuvel and Sporns,
2011). Our results show that PA is not suitable for predicting
functional connectivity.

Unlike other indices, RA focuses on the degree of direct
neighbor. Consider a pair of nodes, x and y, which are not
directly connected. Node x can send resources to y, with their
common neighbors playing the role of transmitters. In the
simplest case, we assume that each transmitter has one unit of
resource and will distribute it evenly to all its neighbors. The
similarity between x and y can be defined as the amount of
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resource y received from x. Like CN, RA is suitable for networks
with a large clustering coefficient, a high degree of heterogeneity
(Zhou et al., 2009), in which resources tend to flow to high-
degree nodes rather than low-degree nodes (Ou et al., 2007).
Functional brain networks have been demonstrated to organize
intrinsically as highly modular small-world architectures, capable
of transferring information at a low wiring cost efficiently as well
as formatting highly connected hub nodes. Hub node is usually
defined as the node with a degree greater than the mean degree
plus the standard deviation (He et al., 2009). Previous research
has shown that brain networks are vulnerable to a targeted
attack on hub nodes—expressed in the significant reduction of
connectivity and efficiency—regardless of whether the network
is structural (He et al., 2007) or functional (Crossley et al.,
2014).

Faced with numerous local information indices, we needed
a reliable and rapid method to evaluate the prediction
accuracy of the models. As a widely used measurement
in link-prediction research, prediction power was introduced
to evaluate the predictions. Correlation analysis with the
E value revealed a strong positive correlation. Six of the
local information indices showed significant or marginally
significant correlations, while PA index appeared more suitable
for scale-free networks than for small-world networks. The
result fully verified our hypothesis and implied that we
could transform the problem of prediction evaluation into
a problem of link prediction, which avoids vast amounts of
calculation and contrastive analysis of network topological
properties.

METHODOLOGY

Different from other methods, local information is a topological
property of functional network itself. This means that the
topological properties of the network itself are used to predict
its own connections. This is circular. The precondition for this
thinking is that we have a complete network (all connections
in the given network are known). In contrast, if we have an
incomplete network because the connection data are difficult to
collect or the connection computation costs are high, we can
predict the missing connections with the known connections.
That is the value of the method.

Local information is a common method of link prediction,
which is among the most important research fields in network
science. The aim of link prediction is to predict the existence of
potentially missing connections and to evaluate the reliability of
the existing connections according to the available incomplete or
unreliable network. The same problems occur in brain network
research. We thus applied link-prediction methods to this field
and hoped it could be the part of solution.

Large-scale brain network construction is an intractable
and urgent problem. Benefiting from the promotion of
hardware performance and advancement of computation
frames, brain networks can be constructed at the voxel level.
However, at larger scales (e.g., the neuron level), constructing
a complete network is difficult. A huge computational cost

must be paid to construct a complete network because the
numbers of nodes and connections are enormous. In this
case, link prediction can solve this problem to some extent,
so long as it can provide satisfactory accuracy. Generally,
application of link prediction in network construction
decreases computation costs at the risk of increasing the
error rate.

Apart from predicting missing connections, link prediction
can also be used to evaluate the reliability of existing connections
in an unreliable network, namely the possibility of pseudo
connections. The connections in brain networks also need to
be verified reliably, regardless of whether the networks are
structural or functional. Previous research has lacked methods
of quality control when constructing brain networks, which
are disturbed by many factors. How do we know that the
connections we obtained through correlation analysis actually
exist in the brain? How can we to verify the reliably of the
connections in network? There are two key points to solving
this problem—a dependable method for quantifiable evaluation
and a comparable golden rule. Link prediction is a choice that
can satisfy the first point. For a given network, we can evaluate
the possibility of a pseudo connection with the link-prediction
method. For the latter point, unlike in functional networks,
tract-tracing measures provide an importance reference for
reconstructing pathways in DTI structural networks (non-
human species).

CONCLUSION

Anatomical distance has widely been used to predict functional
connectivity because of the potential relationship between
structural connectivity and functional connectivity. But studies
have shown that one-parameter model (anatomical distance)
cannot account for the small-worldness, modularity, and degree
distribution of normal human brain functional networks.

Local information is the simplest and direct method
in link-prediction research, which utilizes relevant network
topological information to predict the possibility of an edge
between two given nodes in a network. The underlying
basic assumption was that the higher similarity between
the nodes in network, the higher probability of an edge
existing between them. Based on previous researches, the
current study separately evaluated the inclusion of seven
local information indices into the model and compared
the prediction accuracy among indices. Results showed that
the simulated networks reflected the basic characteristics of
brain networks, such as high clustering coefficient, high local
efficiency, hub nods, and small-worldness. But when it comes
to some properties related with long-range links, the simulated
result is disillusionary. It reflected the limitation of local
information method. Local information method evaluated the
local similarity well and but it was not sensitive to the long-range
links.

As is mentioned in Methodology, the main application
of local information is in incomplete or unreliable network.
For an incomplete network, in which the existence of some
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connections is unknown, local information can predict the
missing connections. For an unreliable network, in which
some existing connections might not be real, local information
can evaluate the reliability of connections. Both of them are
intractable problems in brain network construction, especially
the latter. We think local information method has practical
applicability in brain network research as a feasible and effective
tool.
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