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Previous evidence showed a 75.5% best accuracy in the classification of 120 Alzheimer’s

disease (AD) patients with dementia and 100 matched normal elderly (Nold) subjects

based on cortical source current density and linear lagged connectivity estimated by

eLORETA freeware from resting state eyes-closed electroencephalographic (rsEEG)

rhythms (Babiloni et al., 2016a). Specifically, that accuracy was reached using the ratio

between occipital delta and alpha1 current density for a linear univariate classifier (receiver

operating characteristic curves). Here we tested an innovative approach based on an

artificial neural network (ANN) classifier from the same database of rsEEG markers.

Frequency bands of interest were delta (2–4Hz), theta (4–8 Hz Hz), alpha1 (8–10.5Hz),

and alpha2 (10.5–13Hz). ANN classification showed an accuracy of 77% using the most

4 discriminative rsEEGmarkers of source current density (parietal theta/alpha 1, temporal

theta/alpha 1, occipital theta/alpha 1, and occipital delta/alpha 1). It also showed an
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accuracy of 72% using the most 4 discriminative rsEEG markers of source lagged

linear connectivity (inter-hemispherical occipital delta/alpha 2, intra-hemispherical

right parietal-limbic alpha 1, intra-hemispherical left occipital-temporal theta/alpha

1, intra-hemispherical right occipital-temporal theta/alpha 1). With these 8 markers

combined, an accuracy of at least 76% was reached. Interestingly, this accuracy based

on 8 (linear) rsEEG markers as inputs to ANN was similar to that obtained with a single

rsEEG marker (Babiloni et al., 2016a), thus unveiling their information redundancy for

classification purposes. In future AD studies, inputs to ANNs should include other classes

of independent linear (i.e., directed transfer function) and non-linear (i.e., entropy) rsEEG

markers to improve the classification.

Keywords: Alzheimer’s disease (AD), electroencephalography (EEG), exact low-resolution brain electromagnetic

tomography (eLORETA), linear lagged connectivity, artificial neural networks (ANNs)

INTRODUCTION

Alzheimer’s disease (AD) is the most prevalent
neurodegenerative disorder affecting the aged people. In AD, a
progressive neurodegeneration leads to dementia, characterized
by severe cognitive deficits, behavioral symptoms, and loss of
autonomy in the daily life (Braak and Braak, 1995).

In the past years, the International Working Group (IWG)
and the US National Institute on Aging–Alzheimer’s Association
(NIA-AA) have proposed an algorithm for the diagnosis of AD
based on in vivo biomarkers and clinical phenotypes of disease
(Förstl and Kurz, 1999; Dubois et al., 2007, 2014; Jack et al.,
2010; Albert et al., 2011; McKhann et al., 2011; Sperling et al.,
2011). According to the last IWG guidelines (Dubois et al., 2014),
diagnostic biomarkers are limited to pathophysiological markers.
On one hand, these markers include cerebrospinal fluid (CSF)
markers, as revealed by the measures of Aβ-42, total tau, and
phospho-tau; on the other hand, they include abnormal Aβ-42
and tau accumulation in the brain, as revealed by ligand positron
emission tomography (PET) (Förstl and Kurz, 1999). The last
IWG guidelines encourage the use of topographic markers even
if they are not diagnostic. These markers are quite useful to
map structural and functional impairment of the brain over
time, especially in elderly subjects with initial objective evidence
of mild cognitive impairment (MCI) including memory and
other cognitive domains but with preserved independence in the
daily activities. The topographic markers include maps of brain
hypometabolism, as revealed by FDG-PET, and maps of brain
atrophy and abnormalities of structural and functional brain
connectivity, as revealed by structural and functional magnetic
resonance imaging (MRI). All those methodologies can capture
several processes of disease, but their use is limited because of low
availability of the instruments, costs or invasiveness, especially for
serial recordings over time.

Keeping in mind the intrinsic limitations of the CSF, MRI,
and PET, several independent research groups tested indexes
of resting state eyes-closed electroencephalographic (rsEEG)
rhythms as candidate topographic markers of AD (Babiloni
et al., 2016b). EEG rhythms are the most important feature
of collective behavior of brain neural populations and are very
relevant for human cognition. Furthermore, EEG procedures are

largely available in any country, well tolerated by patients, not
affected by subjects’ anxiety or task difficulty, and can be repeated
over time without habituation effects (Babiloni et al., 2016b).

Previous studies in AD patients and elderly subjects with
amnesic MCI have shown that rsEEG may be promising
markers for a neurophysiological evaluation of disease status
as topographic markers. When compared to groups of normal
elderly (Nold) subjects, AD groups have been characterized by
high power of widespread delta and theta rhythms, as well as by
low power of posterior alpha and/or beta rhythms (Dierks et al.,
1993, 2000; Huang et al., 2000; Ponomareva et al., 2003; Jeong,
2004).

The use of rsEEG variables as neurophysiologic topographic
markers of AD implies that these variables can classify Nold and
AD individuals at least with a moderate classification accuracy
of 75–80%. In the past years, two papers revised the literature
on the accuracy of the classification between AD and Nold
individuals by rsEEG features systematically. The article of
Jonkman (1997) reviewed 16 studies published in 1983–1995.
In those studies, the classification accuracy ranged from 54 to
100% (median of 81%) for the discrimination of the patients
with AD dementia and Nold subjects. In the same vein, the
paper of Jelic and Kowalski (2009) reviewed 46 studies published
in 1980–2008. The classification accuracy ranged from 80 to
85% for the discrimination of the patients with AD dementia
(or MCI) and control subjects such as Nold or other forms of
dementia.

The present research group has been investigating markers
of rsEEG rhythms in MCI, AD, and control subjects in the
framework of “BRAINON” program (http://www.brainon.eu).
In previous studies of this program, cortical sources of rsEEG
rhythms in MCI, AD, and control groups of subjects were
estimated by the freeware low-resolution brain electromagnetic
tomography (LORETA; Pascual-Marqui et al., 1994). The aimwas
to enhance spatial information content of scalp-recorded EEG
data and to unveil topography of EEG abnormalities associated
with AD from prodromal to overt clinical stages (Babiloni et al.,
2004, 2008, 2009, 2010, 2011a,b, 2013a,b, 2016b). It was reported
that temporal, parietal, and occipital cortical sources of delta and
alpha rhythms were altered in AD groups compared with control
groups as a function cognitive deficits and abnormalities in brain
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integrity (Babiloni et al., 2004, 2008, 2009, 2010, 2011a,b, 2013a,b,
2016b).

Recently, our research group tested the hypothesis that Nold
and AD individuals with dementia can be discriminated with
a moderate accuracy using topographic markers of the rsEEG
source current density and functional connectivity (Babiloni
et al., 2016a). Results showed a classification accuracy of 75.5%
in the discrimination of 120 AD patients with dementia and 100
matched Nold subjects based on cortical source current density
(Babiloni et al., 2016a). Of note, this accuracy was obtained by
an univariate classifier such as receiver operating characteristic
(ROC) curve from the ratio between occipital delta (2–4Hz)
and alpha 1 (8–10.5Hz) current density. Here we tested if a
multivariate classification with artificial neural networks (ANNs)
improved that classification accuracy of those original rsEEG
markers in AD and Nold individuals. The main issue was
whether the combined use of cortical source current density and
functional connectivity as inputs of a trained ANNwould provide
more accurate classifications than those obtained with the two
classes of spectral EEG markers considered separately.

MATERIALS AND METHODS

Details on the subjects, rsEEG database, eLORETA source
estimation, and classification with ROC curves were reported in
the reference paper quoted in the previous section (Babiloni et al.,
2016a). In the following sections, we provide a short description
of those methodological procedures for readers’ convenience.

Subjects and Diagnostic Criteria
The clinical and rsEEG data of the present study refer to 120 AD
with dementia and 100 Nold individuals, matched for age, years
of education, and gender. Committees of local institutional ethics
approved the recording and analysis of EEG data for scientific
purposes. Each participant or caregiver subscribed informed
consent, in line with the Code of Ethics of the World Medical
Association (Declaration of Helsinki).

Probable AD was diagnosed according to the criteria of the
Diagnostic and Statistical Manual of Mental Disorders, fourth
edition (DSM-IV-TR; American Psychiatric Association) and
the National Institute of Neurological Disorders and Stroke–
Alzheimer Disease and Related Disorders (NINCDS-ADRDA)
working group (McKhann et al., 1984). Individuals underwent
medical, neuropsychological, neurological, and psychiatric
assessments including Instrumental Activities of Daily Living
scale (IADL; Lawton and Brody, 1969), Mini-Mental State
Examination (Folstein et al., 1975), Clinical Dementia Rating
(CDR; Hughes et al., 1982), and Geriatric Depression Scale
(GDS; Yesavage et al., 1983). Exclusion criteria included any
kind of evidence of other forms or causes of dementia such as
frontotemporal dementia (The Lund and Manchester Groups,
1994), vascular dementia diagnosed according to the criteria of
the National Institute of Neurological Disorders and Stroke and
Association Internationale pour la Recherché et l’Enseignement
en Neurosciences (NINDS-AIREN) working group (Román
et al., 1993), Parkinson disease (PD), Dementia with Lewy
Bodies (DLB; McKeith et al., 2005), metabolic syndrome,

nutritional deficits, tumors, etc. When given, benzodiazepines,
antidepressant and/or antihypertensive were suspended for
about 24 h before EEG recordings. This procedure did not
ensure a complete washout of the drug–longer periods would
not have been applicable for obvious ethical reasons- but it
made it possible to compare the drug condition across the AD
patients. Of note, most of the AD patients (114 out of 120
patients, i.e., 95%) followed a long-term treatment with standard
daily doses of acetylcholinesterase inhibitors. In detail, they
followed a treatment with donepezil (71 patients; 5–10mg/die),
rivastigmine (29 patients; 10mg/die) or galantamine (14 patients;
16–36mg/die).

The Nold subjects underwent medical, neurological, and
psychiatric assessments including MMSE (Folstein et al., 1975),
Clinical Dementia Rating (CDR; Hughes et al., 1982) and
geriatric depression scale (GDS; Yesavage et al., 1983), to exclude
from the study subjects with a history of neurological, or
psychiatric disorders (including abuse of substances). Finally,
a further exclusion criterion was a score in the MMSE lower
than 27 for the Nold subjects and higher than 24 for the
AD subjects, according to Alzheimer‘s Disease Neuroimaging
Initiative (ADNI; http://adni.loni.usc.edu).

Table 1 summarizes some demographic and clinical data of
the subjects. T-test evaluated the differences (p < 0.05, one-
tailed) between the groups (Nold and AD) for age, education,
MMSE score, and individual alpha frequency (IAF; see below for
a description of this index). As expected, a statistically significant
difference was found for the MMSE score (p < 0.0001; higher
MMSE score in the Nold than in the AD group) and for the IAF
(p< 0.0001; higher IAF in the Nold than in the AD group), while
no statistically significant difference was found for age, gender,
and education (p > 0.05).

EEG Recordings and Preliminary Data
Analysis
During rsEEG recordings, all subjects had to stay with eyes
closed in a relaxing state, not moving or talking. 5 min of
rsEEG data (EB-Neuro Be-light©, Firenze, Italy) were recorded
(128Hz or higher sampling rate, with a bandpass between 0.01
and 100Hz) from 19 scalp electrodes positioned over the whole
scalp according to the 10–20 System (i.e., Fp1, Fp2, F7, F3,
Fz, F4, F8, T3, C3, Cz, C4, T4, T5, P3, Pz, P4, T6, O1, and
O2). EEG recordings were performed using frontal cephalic or
extracephalic (linked earlobe) reference. Linked earlobe reference
electrode was preferred because frontal cephalic reference could
attenuate the extracerebral ocular activity on prefrontal (i.e., Fp1,

TABLE 1 | Demographic and clinical data of normal elderly (Nold) subjects

and Alzheimer’s disease (AD) patients with dementia.

Gender Age Education MMSE

(female/male) (years) (years) (score)

Nold (n = 100) 62/38 69 ± 0.9 SE 9.7 ± 0.4 SE 28.8 ± 0.1 SE

AD (n = 120) 78/42 69.8 ± 0.7 SE 9.2 ± 0.4 SE 19 ± 0.3 SE

Legend: MMSE, Mini Mental State Examination.
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Fp2) and frontal (i.e., F7, F3, Fz, F4, F8) electrodes. However,
the use of extracephalic reference was not mandatory to respect
the methodological facilities and standard internal protocols of
the clinical recording units when the data collection occurred
outside a formal clinical trial with a harmonized protocol for
the electrode montage. A ground electrode was located between
the AFz and Fz electrodes, and scalp electrodes impedances were
kept below 5 Kohm. Horizontal and vertical electro-oculographic
(EOG) potentials (0.3–70Hz bandpass) were also recorded to
monitor blinking and eye movements.

As a methodological remark, all the mentioned clinical units
recorded EEG data with the sampling rate and EEG bandpass set
to avoid aliasing. A minority of these rsEEG data (less than 20%)
was acquired with 128-Hz sampling frequency. Noteworthy,
the use of 128 Hz sampling frequency was sub-optimal for a
correct reconstruction of rsEEG signal beyond 40Hz without
aliasing (One has to set a factor from 3 or 4 between the low-
pass limit of the analog bandpass filter and the rsEEG sampling
frequency).

The EEG data were divided into segments of 2 s and analyzed
off-line. The epochs affected by any physiological (ocular,
muscular) or non-physiological artifacts were preliminarily
identified by an automatic computerized procedure. Two
independent experimenters manually checked the artifact-free
EEG epochs, before successive analysis. Particular attention was
dedicated to the identification of extracerebral contamination
of ocular activity (i.e., blinking) in frontal (i.e., F7, F3, Fz, F4,
and F8) and prefrontal (Fp1 and Fp2) electrodes, comparing
EOG and EEG traces, in EEG recordings with frontal cephalic
reference. Finally, all recorded artifact-free EEG data were off-
line re-referenced to common average to harmonize the EEG data
collected with different reference electrodes.

We computed the spectral power density of the EEG rhythms
using a 0.5 Hz frequency resolution Fast Fourier Transform (FFT,
Welch algorithm, Hanning window, no phase shift). In line with
previous relevant EEG studies (Jelic et al., 1996; Besthorn et al.,
1997; Chiaramonti et al., 1997; Babiloni et al., 2005, 2006, 2011b,
2013c), we considered the following standard frequency bands
of interest: Delta (2–4Hz), theta (4–8Hz), alpha 1 (8–10.5Hz),
alpha 2 (10.5–13Hz), beta 1 (13–20Hz), beta 2 (20–30Hz), and
gamma (30–40).

Cortical Sources of rsEEG Rhythms as
Computed by eLORETA
We used the free tool “exact LORETA” (eLORETA) for the
linear estimation of the cortical sources activity of rsEEG
rhythms in the frequency domain (Pascual-Marqui, 2007a).
eLORETA represents the improved version of the previous
pieces of software called LORETA (Pascual-Marqui et al., 1994)
and standardized LORETA (Pascual-Marqui et al., 2002). Both
standardized LORETA and eLORETA showed the same low
spatial resolution, with zero localization error in the presence
of measurement and biological noise (Pascual-Marqui et al.,
2002; Pascual-Marqui, 2007a). However, eLORETA exhibited a
better source location in some control parameters (Canuet et al.,
2011).

eLORETA uses a head volume conductor model composed of
the scalp, skull, and brain. In the scalp compartment, exploring
electrodes can be virtually positioned to give EEG data as an input
to the source estimation (Jurcak et al., 2007). The brain model is
based on a realistic cerebral shape taken from a template typically
used in the neuroimaging studies, namely that of the Montreal
Neurological Institute (MNI152 template; Mazziotta et al., 1995).
The electrical brain source space is formed by 6239 voxels
with 5mm resolution, restricted to cortical gray matter (Fuchs
et al., 2002). An equivalent current dipole is located in each
voxel. eLORETA solves the so-called EEG inverse problem in the
mentioned head volume conductor model estimating “neural”
current density values at any cortical voxel for each frequency bin.
Input for this regularized inverse estimation (Pascual-Marqui
et al., 2002) is the EEG spectral power density computed at all
virtual scalp electrodes.

In line with the general low spatial resolution of the present
EEG methodological approach (i.e., 19 scalp electrodes), the
eLORETA solutions were averaged across all voxels in a given
cortical macroregion of interest (ROI). The ROIs corresponding
to frontal, central, parietal, occipital, temporal, and limbic large
regions are shown in Figure 1. These eLORETA solutions were
used as rsEEG markers of “cortical source current density
reflecting neural synchronization” for the present classification
purposes.

eLORETA was also used to estimate the functional
connectivity between pairs of ROIs as a measurement of
the neural signal communication across distributed populations
of cortical neurons in the resting state condition. To this aim,
we used the so-called lagged linear connectivity (LLC) tool of
eLORETA (Pascual-Marqui, 2007b; Pascual-Marqui et al., 2011).
LLC is a linear measure of rsEEG coherence that overcomes the
problem of the high phase synchronization and the zero-lag
coherence possibly introduced by the procedure of eLORETA
source estimation. LLC is also expected to minimize the influence
of a third rsEEG source having an influence on the instantaneous
coherence between two rsEEG sources not dependent each other
(the so-called “common feeding” issue).

For each subject and rsEEG frequency band of interest (i.e.,
delta, theta, alpha 1, alpha 2, beta 1, beta 2, and gamma), the
LLC was computed for 6 ROIs (i.e., frontal, central, parietal,
occipital, temporal, and limbic). For the inter-hemispherical
analysis, the LLC estimates were calculated between all voxels of
the mentioned ROIs of each hemisphere with the corresponding
ones of the other hemisphere. The LLC solutions for all voxels of
a given pair of ROIs were averaged. For the intra-hemispherical
analysis, the LLC estimates were computed for all voxels of
a particular ROI with all voxels of another ROI of the same
hemisphere. The LLC solutions for all voxels of a given pair of
ROIs were averaged, for both the right and the left hemisphere.
Those LLC solutions were used as rsEEG markers of “cortical
functional connectivity” for the present classification purposes.

The rsEEG Markers Used as Inputs for
Artificial Neural Networks (ANNs)
In the present study, we selected the markers of eLORETA source
current density and functional connectivity (LLC) showing a
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FIGURE 1 | Regions of interest (ROIs) for the estimation of the cortical sources of resting state eyes-closed electroencephalographic (rsEEG) rhythms

by exact low-resolution brain electromagnetic tomography (eLORETA) software.

better discrimination between the Nold and AD individuals
as revealed by an area under the ROC curves over 70% in
the reference study (Babiloni et al., 2016a). According to this
criterion, alpha 2, beta 1, beta 2, and gamma rsEEGmarkers were
not considered in the following.

For the eLORETA source current density, we considered
10 markers showing a classification accuracy higher than 75%,
namely parietal, temporal, occipital, limbic, central, and frontal
theta/alpha1 (i.e., ratio between theta and alpha 1) as well as
parietal, temporal, occipital, and limbic delta/alpha1 (i.e., ratio
between delta and alpha 1).

For the eLORETA source functional connectivity (LLC),
we used 4 markers exhibiting a classification accuracy better
than 70%, namely inter-hemispherical occipital delta/alpha 1 as
well as intra-hemispherical left occipital-temporal theta/alpha
1, right parietal-limbic alpha 1, and right occipital-temporal
theta/alpha 1.

ANNs: Architecture and Procedure for the
Classification of rsEEG Markers in Nold
and AD Individuals
ANN is a mathematical machine learning technique inspired
by the core functioning of a biologic nervous system composed
of simple processing elements that are interconnected and
layered. The main elements of the ANN were inputs, internal,
and output layers, which were composed of virtual neurons
highly interconnected with each other according to different
topologies. Any virtual neuron of a layer was connected to all
the neurons of the adjacent layers. Every connection between
two virtual neurons was expressed by weight, which represented

the “strength” of the connection itself. The weight between each
pair of virtual neurons was computed by a learning algorithm
along the training phase of ANN, when a set of input examples
(training dataset with known classification output) were used as
an input to ANN to allow this network to represent the implicit
rules that link input features and the classification required as
an output (e.g., in the present study, Nold vs. AD individuals).
At the end of the training phase, the weights between pairs of
neurons represented such rules. In the testing phase, the ability
of the ANN to classify was tested in an independent series of
datasets.

From a formal point of view, let us indicate with N1 the
number of virtual neurons belonging to the lth layer and
with ok the output of the kth neuron of the lth layer. Then,
the computation performed by each virtual neuron can be
expressed as:

netlk =

Nl−1∑

l= 1

wl
kjo

l−1
j

olk = f (netlk)

Where netl
k
is the weighted sum of the k neurons of the lth layer,

wkj is the weight by which the same virtual neuron multiplies the

output o(l−1)
j of the jth neuron of the previous layer, and f(.) is the

so-called activation function, (Basheer and Hajmeer, 2000). The
principal activation functions are: log-sigmoid function (logsig),
tangent sigmoid function (tansig), saturating linear function
(satlin), symmetric saturating linear function (satlins), and pure
linear function (purelin).
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In the present study, the ANN procedure for the classification
of the Nold and AD individuals was formed by the following
three steps (see details in Bevilacqua et al., 2016).

In the first step of the procedure, the optimal topology and
minimization functions of the ANNs were defined, namely the
proper number of ANN hidden layers, the types of activation
functions and the number of virtual neurons per any layer, based
on the general features of the rsEEG markers in the Nold and
AD individuals to be classified. Several approaches could be
found in the literature for the search of ANNs best topology
using genetic algorithms, e.g., in Bevilacqua et al. (2006). In a
previous study (Bevilacqua et al., 2015) aMulti-Objective Genetic
Algorithm strategy was proposed to design a robust supervised
ANN classifier between AD and NOLD based on EEG markers.
Conversely, in this work the search of ANNs best topology was
performed by using a Mono-Objective Genetic Algorithm (see
details in Bevilacqua et al., 2016) maximizing the mean accuracy
calculated on 500 iterations of training, validation and test using
random permutations of the input dataset.

Specifically, each “chromosome”modeled all themain features
of ANN topology, or rather the number of neurons in the hidden
layers (ranging between 1 and 256 for the first hidden layer and
from 0 to 255 for the other layers) and their activation functions;
in this work, the considered activation functions were the logsig,
tansig, purelin, and satlins. Moreover, the activation function set
for the neuron in the output layer was the hyperbolic tangent
sigmoid (tansig). Before training phase, the whole dataset was
standardized using the z-score technique (Zill and Cullen, 2000)
whose aim was to rescale data absolute value in an interval
centered in 0 and with variance equal to 1.

In the second step of the procedure, the ANNs were trained
to determine the connection weights for all virtual neurons and
layers. These weights had to optimize the association between the
rsEEG source markers in the Nold and AD individual datasets
as an input and the correct classification as “Nold” or “AD”
in the output virtual neuron. This second step started with the
initialization of the connection weights of the virtual neurons
by the Nguyen-Widrow’s algorithm (Nguyen andWidrow, 1990),
which is an efficient method to speed up such a training phase.

After that initialization, the ANNs were trained by a
standard supervised learning algorithm namely “Resilient
Backpropagation” (Riedmiller and Braun, 1993), adapting the
connection weights to minimize the error in the association
between the rsEEG source markers in the virtual input neurons
and the correct classification as “Nold” or “AD”. In the training
phase, the ANN assumed to the best connection weights for
all virtual neurons and layers to optimize that association.
To this purpose, the whole database of the mentioned rsEEG
source markers was divided into three subsets corresponding
to 60% (training subset), 20% (validation subset), and 20%
(testing subset) of all Nold and AD individual datasets available,
respectively. During the second step of the procedure, the
training subset was used to train the ANN while the validation
subset served to adapt the connection weights of the virtual
neurons to avoid the overfitting problem (Witten and Frank,
2005). When the connection weights computed from the training
subset produced higher classification errors in the association of

the inputs (rsEEG markers) and classification outputs (“Nold”
vs. “AD”) in the validation set, the ANN was assumed to fit too
much the training set (“overfitting state”). This case was avoided
stopping early the ANN training if the network performance fails
to improve or remains the same for a number of epochs fixed to
100.

In the third step of the procedure, the performance of the
ANNs to classify the Nold and AD individual datasets of the
testing subset only (not used in the training and validation
phases). That performance in the binary classification (Nold
vs. AD) was measured by the following indexes expressed as
percentages (%):

1. Sensitivity, defined as the rate of the AD individual testing
datasets classified as AD correctly; this index was termed true
positive (TP) or TP rate (TPR);

2. Specificity, defined as the rate of the Nold individual testing
datasets classified as Nold correctly; this index was termed as
true negative (TN) or TN rate (TNR);

3. Accuracy, defined as the sum of the TP and the TN divided by
the total number of the individual datasets of the two classes
(AD and Nold).

This step-wise classification procedure with training subset,
validation subset, and a testing subset was repeated 500 times
(iterations). Any iteration produced a value of sensitivity,
specificity, and accuracy. The findings reported in the “Results”
section refer to the average of the values of sensitivity, specificity,
and accuracy over all 500 iterations.

ANNs: Experimental Design and Statistical
Analysis
The experimental design aimed at computing the sensitivity,
specificity, and accuracy of the classifications of the Nold and AD
individual datasets for the following sessions:

1. The 4 most discriminant markers of eLORETA source current
density (SCD), namely parietal, temporal, and occipital
theta/alpha1 and the occipital delta/alpha 1;

2. The 4 most discriminant markers of eLORETA source
functional connectivity (LLC) as listed in the previous section
entitled “The rsEEG markers used as inputs for ANNs”;

3. The combination of the mentioned 8 most discriminant
markers of eLORETA source current density (SCD) and the
functional connectivity (LLC).

Figure 2 shows the peculiar architectures of the ANNs used for
the above three sessions (they were optimized by the MOGA
technique; Bevilacqua et al., 2006). For a given session, the
mean and standard deviation of the classification accuracy were
computed using the accuracy values of all 500 iterations of that
session.

The freeware tool “R” (https://www.r-project.org/) was used to
compare themeans of the classification accuracy for the following
statistical contrasts (p < 0.05):

1. The 4 most discriminant markers of eLORETA source current
density (SCD) vs. the 4 most discriminant markers of
eLORETA source functional connectivity (LLC);
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FIGURE 2 | Structures of the three artificial neural networks (ANNs) used to classify Alzheimer’s disease patients with dementia (AD) from Normal

elderly subjects (Nold). EEG markers are given as inputs in the first layer (input layer); every node (the numbered circles) of every successive layer (i.e., the hidden

layers and the output layer) is characterized by an activation function: A non-linear function to decide, in analogy with biological neurons, the output of the node

(0 or 1). The output node (O) provides the classification result (AD or Nold). Legend for the input markers: (top) the four best Lagged Linear Connectivity (LLC) markers;

(bottom left) the four best LLC markers together with the four best Source Current Density (SCD) markers; (bottom right) the four best SCD markers. Legend for the

activation functions: log-sigmoid (logsig), linear (purelin), and tan-sigmoid (tansig).
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2. The 4 most discriminant markers of eLORETA source current
density (SCD) vs. the combination of the mentioned 8 most
discriminant markers of eLORETA source current density
(SCD) and the functional connectivity (LLC);

3. The 4 most discriminant markers of eLORETA source
functional connectivity (LLC) vs. the combination of the
mentioned 8 most discriminant markers of eLORETA source
current density (SCD) and the functional connectivity (LLC);

4. The 4 most discriminant markers of eLORETA source current
density (SCD) vs. the 10 most discriminant markers of
eLORETA source current density (SCD).

These statistical contrasts were performed by Shapiro-Wilk
normality test (p < 0.05). The dependent variable was the
classification accuracy while the factor was the Session (4 best
discriminant variables of eLORETA source current density,
4 best discriminant variables eLORETA source connectivity,
etc.). Dunn’s post-hoc test was used for multiple comparisons
(p< 0.05). Tables 2, 3 listed the best 10 markers of SCD and LLC.

RESULTS

Classification Performance of the ANNs
Among the above sessions of ANN classification of the Nold and
AD individuals, the best 4 discriminant markers of the rsEEG
source current density reached the following best sorting rate:
A sensitivity of 79.3%, a specificity of 74.3%, and an accuracy
of 77%. Furthermore, the best 4 discriminant markers of the

rsEEG source lagged linear connectivity showed a sensitivity
of 74.2%, a specificity of 68.9%, and an accuracy of 71.6%.
Finally, the combination of the above best 8 discriminant
markers of the rsEEG source current density and linear lagged
connectivity exhibited a sensitivity of 80%, a specificity of
72.7%, and an accuracy of 76.7%. Table 4 reports these values
associated with their standard deviations. Figure 3 illustrates
a topographical representation of the best 8 discriminant
markers of the rsEEG source current density and linear lagged
connectivity. The Shapiro-Wilk normality test (p < 0.05)
showed that the accuracy values in the 500 iterations of any
classification session (i.e., the best 4 discriminant markers of
the rsEEG source current density; the best 4 discriminant
markers of the rsEEG linear lagged connectivity; the above best 8
discriminant markers) were not Gaussian as distributions. From
these distributions, Kruskal-Wallis test disclosed a statistically
significant effect (p < 0.0001) while Dunn’s post-hoc test
revealed some interesting statistically significant differences in
the classification accuracy between session pairs. Specifically, the
classification accuracy was higher for the best 4 discriminant
markers of rsEEG source current density than the best 4
discriminant markers of rsEEG source linear lagged connectivity
(p < 0.0001). Furthermore, this accuracy was lower for the best 4
discriminant markers of rsEEG source linear lagged connectivity
than the best 8 discriminant markers of the rsEEG source
current density and linear lagged connectivity (p < 0.0001). In
contrast, no difference in the classification accuracy was found
between the best 4 discriminant markers of the rsEEG source

FIGURE 3 | (Left) : A topographical representation of the following best 4 discriminant markers of the rsEEG SCD for the classification of Nold and AD individuals.

These markers are the following (from the top to the bottom): parietal theta/alpha 1, temporal theta/alpha 1, occipital theta/alpha 1, and occipital delta/alpha 1.

(Right): A topographical representation of the following best 4 discriminant markers of the rsEEG LLC for the classification between Nold and AD individuals. These

markers are the following (from the top to the bottom): inter-hemispherical occipital delta/alpha 2, intra-hemispherical right parietal-limbic alpha 1, intra-hemispherical

left occipital-temporal theta/alpha 1, intra-hemispherical right occipital-temporal theta/alpha 1.
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current density and the best 8 discriminant markers of the
rsEEG source current density and linear lagged connectivity
(p > 0.05).

Control Analysis
As reported above, the highest ANN classification of the Nold
and AD individuals was obtained with the best 4 discriminant
markers of the rsEEG source current density. Therefore, we tested
if the 10 best discriminant markers of rsEEG source current
density would improve this classification accuracy (Table 2
reports the list of those 10 rsEEG markers). To this aim, the
MOGA procedure (Bevilacqua et al., 2006) optimized an ANN
with the following features: 1 hidden layer composed of 54 virtual
neurons with a LOGSIG activation function; an output neuron
with a TANSIG activation function. With this ANN, the best 10
discriminant markers of rsEEG source current density showed
a sensitivity of 77.1%, a specificity of 68%, and an accuracy of
74.2%. Again, the distribution of the accuracy values was not
Gaussian (Shapiro-Wilk normality test, p < 0.05), so we used
Wilcoxon test (p < 0.05) to evaluate the possible statistically
significant differences in the classification of the Nold and AD
individuals between the best 10 vs. the best 4 discriminant
markers of the rsEEG source current density. Results showed no
statistically significant difference (p > 0.05).

DISCUSSION

The present Consortium designed a research program to define
and validate rsEEG topographic markers useful to understand
the neurophysiological underpinnings of the AD status and the
effects of newmedications on those underpinnings. Furthermore,
the program has to investigate if rsEEG topographic markers
can stratify AD individuals based on these neurophysiological
bases, namely AD people with “Nold-like” rsEEG markers from

TABLE 2 | Results of the classification between single AD and Nold

subjects based on composite rsEEG markers of source activity.

Source Current

Density (SCD)

Sensitivity

(%)

Specificity

(%)

Accuracy

(%)

AUROC

Parietal delta/alpha1 77.5 70 74.1 0.79

Occipital delta/alpha1 73.3 78 75.4 0.82

Temporal delta/alpha1 78.3 70 74.5 0.78

Limbic delta/alpha1 75.8 72 74.1 0.77

Frontal theta/alpha1 70 72 70.9 0.76

Central theta/alpha1 83.3 65 75.0 0.79

Parietal theta/alpha1 78.3 74 76.3 0.82

Occipital theta/alpha1 83.3 68 76.3 0.83

Temporal theta/alpha1 70.8 83 76.3 0.82

Limbic theta/alpha1 83.3 68 76.3 0.81

Specifically, those composite rsEEG markers were obtained by computing the ratio

between the delta and alpha 1 source current density (SCD). The same procedure was

followed to form the composite EEG markers obtained by computing the ratio between

the theta and alpha 1 SCD. The classification rate is computed by the analysis of the

area under the receiver operating characteristic curve (AUROC). The table reports the

classification indexes for the composite EEG markers having an AUROC higher than 0.70

(i.e., 70%).

those with “AD-like” rsEEG markers. A reliable classification
ability of these rsEEG markers would be quite useful in both
clinical practice and clinical trials (see Jelic and Kowalski, 2009,
for a review). Indeed, AD people with “AD-like” rsEEG markers
are expected to have a lower cerebral reserve across the disease
evolution. In this line, we have previously used rsEEGmarkers of
the cortical source current density and lagged linear connectivity
for the classification of 120 AD patients with dementia and
100 Nold subjects with a linear univariate classifier such as
the computation of ROC curves. The results showed that the
best classification accuracy of 75.5% was reached using occipital
delta/alpha 1 source current density (sensitivity of 73.3% and
specificity of 78%). In the present study, we re-analyzed the
same database of rsEEG markers with a non-linear multivariate
classifier such as the ANN.

The results of the present study showed that the ANN
classification produced a classification accuracy of 77%
(sensitivity of 79.3% and specificity of 74.3%) using the best
4 discriminant markers of the rsEEG source current density
(i.e., occipital, temporal, and parietal theta/alpha 1; occipital
delta/alpha 1). Noteworthy, this accuracy was higher than that
(71.6%) obtained by the best 4 discriminant markers of the
rsEEG source lagged linear connectivity (i.e., inter-hemispherical
occipital delta/alpha 1 as well as intra-hemispherical left and
right occipital-temporal theta/alpha 1, and right parietal-limbic

TABLE 3 | Results of the classification between single AD and Nold

subjects based on composite EEG markers of lagged linear connectivity.

Linear Lagged

Connectivity (LLC)

Sensitivity

(%)

Specificity

(%)

Accuracy

(%)

AUROC

Intra-hemispheric left

parietal limbic

70 74 71.8 0.74

Intra-hemispheric left

occipital limbic

73.3 64 69.1 0.71

Intra-hemispheric right

temporal limbic

79.2 55 68.2 0.71

Intra-hemispheric right

central occipital

80.8 54 68.6 0.70

Intra-hemispheric right

parietal occipital

71.7 72 71.8 0.73

Intra-hemispheric right

parietal temporal

67.5 71 69.1 0.71

Intra-hemispheric right

parietal limbic

68.3 71 69.5 0.72

Intra-hemispheric right

occipital temporal

70.8 72 71.3 0.74

Intra-hemispheric right

occipital limbic

66.7 76 70.9 0.73

Intra-hemispheric right

temporal limbic

76.7 64 70.9 0.73

Specifically, those composite EEGmarkers were obtained by computing the ratio between

the theta lagged linear connectivity and the alpha 1 linear lagged connectivity, exept

the intra-hemispheric right temporal limbic linear lagget connectivity, computed with

the ratio between the delta lagged linear connectivity and the alpha 1 linear lagged

connectivity. The classification rate is computed by the analysis of area under the receiver

operating characteristic curve (AUROC). The table reports the classification indexes for

the composite EEG markers having an AUROC higher than 0.70 (i.e., 70%).
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TABLE 4 | Accuracy, sensibility (true positive rate), and sensitivity (true

negative rate) of the ANNs proposed, express as percentage (mean ±

standard deviation).

4 SCD 4 LLC 4 SCD + 4 LLC

Sensitivity (%) 79.3 ± 10.6 74.2 ± 11.4 80 ± 10.8

Specificity (%) 74.3 ± 13.2 68.9 ± 14.6 72.7 ± 12.9

Accuracy (%) 77 ± 5 71.6 ± 6.5 76.7 ± 5.2

Legend: SCD, Source Current Density; LLC, Lagged Linear Connectivity; TPR, True

Positive Rate; TNR, True Negative Rate.

alpha 1). Furthermore, it did not differ from those reached using
the mentioned 8 discriminant rsEEGmarkers (76.7%) or the best
10 rsEEG markers of source current density (77.1%). Overall,
the multivariate non-linear ANN classifiers of the present study
reached a moderate classification accuracy that cross-validated
that obtained with a standard univariate linear classifier (i.e.,
ROC curves) from the same database of rsEEG marker (Babiloni
et al., 2016a). The same consideration is true for other databases
of rsEEG markers of source current density. In previous studies,
we have reported that the occipital alpha or the ratio between
parietooccipital delta and alpha source current density showed a
moderate accuracy of about 75–80% in the classification of Nold
subjects and AD patients with dementia (Babiloni et al., 2015,
2016a; Lizio et al., 2015).

The present findings extend to rsEEG markers of source
current density and linear lagged connectivity a bulk of previous
evidence of other research groups indicating that rsEEG activity
provided qualitative markers allowing a moderate discrimination
of about 80% between Nold and AD individuals (Brenner et al.,
1986, 1988; Hooijer et al., 1990; Strijers et al., 1997; Claus
et al., 1999). The present findings also extend the following
previous pieces of evidence using quantitative rsEEG markers
for classification purposes, mostly from spectral analysis. Huang
et al. (2000) combined alpha and theta global field power to
reach an accuracy of 84% to classify Nold individuals and AD
patients with dementia, and an accuracy of 78% to discriminate
the AD patients with dementia and MCI individuals. Adler
et al. (2003) reported that the left temporal alpha coherence
and the global theta power density returned an accuracy of 80%
for the classification of Nold individuals and AD patients with
dementia. Moretti et al. (2011) showed that increased global
theta/gamma and alpha 3/alpha 2 power density ratios predicted
the conversion from MCI to AD or non-AD dementia with an
accuracy of 88%. Trambaiolli et al. (2011) described that the
temporal modulation of the energy in the delta, theta, alpha, beta,
and gamma bands gave an accuracy of 91% in the classification
of Nold individuals and AD patients with dementia. Engedal
et al. (2015) reported that 20 rsEEG markers (including the alpha
frequency peak, total power density, and coherence between
electrodes) allowed an accuracy of 90% in the classification of
AD patients with dementia from elderly subjects without or with
other forms of dementia (e.g., Parkinson’s Disease, Dementia
with Lewy Bodies). As mentioned in the Introduction section,
a full review of the rsEEG classification studies can be found in
two articles. One of them (Jonkman, 1997) reported an accuracy
ranging from 54 to 100% in the classification of the Nold and

AD subjects while the other article (Jelic and Kowalski, 2009)
reported an accuracy of about 80–85% between the patients
with AD dementia or MCI and the individuals without or with
other forms of dementia. Noteworthy, these rates of classification
accuracy are in the same order of those obtained from other
reliable CSF and neuroimaging biomarkers of AD (Stoeckel et al.,
2004; van der Flier, 2005; Klöppel et al., 2008; Álvarez et al.,
2009).

Another interesting finding of the present study was that
the classification accuracy was not improved combining the
(eLORETA) rsEEGmarkers of the cortical source current density
and lagged linear connectivity from the delta, theta, and alpha
rhythms recorded during a resting state eyes-closed condition.
In this condition of quiet wakefulness, healthy subjects show
dominant rsEEG oscillations at about 8–13Hz in posterior areas
of cerebral cortex, the so-called alpha rhythms. These rhythms
are associated with a fluctuating cortical inhibition due to a
widespread synchronization of activity of cortical pyramidal
neurons. These neurons would receive synchronizing signals
at around 10 Hz from neurons of thalamocortical, brainstem-
cortical, and corticocortical circuits underpinning vigilance and
several cognitive functions such as attention and memory
(Steriade and Llinás, 1988; Rossini et al., 1991; Neubauer and
Freudenthaler, 1995; Klimesch et al., 1996; Klimesch, 1999;
Pfurtscheller and Lopes da Silva, 1999; Roh et al., 2011). In the
condition of quiet wakefulness, healthy subjects also show low
values of delta (<4Hz) and theta (4–7Hz) rsEEG rhythms.When
delta rhythms reach high power values in that condition, an
abnormal tonic “disconnection mode” of the cerebral cortex can
be hypothesized. In the quiet wakefulness, these abnormal delta
rhythms might have a different neural substrate from sleep delta
rhythms (i.e., in stage 4) caused by low-frequency oscillatory
signals across cortico-thalamic (<1Hz) and thalamocortical
(<4Hz) circuits (Steriade, 2003).

Here we report that the classification accuracy based on 8
(linear) rsEEG markers as inputs to ANN (e.g., about 76%)
was similar to that obtained with a single rsEEG marker
in a previous seminal study on the same database (75.5%;
Babiloni et al., 2016a). How can we interpret this finding?
From a neurophysiological point of view, the present rsEEG
markers of source current density would probe cortical neural
synchronization while rsEEG markers of functional connectivity
would probe the functional interdependence and efficiency
of neurotransmission in different regions of the cerebral
cortex. Although these linear rsEEG source markers unveil
different relevant neurophysiological mechanisms underpinning
low cortical arousal and vigilance in AD patients, they may
provide the same core neurophysiological information for the
classification of Nold and AD individuals. A high degree of
redundancy would prevent an improvement of the classification
accuracy either be combining the present linear rsEEGmarkers of
source current density and functional connectivity or increasing
the number of rsEEGmarkers used. To improve the classification
accuracy, future studies may use other independent linear
and non-linear classes of rsEEG markers as an input to the
ANNs, in addition to the present ones. On the one hand, the
additional linear markers could be derived from autoregressive
models, directed transfer function (DTF), and Granger causality

Frontiers in Neuroscience | www.frontiersin.org 10 January 2017 | Volume 10 | Article 604

http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Neuroscience/archive


Triggiani et al. ANN with EEG Makers as Inputs in AD

(Granger, 1969; Kaminski and Blinowska, 1991; Kaminski et al.,
1997; Korzeniewska et al., 1997; Blinowska, 2011; Katarzyn and
Jaroslaw, 2011; Babiloni et al., 2016a). On the other hand, the
non-linear ones could be derived from chaos, entropy, and
synchronization likelihood (Micheloyannis et al., 1998; Stam,
2005). It can be speculated that those independent mathematical
procedures would produce less correlated and redundant input
variables for ANNs.

CONCLUSIONS

In a previous study, we showed the best accuracy of 75.5%
in the classification of 120 AD patients with dementia and
100 matched Nold subjects based on eLORETA cortical source
current density and lagged linear connectivity estimated from
rsEEG rhythm (Babiloni et al., 2016a). Specifically, that accuracy
was reached using the ratio between occipital delta and alpha1
current density as an input to a linear univariate classifier (i.e.,
ROC curves). In the present study, we tested the use of ANNs
with the same database of eLORETA rsEEG markers. Frequency
bands of interest were delta, theta, alpha 1, and alpha 2. Results
showed that ANN classification reached an accuracy of 77%
using the most 4 discriminative rsEEG markers of source current
density (delta/alpha 1 and theta/alpha 1 ratios in posterior
cortical lobes). The ANN classification exhibited an accuracy of
72% using the most 4 discriminative rsEEG markers of source
lagged linear connectivity (alphas between posterior cortical
lobes). With these 8 markers combined, an accuracy of 76%
was reached.

Overall, the present results suggest that a non-linear (ANN)
multivariate classification rate cross-validated that obtained
using a linear univariate classifier in the previous reference study
(Babiloni et al., 2016a). Although the linear rsEEG markers of
cortical current density and connectivity probe different relevant

neurophysiological mechanisms underpinning cortical arousal
and vigilance in AD patients, they provide quite redundant
information for classification purposes. In future AD studies,
inputs to ANNs should combine the present markers with other
linear (i.e., directed transfer function, phase lag index) and non-
linear (i.e., chaos, entropy, synchronization likelihood) rsEEG
markers to improve the classification accuracy of the present
moderate values (about 75–80%).
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