
METHODS
published: 09 January 2017

doi: 10.3389/fnins.2016.00605

Frontiers in Neuroscience | www.frontiersin.org 1 January 2017 | Volume 10 | Article 605

Edited by:

Bertrand Thirion,

Institut National de Recherche en

Informatique et en Automatique

(INRIA), France

Reviewed by:

Bernard Ng,

University of British Columbia, Canada

Chris Tailby,

Florey Institute of Neuroscience and

Mental Health, Australia

*Correspondence:

Sandro Vega-Pons

sv.pons@gmail.com

Specialty section:

This article was submitted to

Brain Imaging Methods,

a section of the journal

Frontiers in Neuroscience

Received: 24 July 2016

Accepted: 20 December 2016

Published: 09 January 2017

Citation:

Vega-Pons S, Olivetti E, Avesani P,

Dodero L, Gozzi A and Bifone A

(2017) Differential Effects of Brain

Disorders on Structural and Functional

Connectivity. Front. Neurosci. 10:605.

doi: 10.3389/fnins.2016.00605

Differential Effects of Brain Disorders
on Structural and Functional
Connectivity
Sandro Vega-Pons 1, 2, 3*, Emanuele Olivetti 1, 2, Paolo Avesani 1, 2, Luca Dodero 3, 4,

Alessandro Gozzi 4 and Angelo Bifone 4

1NeuroInformatics Laboratory, Fondazione Bruno Kessler, Trento, Italy, 2Centro Interdipartimentale Mente e Cervello,

Università di Trento, Trento, Italy, 3 Pattern Analysis and Computer Vision, Istituto Italiano di Tecnologia, Genova, Italy, 4 Istituto

Italiano di Tecnologia, Center for Neuroscience and Cognitive Systems @UniTn, Rovereto, Italy

Different measures of brain connectivity can be defined based on neuroimaging

read-outs, including structural and functional connectivity. Neurological and psychiatric

conditions are often associated with abnormal connectivity, but comparing the effects

of the disease on different types of connectivity remains a challenge. In this paper, we

address the problem of quantifying the relative effects of brain disease on structural and

functional connectivity at a group level. Within the framework of a graph representation

of connectivity, we introduce a kernel two-sample test as an effective method to assess

the difference between the patients and control group. Moreover, we propose a common

representation space for structural and functional connectivity networks, and a novel test

statistics to quantitatively assess differential effects of the disease on different types of

connectivity. We apply this approach to a dataset from BTBR mice, a murine model

of Agenesis of the Corpus Callosum (ACC), a congenital disorder characterized by

the absence of the main bundle of fibers connecting the two hemispheres. We used

normo-callosal mice (B6) as a comparator. The application of the proposed methods

to this data-set shows that the two types of connectivity can be successfully used

to discriminate between BTBR and B6, meaning that both types of connectivity are

affected by ACC. However, our novel test statistics shows that structural connectivity

is significantly more affected than functional connectivity, consistent with the idea that

functional connectivity has a robust topology that can tolerate substantial alterations in

its structural connectivity substrate.

Keywords: structural connectivity, functional connectivity, kernel two-sample test, graph kernel, test statistic,

agenesis of the corpus callosum

1. INTRODUCTION

Neuroimaging methods, like Magnetic Resonance Imaging (MRI), provide a powerful tool to
investigate brain connectivity. They have been widely applied to study the mutual relationship
between structural and functional connections of brain regions in healthy subjects and patients,
as well as in animal models. In this context, structural connectivity is defined by the physical
connection of remote brain regions by white matter fibers, as measured by diffusion weighted
MRI (Assaf and Pasternak, 2008). Conversely, functional connectivity is inferred from correlations
between fMRI signals, typically under resting state conditions, and is thought to associate brain
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areas that share common functional properties (van den Heuvel
and Hulshoff Pol, 2010).

Alterations in functional and structural connectivity have
been observed in neurological and psychiatric disorders (Fornito
and Bullmore, 2012; Tost et al., 2012), and in conditions
where maladaptive changes in the brain have occurred following
traumatic neural injuries (Seifert and Maihöfner, 2011) or
long-term exposure to substances of abuse (Sutherland et al.,
2012). Abnormalities in the brain connectivity represent a
promising putative endophenotype for certain mental disorders,
like autism (Rane et al., 2015) and schizophrenia (Fornito
et al., 2012), that are not associated with focal neuropathological
features, but are rather thought to be developmental disorders
characterized by pathological patterns of neural connectivity. The
mutual relation between functional and structural connectivity,
and the effects of brain disease on these different forms of
connectivity remain the subject of investigation.

Intuitively, functional connectivity should correlate with
structural connectivity patterns. Indeed, several studies have
demonstrated that structurally connected cortical regions exhibit
stronger and more consistent functional connectivity than
structurally unconnected regions (Koch et al., 2002; Honey et al.,
2007). However, robust functional connectivity can also be found
between regions not linked by cortico-cortical projections, and
the relation between the two kinds of connectivity is not strictly
biunivocal.

In the adult, healthy brain, structural, and functional
connectivity appear to be positively correlated, at least at an
aggregate level. This is consistent with the idea that brain regions
that are strongly structurally connected should tend to exhibit
stronger patterns of functional connectivity (Honey et al., 2009).

The picture that emerges from studies in patients affected
by brain disease and neurological conditions is more complex.
A striking example is that of subjects with Agenesis of the
Corpus Callosum (ACC), a congenital condition whereby the
main bundle of white matter fibers connecting the two cerebral
hemispheres does not form during brain development. This
condition is accompanied by a reorganization of white matter
architecture, with the presence of anomalous longitudinal
bundles of fibers known as Probst bundles. Early resting-state
functional MRI investigations in ACC subjects, whose structural
connectivity is drastically impaired, have detected alterations in
inter-hemispheric connectivity (Quigley et al., 2003). However,
more recent studies have surprisingly shown intact bi-lateral
functional connectivity patterns (Uddin et al., 2008; Tyszka
et al., 2011; Owen et al., 2013). This evidence suggests the
hypothesis that small, preserved commissural fibers may suffice
to support normal levels of inter-hemispheric connectivity, or
that multisynaptic connections may be able to maintain a high
degree of bilateral coherence, even in the absence of direct
cortico-cortical structural links.

Altogether, these results challenge the view that structural and
functional connectivity are straightforwardly related. Therefore,
the ability to quantitatively compare differences in structural and
functional connectivity would contribute to the understanding
of the mismatch observed in patients. Moreover, it would be
important for the study of the plastic mechanisms underlying

brain development and the recovery of functional connectivity
in the case of congenital or acquired loss of white matter tracts.

In this paper, we propose a novel approach to study themutual
relationship between structural and functional connectivity in
a group of subjects affected by a brain condition compared to
their healthy controls. The main aim is to provide a support to
a quantitative analysis of the differences on brain connectivity.
The localization of connectivity differences is out of the scope of
this work.

By way of example, we apply this approach to functional
and structural connectivity data from BTBR T+Itpr3tf/J mice
(BTBR) (Han et al., 2014; Squillace et al., 2014), an inbred mouse
line with ACC, using the normo-callosal C57Bl6/J (B6) mice as
comparators. This is an ideal model to validate our approach, and
to investigate the differential effects of a pathological condition
on structural and functional connectivity. Indeed, the small
genetic variability in the BTBR inbred line results in a very
consistent phenotype that lends itself to a quantitative analysis
in controlled experimental groups.

The specific question we address is to what extent the
aberrant structural connectivity of the acallosal BTBR model
is paralleled by a similar disruption and reorganization of
functional connectivity. Previous studies (Dodero et al., 2013)
have shown that BTBRmice exhibit a complete lack of the corpus
callosum and a severely reduced hippocampal commissure, with
a strong reduction of the white matter bundles connecting
the two hemispheres. Conversely, functional connectivity shows
a good degree of homotopy, with normal interhemispheric
connectivity in the posterior cortices and a reduction in the
strength of interhemispheric connectivity in the frontal part
of the brain (Sforazzini et al., 2016). Qualitatively, functional
connectivity appears to be relatively robust to disruption of
the underlying structural connectivity, but a statistically sound
method to compare the two is missing.

In principle, given structural and functional connectivity data
from the disease (BTBR) and the control group (B6), this problem
can be tackled in 2 steps:

1. Class discrimination with single modality: Discrimination
between BTBR and B6 by independently using the
structural and functional connectivity. The more affected
the connectivity is in the BTBR class the more separable the
classes should be.

2. Modality comparison: Quantitative comparison of how
discriminative the two connectivity modalities are for
the BTBR vs. B6 problem. Intuitively, if the functional
connectivity in BTBR is as altered as the structural
connectivity, the two classes (BTBR and B6) should be equally
separable when using any of the two types of connectivity.
Conversely, if the functional connectivity in BTBR is less
affected, it should be easier to discriminate between BTBR and
B6, by using the structural connectivity.

The class discrimination problem based on a single connectivity
modality has been previously addressed by using different
approaches. For example, seed-region methods, statistical tests
on graph indexes and machine learning classifiers have been
proposed (see review in Section 3.1). In this paper, we introduce
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the kernel two-sample test (KTST) (Gretton et al., 2012) as a
method to tackle the class discrimination problem. Thanks to
the definition of a characteristic graph kernel, the KTST can be
directly applied on the brain connectivity to determine whether
the data from the disease class (BTBR) and control (B6) are drawn
from the same probability distribution or not. We argue that this
approach can be more appropriate than existing methods in the
case of small datasets.

Ideally, once we obtain the results from the class
discrimination problem on each one of the two connectivity
modalities, the comparison of such results should tell which type
of connectivity is more affected. However, class discrimination
results are not always straightforwardly comparable. Indeed,
when the results of the two modalities are close to extreme
values, i.e., chance level or perfect discrimination, there is no
reliable method to quantitatively compare them. One of the
main hurdles that hampers the direct comparison of results
obtained with both modalities is the difference in the nature of
the two types of connectivity. In order to address this problem,
we propose a novel common representation space for structural
and functional connectivity networks. In this common space, we
introduce a new test statistic derived from KTST, that directly
addresses the problem of comparison between the modalities. A
quantitative assessment of the comparison provides the statistical
evidence that the difference in functional connectivity is much
smaller that the difference in structural connectivity. Upon this
result we may claim that patterns of functional connectivity are
relatively robust with respect to disruption of the underlying
white matter connectivity, as homotopy is largely preserved in
spite of the lack of CC. Our findings are also consistent with
the observation of intact resting state networks in cases of
ACC, and of post-operative recovery of functional connectivity
organization following surgical rescission of the CC.

The rest of the paper is organized as follows. In Section 2,
we describe the dataset that we use in our analysis, giving
details about the acquisition, preprocessing, and computation
of connectivity networks. In Section 3, we introduce the KTST,
together with a characteristic graph kernel, as an alternative
approach to the class discrimination problem. Moreover, we
introduce our solution to the modality comparison problem,
based on the definition of a common representation space for
structural and functional connectivity and a novel test statistic.
In Section 4, we provide the results of the application of our
proposals to the dataset previously described. In Section 5, we
discuss these results and their implications. Finally, in Section 6,
we conclude this work and mention future perspectives.

2. MATERIALS

The MR datasets used to construct the adjacency matrices
representing the structural and functional connectivity networks
hereby investigated have been reported in Dodero et al. (2013)
and Sforazzini et al. (2016), where protocols and acquisition
methods are described in detail. All in vivo studies were carried
out in accordance with the European directive 86/609/EEC
governing animal welfare and protection, which is acknowledged

by the Italian Legislative Decree no. 116, 27 January 1992. Animal
research protocols were also reviewed and consented to by a local
animal care committee. All surgical procedures were performed
under anesthesia.

In short, all MRI data were acquired at 7T with a Pharmascan
Bruker system equipped with four RF channels, a 72mmbirdcage
transmit coil, and a custom- built saddle-shaped solenoid coil for
signal reception.

Structural connectivity was derived from Diffusion Tensor
Imaging data from paraformaldehyde (4% PFA) fixed brains to
avoid any physiological or motion artifacts. Experimental and
control groups consisted of eight adult male BTBR and eight
B6 mice. Diffusion tensor images (DTI) were acquired with 81
different gradient orientations at a b-value of 1262 s/mm2 (h =
5 ms, D = 10 ms), in-plane spatial resolution of 130 × 130 µm2,
and slice thickness of 350 µm using using a four-shot EPI
sequence with TR = 5500 ms and TE = 26 ms, 20 averages.
Anatomical reference images were acquired with 3D RARE spin-
echo sequence, TR = 550 ms, TE = 33 ms, RARE factor = 8, echo
spacing 11 ms, and voxel size of 90 µm3 (isotropic). Images were
co-registered to a mouse brain template (Sforazzini et al., 2016).

Diffusion Tensor Tractography (DTT) of BTBR and B6
control subjects was performed by estimating axonal fibers
projections with a deterministic fiber assignment using the
continuous tracking algorithm (Mori et al., 1999). Criteria
for terminating the tracking of individual fibers included an
anisotropy threshold (values below 0.15) and a maximum
stiffness condition, so that the tracking was terminated when the
diffusion directions in consecutive steps differed by more than
35 µm. Fibers shorter than 3 mm were filtered out leading to a
set of about 80000 streamlines.

Resting State fMRI time series were acquired on male 26-
week old B6 and BTBR mice (n = 10 each group), which
were anesthetized with isoflurane (5%), intubated and artificially
ventilated. At the end of animal preparation, isoflurane was
discontinued and substituted with halothane (0.7%) ca. 100 min
prior to the beginning of rs fMRI data acquisition.

Co-centered single-shot BOLD time-series were acquired
using an echo planar imaging (EPI) sequence with the following
parameters: TR/TE 1000/15 ms, flip angle 60◦, matrix 100 ×

87, field of view 2.3 × 2 cm2, 16 coronal slices, slice thickness
0.75 mm, 360 volumes, and a total rsfMRI acquisition time
of 6 min. Image pre-processing was performed as described
previously (Sforazzini et al., 2014). Briefly, anatomical brain
images were co-registered to the same mouse brain template of
the DTI data using FSL. The generated warp fields were applied
to the co-centered rsfMRI time series. After co-registration, all
the functional images were motion-corrected and the estimated
movement parameters, together with mean ventricular signal,
were considered as nuisance signals and regressed out. The image
time series were then band-pass filtered to a frequency window of
0.01–0.08 Hz and spatially smoothed using a Gaussian kernel of
full-width at half maximum of 0.6 mm.

Finally, brain connectivity networks were built in the
following way. Fifty anatomical volumes of interest (VOIs) were
defined using bilateral brain regions from the mouse atlas (Dorr
et al., 2008). Each of these VOIs represents a node in the
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graph representation of structural and functional connectivity
data. Adjacency matrices for the structural connectivity graphs
were constructed by calculating the number of streamlines
connecting each pair of nodes in every subject. For the
functional connectivity graphs, mean time courses from each
VOI were calculated and variance-normalized. Pairwise Pearson
correlation coefficients were then calculated to generate VOI—
VOI correlation matrices for each subject.

3. METHODS

As presented in the previous section, the dataset analyzed in
this paper is composed by two different types of connectivity
data (structural and functional) from subjects belonging to two
categories (or classes), i.e., BTBR and B6. This dataset has 16
graphs representing the structural connectivity, with 8 graphs
for each class and 20 graphs of functional connectivity, with
10 graphs belonging to each class. The methods we propose in
this paper have been mainly developed to study this specific
dataset. However, in this section, we describe them using a
more general notation, because they are not restricted to this
particular dataset, but can be directly applied to similar case
studies.

Both structural and functional connectivity data can be
defined by using concepts from graph theory. In both cases, the
connectivity data is represented by simple, undirected, node-
labeled and edge-weighted graphs G = (V ,E, ℓ,ω),

where V is the set of nodes, E ⊂ V × V is the set of edges,
and ℓ and ω are node and edge labeling functions, respectively.
In the case of the BTBR vs. B6 dataset, node labels are identifiers
to the 50 volumes of interest (VOI) defined in the network
construction. On the other hand, edge labels are real values
that represent the statistical dependency between every pair of
brain regions. The nature of the edge labeling function ω is
in fact, the main difference between structural and functional
connectivity.

With this kind of graphs, it is possible to define a mapping
between nodes representing the same brain region in different
graphs. This is known in the literature as fixed-cardinality vertex
sequence (FCVS) (Richiardi et al., 2013) property. It means that
all graphs have the same number of nodes and there is a one-
to-one correspondence between nodes across the graphs. This
correspondence is given by the node labeling function ℓ. If two
nodes from different graphs have the same label, it means that
the two nodes represent the same brain region. Considering the
FCVS property and assuming an ordering on the node labels,
each graph G can be well-characterized by its adjacency matrix
A, where each cell Auv contains the weight ω(e) associated to the
edge e = (u, v) that connects the nodes with the u-th and v-th
labels.

In general, we assume that we have a set of such
graphs representing the structural connectivity data G

s =

{Gs
1,G

s
2, . . . ,G

s
n} with the associated class labels Ys =

{ys1, y
s
2, . . . , y

s
n}, where ysi is the class (BTBR or B6) of Gs

i =

(Vs
i ,E

s
i , ℓ

s
i ,ω

s
i ) for all i = 1, . . . , n. Moreover, we also have a set

of functional connectivity graphs G
f = {G

f
1,G

f
2, . . . ,G

f
m} and the

corresponding class labels Y f = {y
f
1, y

f
2, . . . , y

f
m} where also y

f
j is

the class label (BTBR or B6) of graph G
f
j = (V

f
j ,E

f
j , ℓ

f
j ,ω

f
j ) for

all j = 1, . . . ,m. Therefore, we have two binary-class datasets,
DS = {Gs,Ys} containing the structural connectivity data and
DF = {Gf ,Y f } containing the functional connectivity data,
respectively. Despite some pairs of structural and functional
connectivity graphs can belong to the same subject, we do not use
this information in our methods because there could be subjects
contributing with only one modality. This is exactly the case of
the particular dataset we are studying in this paper, where there
are n = 16 graphs of structural connectivity and m = 20 graphs
of functional connectivity.

As described in Section 1, we are interested in the class
discrimination and themodality comparison problems. Therefore,
in Section 3.1, we briefly review the most prominent techniques
proposed in the literature for the class discrimination problem
based on brain connectivity and introduce the necessary
concepts for the next sections. In Section 3.2, we introduce
our alternative approach to this problem based on the use
of the Kernel Two-Sample Test (KTST) and discuss its main
characteristics. In Section 3.3, we introduce our solution to the
modality discrimination problem. This is based on a common
representation space for structural and functional connectivity
and a new test statistic that allows the direct comparison of the
two modalities.

3.1. Class Discrimination with Brain Graphs
Class discrimination based on brain connectivity has gained an
increasing interest in the last few years. Many of the studies in this
direction, specially when using functional connectivity, are based
on seed-region methods (Richiardi et al., 2013). This means that
a seed voxel or region is defined and its correlation with other
brain regions is analyzed. Despite this approach can be effective
in specific applications, it is only sensitive to local changes in
the brain connectivity networks and the selection of the seeds is
strongly problem specific.

On the other hand, graph theory provides a powerful means to
study the topological organization of the central nervous system,
and is attracting increasing attention as a general and powerful
framework to analyze brain connectivity networks (Bullmore
and Sporns, 2009). According to Richiardi and Ng (2013)
recent methods for discriminating brain graphs can be grouped
into three overlapping categories: network science, statistical
hypothesis testing, andmachine learning approaches. The network
science approach (Ekman et al., 2012; Ambrosen et al., 2013)
looks for discriminative information from topological properties
of the graphs, like node degree distribution, cluster coefficient,
centrality indexes, among others (Brandes and Erlebach, 2005).
The hypothesis testing approach (Zalesky et al., 2010; Ginestet
et al., 2014; Kim and Pan, 2015) provides test statistics that
are applicable to graphs or graph components like nodes and
edges. A recent comparison of different statistical tests for group
differences in functional connectivity was presented in Kim et al.
(2014). Finally, the machine learning approach is based on the
application of classifiers to the brain graphs. This is frequently
complemented with hypothesis testing on the ability of the
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classifier to accurately discriminate between classes. Different
classifiers have been used to discriminate between different
diseases like Alzheimer (Wang et al., 2006; Chen et al., 2011),
Depression (Craddock et al., 2009), and Schizophrenia (Shen
et al., 2010). Moreover, in cognitive studies, different brain states
or stimuli have been decoded by using classifiers (Richiardi
et al., 2011; Tagliazucchi et al., 2012; Vega-Pons and Avesani,
2013; Vega-Pons et al., 2014). Given the increasing adoption of
machine learning in the neuroimaging community (Richiardi
et al., 2013), in this paper, we use this approach as the baseline
for our proposals.

In the context of our particular problem, the class
discrimination on DS and DF can be addressed by solving
a binary graph classification problem. Despite graphs are
flexible and rich data structures, they are difficult to handle.
Therefore, the classification of graphs normally requires an
intermediate step in which graphs are mapped into a vector
space. The mapping can be done either implicitly by using graph
kernels (Vishwanathan et al., 2010; Shervashidze et al., 2011) or
explicitly by using the so-called embedding techniques (Riesen
and Bunke, 2010; Gibert et al., 2012).

The selection of the most appropriate technique should be
based on the intrinsic properties of the graph data at hand. In
our case, we have graphs holding the FCVS property. Therefore,
we are dealing with a particular and simplified case of the more
general graph classification problem, in which a one-to-one node
correspondence is already established. It is expected that tools
like general purpose graph kernels or embeddings techniques are
not optimal in this scenario, since they lack the ability of taking
advantage of the FCVS property (Richiardi et al., 2013).

The most common approach for this kind of graph data
is called direct connection embedding (DCE) (Richiardi et al.,
2010). This is a simple embedding method in which a vector
representation of a graph is obtained by unfolding the upper
triangular part of its adjacency matrix. In other words, the DCE
is a function f that takes a graph G with l nodes and adjacency
matrix A, and maps it into a vector vG = [A12, . . . ,Aij] ∈ Rt

with i < j and t = l(l−1)
2 .

After graphs are embedded into a vector space, the
graph classification problem is transformed into a standard
classification problem with vectorial data, where traditional
machine learning classifiers can be directly applied.

Moreover, we can do hypothesis testing on the classification
results, for both the structural and functional connectivity data.
The null hypothesis H0 says that the classifier predicts at
chance level and the binomial test can be used to test this
hypothesis (Pereira et al., 2009). The binomial test is used
under the assumption that the probability of a binary classifier
predicting at random is p = 1/2. After a k-fold cross-validation
is performed, a prediction for each sample in the dataset is
obtained. Let Ŷ = {ŷ1, . . . , ŷn} be the classifier predictions and
Y = {y1, . . . , yn} the true labels. We can use as test statistic the
number of misclassified samples r =

∑n
i=1 I(yi, ŷi), where I is the

indicator function that is equal to 1 if the prediction is equal to the
true label and 0 otherwise. Then, the p-value can be computed by
Pr(i ≤ r|H0) =

∑r
i=0

(n
i

)
pi(1− p)n−i.

3.2. Kernel Two-Sample Test for Class
Discrimination
The classification based approach has at least two possible
limitations. The first one lies on the need of splitting the data
intro train/test sets. This could be problematic on small datasets
(on the number of samples), as it is commonly the case on
neuroimaging studies and specifically the case of the BTBR vs.
B6 data we are studying. The second limitation comes from
the nature of hypothesis testing on a k-fold cross validation
procedure (Bengio and Grandvalet, 2004). Classifiers on different
folds are trained on partially overlapped data and the test data in
one-fold is used for training in another fold. Therefore, the i.i.d
assumption on the samples in the binomial test is hardly satisfied.

Another way to look at the discrimination problem is through
the two-sample test perspective. Two-sample tests have mainly
been used in the low-dimensional context. However, the recently
proposed kernel two-sample test (Gretton et al., 2012) provides a
solution for high dimensional data or even data not defined in
vector spaces, like graphs.

Given two random variables XA and XB with probability
distributions pA and pB, respectively, the KTST addresses the
problem of determining whether the null hypothesis H0, saying
that pA = pB, is true or not, based on two samples A =

{xA1 , . . . , x
A
n } and B = {xB1 , . . . , x

B
m} drawn from pA and pB,

respectively.
This test uses as test statistic theMaximumMean Discrepancy

(MMD) (Gretton et al., 2012), which in a general setting, is
defined as

MMD[F , pA, pB] = sup
f∈F

(EXA∼pA [f (XA)]− EXB∼pB [f (XB)]) (1)

where F is a family of bounded continuous functions.
The quality of the MMD as a test statistic depends on the

selection of the family of functions F . A convenient option
is the unit ball in a characteristic reproducing kernel Hilbert
space (RKHS) (Gretton et al., 2012). A RKHS is a Hilbert Space
associated to a positive definite kernel function.

Given a non-empty set X , a positive definite kernel1 k : X ×

X → R is a function that satisfies the symmetry and positive
definiteness properties (Hofmann et al., 2008). It is known that
if k is a kernel function, there is a mapping φ : X → H from
X to some Hilbert space H, such that k(x, x′) = 〈φ(x),φ(x′)〉H
for all x, x′ ∈ X , where 〈·, ·〉H denotes the dot product in H. In
this case, H is the RKHS associated to the kernel k. The notion
of characteristic kernel was recently introduced in Fukumizu
et al. (2009). It is a further restriction to the kernel function
that guarantees that the MMD is a metric. This means that
MMD[F , pA, pB] = 0 if and only if pA = pB.

Therefore, studying whether the two distributions are
different or not is the same as analyzing whether the associated
MMD is equal to zero. In Sriperumbudur et al. (2011), it was
proven that many popular kernels are characteristic, e.g., the
Gaussian and Laplace kernels onRd and therefore they are valid
kernels for the KTST approach.

1Hereafter called kernel for simplicity.
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In practice, an unbiased estimate of MMD2 (Gretton et al.,
2012) based on the observations A and B is:

MMD2
u =

1

m(m− 1)

∑

i6=j

k(xAi , x
A
j )−

2

mn

∑

i,j

k(xAi , x
B
j )

+
1

n(n − 1)

∑

i6=j

k(xBi , x
B
j ) (2)

Different approaches were proposed in Gretton et al. (2012)
to estimate the probability distribution of MMD2

u under the
null hypothesis H0. In this paper, we follow the Monte Carlo
approximation of the permutation test proposed in Olivetti et al.
(2013). This is an iterative process, where in each iteration i =
1, . . . ,T, elements from A and B are randomly exchanged to
obtain Ai, Bi, and also the corresponding MMD2

u,i is computed.

The sample D0 = {MMD2
u,1, . . . ,MMD2

u,T} becomes an accurate
approximation of the null distribution as the number of iterations
T increases. Finally, the p-value is estimated as the fraction of
elements inD0 equal or greater than the actualMMD2

u computed
on the original observations A and B.

This test can be applied to any kind of data X , as long as
a characteristic kernel is defined on X . In our problem, we are
dealing with graph data, therefore we need a characteristic graph
kernel. Next, we define a characteristic graph kernel for graphs
with FCVS property based on the DCE method discussed in
Section 3.1 and the Gaussian kernel.

Definition 3.1. Let G be a set of graphs containing l nodes and

holding the FCVS property. Let f :G → R
t , with t = l(l−1)

2 be the
Direct Connection Embedding function that maps a graph into
a real vector. The direct embedding kernel kde : G × G → R is
defined as

kde(G1,G2) = exp

(
−
‖f (G1)− f (G2)‖

2
2

2σ 2

)
(3)

Proposition 3.1. The direct embedding kernel kde is a
characteristic positive definite kernel function.

This proposition can be easily proven based on the fact that this
kernel is the composition of the direct connection embedding
(DCE) and the Gaussian kernel. The DCE is a bijective function
for graphs with FCVS. This means that, working on the vector
space obtained after the embedding is equivalent to working on
the original graph space. Once the graph data is mapped into
the vector space, the Gaussian kernel, which is a characteristic
kernel, is applied. Therefore, the original kde function is also a
characteristic kernel.

Given the kernel function kde, we can apply the KTST
directly on the graph data, either on the structural or functional
connectivity. We will obtain an MMD, which is a measure of
distance between samples in both classes, and the corresponding
p-value.

An important characteristic of this approach is that it directly
works on the whole dataset, i.e., splitting the data into train
and test sets or a cross-validation procedure are not required.
This property can be especially convenient in the case of small
datasets, like the BTBR vs. B6 data we are studying.

3.3. Modality Comparison
A quantitative comparison of the results of the application of
classifiers or KTST on both structural and functional connectivity
is not always straightforwardly possible. In the case of classifiers,
the differences in accuracies can be misleading. For example,
perfect classification results with both modalities would suggest
that in both cases the classes are easily separable, but does not
allow to determine whether there is still one of the twomodalities
for which the classes are more separated than the other. In the
case of KTST, given the differences in nature between structural
and functional connections, the MMD-values obtained from
both modalities would have different null distributions, and
therefore, their actual numerical values are not comparable.

One way of making the analysis of structural and functional
connectivity comparable is by representing all connectivity data
into a common space. Once all data is represented in the
same space, test statistics like MMD would produce comparable
results.

As we mentioned at the beginning of Section 3, the only
difference between structural and functional connectivity data
lies in the edge weighting function ω that measures the
dependency between different brain regions.

Let �S be the set of all weight values associated to all edges in
the structural connectivity data, i.e., �S =

⋃n
i=1 {ω

s
i (e)|e ∈ Esi}.

In a similar way, we can define �F as the set of all functional

connectivity weight values �F =
⋃m

j=1 {ω
f
j (e)|e ∈ E

f
j }. At this

point, we assume that weight values in �S are sampled i.i.d. from
a continuous random variable XS with an unknown distribution
function and weights in �F are i.i.d sampled from a continuous
random variable XF with also unknown distribution. This is a
reasonable assumption since all weights of each modality have
a common nature. As discussed in Section 2, structural weights
are a measure of the number of white matter fibers connecting
two brain regions. On the other hand, functional weights are the
correlation between times series belonging to two brain regions.

Let FS(x) and FF(x) be the cumulative distribution functions
of XS and XF , respectively. It can be proven that both
FS(x) and FF(x), if considered as new random variables,
have uniform distribution in the interval [0, 1], i.e., FS(x) ∼

U[0, 1] and FF(x) ∼ U[0, 1]. This is actually true for any
continuous cumulative distribution function (see Proposition 3.1
in Embrechts and Hofert, 2013). Therefore, values from FS(x)
and FF(x) are directly comparable since they share the same
distribution.

In practice, we compute the empirical cumulative distribution
function (ECDF) of XS as

F̂S(x) =
1

|�S|

∑

ω∈�S

I(ω ≤ x) (4)

where I(ω ≤ x) is the indicator function, which is equal to 1 if
ω ≤ x and 0 otherwise. Analogously, we compute the ECDF of
XF as

F̂F(x) =
1

|�F|

∑

ω∈�F

I(ω ≤ x) (5)
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Both ECDFs become accurate approximations of the true
cumulative distribution functions as the cardinality of�S and�F

increase. Notice that it is possible to obtain good approximations,
even for datasets with small number of subjects, since |�S| =

O(l2 · n) and |�F| = O(l2 · m), where l is the number of
brain regions. For example, the BTBR vs. B6 dataset described
in Section 2, which is composed of only 36 graphs, contains more
than 30000 edges with non-zero weights.

Now, for each structural connectivity graph Gs =

(Vs,Es, ℓs,ωs) we can compute a new graph Ĝs = (Vs,Es, ℓs, ω̂s),
where nodes, edges, and the node labeling function remain the
same and the only change is the edge weighting function. The
new edge weighting function is defined as ω̂s(es) = F̂S(ω

s(es)) for
all es ∈ Es. In an analogous way, for each functional connectivity
graph Gf = (V f ,Ef , ℓf ,ωf ), we compute the corresponding

Ĝf = (V f ,Ef , ℓf , ω̂f ), where ω̂f (ef ) = F̂F(ω
f (ef )) for all ef ∈ Ef .

In this new graph representation, all edge weights are directly
comparable since they share a common distribution. This means
that we have mapped all graphs into a common representation
space.

Given the new graph representation, we obtain a new
structural dataset D̂S = {Ĝs,Ys} and a new functional dataset

D̂F = {Ĝf ,Y f }. We define MMD2
S and MMD2

F as the MMD2
u

computed on D̂S and D̂F , respectively
2. Furthermore, we can

compute a unique null distribution taking into account all graphs

(Ĝs ∪ Ĝf ) since they all are in a common space. At this point, we
can directly compare theMMD2

S andMMD2
F quantities since they

share a unique null distribution.
Moreover, we can define a new test statistic that directly

addresses the question of whether the structural data is more
discriminative than the functional data. This test statistic is
MMD2

SF = MMD2
S − MMD2

F . We can also use the Monte Carlo
approximation of the permutation test described in Section 3.2
for the estimation of the null distribution ofMMD2

SF . First of all,
we split the data into the following four groups:

• DA
S : Structural data belonging to the first class (BTBR).

• DA
F : Functional data belonging to the first class (BTBR).

• DB
S : Structural data belonging to the second class (B6).

• DB
F : Functional data belonging to the second class (B6).

At each iteration i = 1, . . . ,T we randomly exchange data
from all groups to obtain DA

S,i, D
A
F,i, D

B
S,i, and DB

F,i. Then, we

compute MMD2
S,i from DA

S,i and DB
S,i, and MMD2

F,i from DA
F,i

and DB
F,i in order to obtain MMD2

SF,i = MMD2
S,i − MMD2

F,i.
Finally, the p-value can be estimated as the fraction of elements
in {MMD2

SF,1, . . . ,MMD2
SF,T} that are equal or greater than the

MMD2
SF-value computed on the original (unpermuted) data.

4. RESULTS

In this section, we first start with a visual inspection of the
BTBR vs. B6 dataset. In Figure 1, we report the Diffusion Tensor
Tractography data for B6 and BTBR mice. This representation

2MMD2
S and MMD2

F are still unbiased estimations of MMD2, the u subindex is

removed for the sake of simplicity in the notation.

highlights the overall rearrangement of white matter in BTBR
mice, including the lack of inter-hemispheric connections in the
corpus callosum and dorsal hippocampal commissure, together
with a rostro-caudal reorganization of whitematter tracts in these
animals.

Moreover, group-level structural connectivity matrices for the
BTBR and B6 groups were calculated averaging the individual
subjects matrix elements. In the case of functional connectivity,
subject-wise adjacency matrices were Fisher’s transformed,
averaged across subjects and back-transformed to create group-
average average correlationmatrices for the BTBR and B6 groups.
Both the resulting average structural connectivity graphs and the
average functional connectivity graphs are shown3 in Figure 2.

From Figure 2 we observe that, in the case of structural
connectivity (top panel), the reduction in number and strength
of interhemispheric connections in the BTBR line (left panel)
is accompanied by a reorganization of longitudinal tracts. On
the other hand, functional connectivity network in the BTBR
(botton left panel) is sparser in terms of number of edges,
the distribution and strength of connections is remodulated,
and the network shows an overall symmetrical pattern of
interhemispheric homotopic connectivity. This figure suggests
that the structural connectivity is more affected than the
functional connectivity in the BTBR class. Next, we use the
analysis methods introduced in Section 3 to analyze this
dataset.

We first address the class discrimination problem using
structural and functional connectivity independently. Then, we
address how informative the two modalities (structural and
functional) are by computing the common space representation
and applying the proposedMMD2

SF test statistic.
In order to apply the proposedmethods, we need edge weights

to be a similarity measure, i.e., the higher the weight values the
stronger the dependency between nodes. Structural connectivity
weights hold this property, but raw correlation values in
functional connectivity does not, and therefore should be
preprocessed.We have follow different preprocessing approaches
like thresholding correlations with a value in the range [0, 0.5]
or using the absolute value of negative correlations. In all cases,
we have obtained the same general conclusion in terms of
interpretation of p-values, even though numerical results have
been slightly different. For simplicity, we are presenting here
the experiments where only possitive correlations were kept, i.e.,
using a threshold equal to zero.

In all calculations, we use the graph kernel kde introduced in
Section 3.2 as a similarity measure between graphs. This graph
kernel allowed us to use kernel based classifiers like Support
Vector Machines (SVM) and also the Kernel Two-Sample Test
(KTST), directly on the graph data. The parameter σ of this
kernel was set to the median value of the distances between the
vectors resulting from the direct connection embedding (DCE) of
the graphs. The use of the mean distance is a standard heuristic in
the case of low sample size, since no extra labeled data is needed
to estimate this parameter.

3The description of the labels of the nodes in Figure 2 is given as Supplementary

Material.
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FIGURE 1 | Major white matter reorganization in BTBR mice. Diffusion tensor tractography of white matter in a representative B6 (left) and BTBR (right) subject.

The large white matter bundles (in red in the left panel) denote the Corpus Callosum and the posterior Hippocampal Commissure, which are absent in the BTBR (right

panel).

For all classification experiments, we used SVM classifier
within a leave-one-subject-out cross-validation approach, i.e., in
each fold, we trained the classifier with all but one subject and
tested on the data of that remaining subject. We report the mean
classification accuracy across folds and also the p-value computed
by using the binomial test as explained in Section 3.1. In the case
of the KTST experiments, we used T = 100000 as the number of
iterations in the computation of the null distribution. We report
theMMD2

u distance and the corresponding p-value.
All the code used in the experiments, which generates the

results reported in the tables and figures in this section, was
developed in Python using the numerical libraries NumPy and
SciPy, together with the machine learning package Scikit-learn.
Our code is available under a Free / OpenSource license4.

4.1. Class Discrimination on Single
Modalities
The results of the application of the leave-one-subject-out cross-
validation and the KTST on structural DS and functional DF

datasets are presented in Table 1.
Moreover, the null distribution and MMD2

u-values computed
on the structural and functional data are shown in Figure 3.

From these table and figure we note that there is a perfect
agreement between the two approaches. With both SVM and
KTST it is possible to discriminate between the BTBR and B6
classes. In both cases the results are very significant, which means

4https://github.com/svegapons/ktst_struct_func

that the two classes are easily separable by independently using
the structural and the functional connectivity. However, at this
point it is still not clear which connectivity data is more separable
and if the potential difference is significant or not. Inspection
of the kernel matrices in Figure 4 shows a clear pattern of class
separation in the structural kernel matrix, while such separation
pattern is much less evident in the functional kernel matrix.
This suggests that structural connectivity data should be more
discriminative than the functional one. However, the application
of standard methods like SVM or the KTST does not provide a
reliable way of quantifying this potential difference.

4.2. Modality Comparison
In order to test how discriminative the two modalities are, we
have mapped all connectivity data in the common representation
space as described in the Methods Section, and computed the
structural MMD2

S and functional MMD2
F-values. These values

share a common null distribution and therefore are directly
comparable. Moreover, we have computed the MMD2

SF that
directly measures the differences between the two types of
connectivity. These results are reported in Table 2.

In Figure 5, we first show theMMD2
S andMMD2

F within their
null distribution, for a visual comparison of the two quantities.
Moreover, we show the proposed test statistic MMD2

SF and its
estimated null distribution.

These analyses corroborate the idea that both structural and
functional connectivity enable discrimination of the two classes,
as the p-values associated to MMD2

S and MMD2
F are both below
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FIGURE 2 | Graph representation of group-level structural and functional connectivity in the BTBR mouse line, and in the control B6 line. The labels

indicate the brain regions corresponding to the nodes of the network, and the weights of the connecting lines indicate the strength of the pairwise connections. The

graph represents a top view of the mouse brain, with the anterior part of the brain pointing down, and the two hemispheres on the left and right side, respectively.

TABLE 1 | Leave-one-subject-out cross-validation (classification

approach) and KTST results on the structural and functional connectivity

datasets.

Classification KTST

Modality Accuracy (std) p-value MMD2
u p-value

Structural 1.0 (0.0) 7.6× 10−6 0.64 1.0× 10−5

Functional 0.9 (0.2) 2.0× 10−5 0.12 1.0× 10−5

standard thresholds for significance (0.05 and 0.01). However, the
fact thatMMD2

S > MMD2
F means that the structural connectivity

is more informative than the functional connectivity for the
class discrimination problem. Such a difference is quantified by
MMD2

SF and its corresponding p = 0.00069 tells that it is very
significant.

5. DISCUSSION

The independent application of the KTST and classifiers to
both connectivity modalities (Section 4.1) shows that both

structural and functional connectivity are very informative
for the class discrimination problem. This result corroborates
previous findings with this dataset (Dodero et al., 2013;
Sforazzini et al., 2016). More specifically, in Dodero et al.
(2013) the structural connectivity was characterized, showing
large alterations in white-matter organization, including lack of
courpus callosum and hippocampal commissure, with a degree
of interhemisphreic connectivity maintained by the anterior
commissure. Moreover, a reduction in intra-hemispheric fronto-
cortical functional connectivity was reported in Sforazzini et al.
(2016), although the functional inter-hemispheric connectivity
was preserved in the posterior sensory cortical areas.

Those previous studies with this dataset also suggested the
idea that the functional connectivity was less affected than the
structural connectivity in the BTBR model. However, there
was no way to quantify this difference. The results of the
class discrimination problem obtained in Section 4.1 are not
a solution to this modality comparison problem. The fact
that both modalities produce very significant results in class
discrimination does not provide evidence about which modality
is more informative and therefore more affected.
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FIGURE 3 | MMD2
u and the estimation of its null distribution. (A) Structural connectivity. (B) Functional connectivity.

FIGURE 4 | Similarity matrices. Rows and columns are organized by class, first the BTBR samples, and then the B6. In the case of structural connectivity, it is clear

that samples from the same class are similar between them and dissimilar to the samples from the other class. For the functional connectivity this pattern is not

evident. (A) Structural connectivity. (B) Functional connectivity.

The common representation space and the test statistic
presented in this paper directly address this modality comparison
problem. Their use, described in Section 4.2, allowed us to
quantify the difference between modalities and we found that
such difference is very significant. We can state that this is
the key result of this study, and implies that the difference
between the BTBR line and its B6 background line is larger
for structural connectivity than for functional connectivity. This
is consistent with the qualitative observation that homotopy
is partially preserved in the functional connectivity patterns
exhibited by the BTBR mouse line, in spite of the lack of Corpus
Callosum.

This evidence supports the idea that the organization of
functional connectivity networks has a very robust topology
that can tolerate substantial alterations in the underlying
structural connectivity substrate. Indeed, a number of studies
in humans and animal models have shown that functional
connectivity networks present hierarchically modular structures
and a scale free topology (Bullmore and Sporns, 2009). It has

TABLE 2 | Application of KTST on the common representation space of

connectivity data.

Structural Functional Difference

MMD2
S

p-value MMD2
F

p-value MMD2
SF

p-value

0.43 1.0× 10−5 0.11 0.00355 0.32 0.00074

Computation of MMD2
S
, MMD2

F , and MMD
2
SF

with the corresponding p−values.

been suggested that this small-world organization provides the
brain with an efficient network of information trafficking, whose
connectedness is preserved also in the presence of certain degree
of miswiring (Achard and Bullmore, 2007). The BTBRmouse line
provides a striking example of this phenomenon.

The results obtained in this paper may have important
implications for our understanding of the interplay between
functional and structural connectivity. While studies in healthy
subjects support the view that structural connectivity, to a large
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FIGURE 5 | (A) Comparison of structural MMD2
S
and functional MMD2

F
according to their common null distribution. (B) MMD2

SF
and its null distribution.

extent, constrains and predicts functional connectivity, a model
like the BTBR, where white matter is dramatically reorganized,
seems to challenge this notion. This support previous studies
like (O’Reilly et al., 2013), where the surgical rescission of
the corpus callosum in monkeys was shown to produce an
acute, post-operative impairment of functional connectivity that
can be recovered in the months after surgery, possibly due
to a reorganization of functional connections driven by plastic
processes. Similarly, developmental neuroimaging studies have
shown that a direct correlation between these two measures of
connectivity does not hold in children, as a structure-function
relationship appears to mature with age (Supekar et al., 2010). In
general, the organization of functional connectivity appears to be
relatively robust to changes in white matter structure as dramatic
as the lack of Corpus Callosum.

While the mechanisms whereby homotopic organization of
functional connectivity appears to be preserved in the BTBR
mouse are not precisely known, a few hypotheses can be put
forward. The anterior and posterior commissures, two white
matter bundles that are preserved in the BTBR model, may
compensate, at least partially, for the lack of Corpus Callosum.
Moreover, ascending brainstem or thalamic projections may
contribute to maintaining interhemisphere connectivity in the
acallosal mice. Finally, very weak long distance structural links, as
demonstrated by recent anatomical tract tracing studies, see Oh
et al. (2014), may support long distance interactions that favour
integration of functional conenctivity even in the absence of
major white matter tracts.

Clearly, this is very preliminary evidence that requires a more
extensive experimental validation and needs to be reproduced
in human studies before strong conclusions can be drawn.
Moreover, alternative interpretations of the results cannot be
completely discarded. For example, strong differences in signal
to noise ratio could also explain the observed differences in
discrimination power between the two connectivity modalities.
We consider that the effect of noise in the networks should be
carefully studied and will be part of our future perspectives.
An additional factor that may affect the inference on brain

connectivity networks is the threshold to filter out non-relevant
edges in the networks. We didn’t investigate how different
choices of threshold values are related to the subsequent
inference. Such investigation would require to consider several
methods of graph encoding, a question beyond the scope
of this work. We also note that functional connectivity was
defined on the basis of Pearson coefficients. It has been pointed
out (Friston, 2011) that this widely used definition includes
pairwise correlations that may be driven by third party input,
and that other measures of correlation or effective connectivity
may provide more accurate estimates of indirect influences.
Application of the method hereby proposed to other measures
of correlation may be helpful to elucidate the origin of functional
connections between structurally unconnected regions.

Despite the data analyzed in this study have not been collected
pairwised in a within-subject design, the inference onmultimodal
brain connectivity may take advantage of the correspondence
between structural and functional network. It is worthwhile to
remark that the current formulation of the Two Kernel Sample
Test can not manage such property of the data. Finally, we note
that the structural connectivity dataset used for this analysis relies
on FACT deterministic algorithm for white matter tractography.
Recent advances in tractography with diffusion MRI have been
proposed (see, e.g., Soares et al., 2013, Daducci et al., 2016) that
may enable refinement of the structural connectivity network
and improved resolution of crossing fibers. However, the broad
connectional differences observed by Dodero et al. (2013)
and their investigations appear to be more than adequate to
capture the dramatic structural differences between the BTBR
mouse and its control. In keeping with this, more advanced
mapping methods—i.e., HARD at 16.7 T—have recently revealed
structural changes largely overlapping with the findings reported
in Fenlon et al. (2015).

Besides structural and functional connectivity, a number of
different brain connectivity networks have also been defined, e.g.,
effective connectivity, co-activation, and metabolic co-variance
networks. All of these measures of connectivity capture different
aspects of the complex structure of interconnections between the
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anatomical and functional elements. The methods proposed in
this paper are not restricted to the particular case of structural
and functional connectivity comparison and nor to the specific
BTBR model data. In a more general sense, these methods
can be applied to any kind of graph data holding the fixed
cardinality vertex sequence (FCVS) property. Therefore, our
approach provides a general method to assess the differential
effects of disease states, neuropsychiatric conditions, genetic
background etc. on diverse brain networks. Thus, enabling the
use of connectivity measures as markers of disease or response to
treatment, and the study of the interrelations between different
types of connectivity.

6. CONCLUSIONS

In this paper, we have proposed the use of the kernel two-sample
test (KTST) for the class discrimination problem based on brain
connectivity data. We have shown that, given a characteristic
graph kernel, the KTST can be directly applied to assess whether
two populations of brain graphs belong to the same class or not.
This method was applied to (BTBR vs. B6) mice datasets by using
both structural and functional connectivity graphs. We found
that for both connectivity modalities, the differences between
classes were very significant.

Moreover, we have studied the dependency between
alterations in the structural and functional connectivity. We
have shown that the results of the class discrimination problem
based on single modalities are not straightforwardly comparable.
Therefore, we introduced a common representation space for
structural and functional connectivity, that makes KTST results
on both modalities directly comparable. Additionally, we have
defined a new test statistic to quantify the difference between the

two modalities. The application of this test statistic showed that
the structural connectivity is significantly more affected than
the functional connectivity in the BTBR model. This finding

supports the idea that functional connectivity networks are
tolerant with respect to alterations of the underlying structural
connectivity.

Even though the main goal of this work was to study
the interrelation between structural and functional connectivity
in the BTBR mice model, the methods proposed here are
not restricted to this particular case study. As future works,
we plan to extend this analysis to human data in order to
collect more evidence about the interrelation between the two
modalities. Moreover, the proposed methods can be directly
applied to more general kinds of graphs, particularly, from
other types of brain connectivity. Therefore, our method
provides a general framework to assess and compare the
effects of brain conditions and diseases on differently defined
forms of connectivity, including structural, functional, and
anatomical.
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