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Understanding how brain activities cluster can help in the diagnosis of

neuropsychological disorders. Thus, it is important to be able to identify alterations in the

clustering structure of functional brain networks. Here, we provide an R implementation

of Analysis of Cluster Variability (ANOCVA), which statistically tests (1) whether a set of

brain regions of interest (ROI) are equally clustered between two or more populations and

(2) whether the contribution of each ROI to the differences in clustering is significant. To

illustrate the usefulness of our method and software, we apply the R package in a large

functional magnetic resonance imaging (fMRI) dataset composed of 896 individuals

(529 controls and 285 diagnosed with ASD—autism spectrum disorder) collected by

the ABIDE (The Autism Brain Imaging Data Exchange) Consortium. Our analysis show

that the clustering structure of controls and ASD subjects are different (p < 0.001)

and that specific brain regions distributed in the frontotemporal, sensorimotor, visual,

cerebellar, and brainstem systems significantly contributed (p < 0.05) to this differential

clustering. These findings suggest an atypical organization of domain-specific function

brain modules in ASD.

Keywords: Analysis of Cluster Variability, silhouette statistic, functional brain network, ABIDE, fMRI

INTRODUCTION

The brain activity is organized in clusters/modules that have different roles in our behavior
(Tononi et al., 1999). Alterations in the clustering pattern can be associated with neurologic
disorders (Grossberg, 2000; Sato et al., 2016). Thus, it is important to systematically discriminate
the clustering structures among different populations. This leads to the problem of how to
statistically test the equality of clustering structures of two or more populations and how to identify
the features that contribute to the differential clustering structure. These statistical problems
were recently solved for a large class of clustering algorithms by using the Analysis of Cluster
Variability—ANOCVA (Fujita et al., 2014a).

Here, we provide an implementation of ANOCVA in R for a better dissemination of this
technique in the scientific community. ANOCVA was designed to test whether the clustering
structures of several populations are equal. Briefly, ANOCVA uses the silhouette statistic
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(Rousseeuw, 1987) as a measure of variability of the clustering
structure of each population and then compares the variability
among populations using an idea similar to the classical analysis
of variance (ANOVA). To calculate the statistical significance
value, we use a bootstrap procedure that was previously shown
to control the type I error.

We illustrate the step-by-step application of ANOCVA by
analyzing a large functional magnetic resonance imaging (fMRI)
data acquired under a resting-state protocol (ABIDE—The
Autism Brain Imaging Data Exchange Consortium) composed
of 529 controls and 285 patients diagnosed with autism.
Subjects with Autism Spectrum Disorders (ASD) have significant
differences in the resting state functional connectivity when
compared to healthy subjects (for review, see Kana et al.,
2011), suggesting that ASD is as a neural systems disorder with
disruptions in several distributed neurocognitive networks of
brain regions (Ecker et al., 2015). However, most studies describe
integration (Washington et al., 2014; Sporns and Betzel, 2016)
and segregation (Assaf et al., 2013) as separate processes. Instead,
in this study we consider both processes simultaneously using
the idea of clusters, where structures within are integrated and
structures between are segregated.

MATERIALS AND METHODS

To formalize ANOCVA, we will first describe the silhouette
statistic to define “clustering variability” and then we introduce
the ANOCVA. Finally, we describe its implementation and
application to ABIDE dataset.

The Silhouette Statistic
The silhouette statistic is a measure of how well an item (regions
of interest—ROI in fMRI data) is clustered given a clustering
algorithm. In other words, it can also be interpreted as a measure
of clustering variability (Rousseeuw, 1987). Formally, let χ =

{x1, .., xN} be the N ROIs of one subject that are clustered into
C = {C1, . . . , Cr} clusters by a clustering algorithm. Denote
the dissimilarity between ROIs x and y by d(x, y). Let |C| be the
number of ROIs of C. Then, define d (x,C) = 1

|C|

∑
y∈C d(x, y) as

the average dissimilarity of x to all ROIs of clusterC. DenoteDq ∈

C as the cluster to which xq has been assigned by the clustering
algorithm. Define aq = d(xq,Dq) (the within dissimilarity of xq)
and bq = minCp 6=Dq d(xq,Cp) (the smallest between dissimilarity
of xq), for q = 1, . . . , N. Then, we can measure how well each
ROI xq has been clustered by analyzing the silhouette statistic
given by

sq =

{
bq − aq

max {bq , aq}
, if |Dq| > 1,

0, if |Dq| = 1.

The silhouette statistic sq assumes values from −1 to +1 and
its interpretation given by Rousseeuw (1987) is as follows. If
sq ≈ 1, it means aq ≪ bq, i.e., the ROI xq has been assigned to
an appropriate cluster because the second-best choice cluster is
not as close as the actual cluster. If sq ≈ 0, then aq ≈ bq. In this
case, it is not clear whether ROI xq should have been assigned to

the actual cluster or to the second-best choice cluster because it
is equally far away from both. If sq ≈ −1, then aq ≫ bq. In other
words, the ROI xq should be assigned to the second-best choice
cluster because it lies much closer to it than to the actual cluster.
In summary, sq is a measure of how well the clustering algorithm
labeled ROI xq.

ANOCVA
In the present section, we briefly describe the ANOCVA. For
further details, refer to Fujita et al. (2014a). Let T1,T2, . . . ,Tk

be k types of populations (e.g., controls and ASD). For the j th
population, nj subjects are collected, for j = 1, . . . , k. The items
(e.g., ROIs) of the i th subject taken from the j th population are
represented by the matrix Xi,j = (xi,j,1, . . . , xi,j,N), where each
ROI xi,j,q (q = 1, ..,N) is a vector containing a time series (the
blood-oxygen-level dependent signal).

First, define the (N×N) matrix of dissimilarities among ROIs
of each matrix Xi,j by Ai,j = {d(xi,j,q, xi,j,q′ )}, for i = 1, . . . , nj,

j = 1, . . . , k. Second, let n =
∑k

j= 1 nj, then define the following

average matrices of dissimilarities:

Āj =
1

nj

∑nj

i = 1
Ai,j =

1

nj

∑nj

i= 1
{d(xi,j,q, xi,j,q′ )} and

=
A =

1

n

∑k

j= 1
njĀj, where q, q

′ = 1, . . . ,N.

Next, apply a clustering algorithm on the matrix of dissimilarities
=
A, to determine the clustering labels l=

A
. Finally, compute the

following silhouette statistics: s
(
=
A,l=

A
)

q (the silhouette statistic of the

qth ROI based on the dissimilarity matrix
=
A and the labeling l=

A
)

and s
(Āj ,l=

A
)

q (the silhouette statistic of the qth ROI based on the
dissimilarity matrix Āj and the labeling l=

A
), for q = 1, . . . , N.

The statistical test consists in verifying whether all k populations
are equally clustered (present the same clustering structure) or
if at least one is clustered in a different manner. If the ROIs
from all populations T1, . . . , Tk are equally clustered, then the

quantities s
(
=
A,l=

A
)

q and s
(Āj ,l=

A
)

q must be close for all j = 1, . . . , k
and q = 1, . . . , N.

Given a clustering algorithm and a distance metric, define the
following vectors:

S = (s

(
=
A,l=

A

)

1 , . . . , s

(
=
A,l=

A

)

N )T and Sj = (s

(
Ā,l=

A

)

1 , . . . , s

(
Ā,l=

A

)

N )T.

Define δSj = S− Sj. We will use the statistic 1S =
∑k

j= 1 δSTj δSj
to build the test statistic. Notice that under the null hypothesis,
all N ROIs are equally clustered along the k populations, i.e.,

s
(
=
A,l=

A
)

q ≈ s
(
=
A,l=

A
)

q′ for all q = 1, . . . , N and thus, we expect small

1S. On the other hand, large 1S suggests a rejection of the null
hypothesis.

To test the contribution of each ROI for the differential

clustering, define δsq = s
(
=
A,l=

A
)

q − 1
k

∑k
j= 1 s

(Ā,l=
A
)

q , for q = 1, . . . , N.
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FIGURE 1 | Pipeline schema of the ANOCVA analysis.
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This test consists in verifying whether the qth ROI (q =

1, . . . , N) is equally clustered among populations. We will use
the statistic1sq = δs2q, for q = 1, . . . ,N to build the test statistic.
Under the null hypothesis, we expect small 1sq. On the other
hand, large 1sq suggests a rejection of the null hypothesis.

To compute distributions of 1S and 1sq under the null
hypothesis, Fujita et al. (2014a) proposed a bootstrap procedure
described as follows:

1. Resample with replacement nj subjects from the entire dataset
{T1,T2, . . . , Tk} in order to construct bootstrap samples T∗

j ,

for j = 1, . . . , k.

2. Calculate Ā∗
j ,

=
A∗, s

(
Ā,l=

A

)
∗

q and s

(
Ā,l=

A

)
∗

q , for q = 1, . . . ,N,

using the bootstrap samples T∗
j .

3. Calculate 1̂S
∗
and 1̂sq

∗
.

4. Repeat steps 1 to 3 until the desired number of bootstrap
replications is obtained.

5. The p-values from the bootstrap tests based on the observed
statistics 1S and 1Sq are the fraction of replicates of 1̂S

∗
and

1̂sq
∗
on the bootstrap dataset T∗

j , respectively, that are at least

as large as the observed statistics on the original dataset.

R Implementation
ANOCVA is implemented in R and is freely available at the R
project website1 (package “anocva”).

This implementation requires as input, the functional brain
networks (ROIs dissimilarity matrices), a vector of labels
describing which individual belongs to which group, the number
of clusters, and the number of bootstrap samples.

ANOCVA uses the spectral clustering algorithm to cluster
the ROIs (Ng et al., 2002). Internal to the spectral clustering
algorithm, we use the k -medoids procedure instead of the usual
k -means because the former is more robust to outliers than
the latter (Aggarwal and Reddy, 2013). If the number of clusters
is not known a priori, the ANOCVA R package provides the
option to estimate it by using the silhouette or the slope statistic
(Fujita et al., 2014b). The slope criterion is the difference of the
silhouette statistic as a function of the number of clusters. The
difference between the slope and silhouette is the fact that by
maximizing the silhouette statistic as described by Rousseeuw
(1987) the number of clusters is estimated correctly only when
the within-cluster variances are equal. The slope criterion is more
robust than the silhouette when the within-cluster variances are
unequal.

The output consists in one p-value, which represents whether
there is at least one group that clusters in a different manner
and a vector of p-values representing which ROI is differentially
clustered among groups. The entire ANOCVA analysis pipeline
can be visualized in Figure 1.

ABIDE Data Description and
Pre-processing
The ABIDE Consortium dataset is a large resting state fMRI
dataset that includes controls and ASD subjects. It can be

1www.r-project.org

FIGURE 2 | Selection of the number of clusters. The number of clusters

was selected by using the silhouette criterion. The number of clusters that

presented the highest silhouette statistic is five. In other words, the silhouette

criterion suggests that this dataset can be split into five sub-networks.

downloaded from the ABIDE website2. This data was collected
in 17 sites that compose the ABIDE Consortium. Data collection
was conducted with local internal review board approval, and
also in accordance with local internal review board protocols.
For further details regarding this dataset, refer to the ABIDE
Consortium website.

Data pre-processing and network construction (dissimilarity
matrices) were carried out as our previous works (Sato et al.,
2015, 2016) using the ABIDE dataset. The final dataset used here
is composed of 529 controls (430 males, mean age ± standard
deviation of 17.47 ± 7.81 years) and 285 autistic patients (255
males, 17.53± 7.13 years).

RESULTS

The problem that we want to solve is the following. Given
k populations T1,T2, . . . , Tk where each population Tj (j =

1, . . . , k) is composed of nj subjects, and each subject has N
items that are clustered, we would like to verify whether the
clustering structures of the brain networks of the k populations
are equal and, if not, which ROIs are differently clustered.
In our case, we have k = 2 populations with T1 and T2

as controls and ASD, respectively. The number of subjects
in each population is n1 = 529 and n2 = 285, for
T1 and T2, respectively. The number of ROIs (items) to be
clustered is N = 316. Since head movement during magnetic
resonance scanning may affect statistical analysis, ANOCVA was

2http://fcon_1000.projects.nitrc.org/indi/abide/
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applied to both “scrubbed” and “not scrubbed” data (Power
et al., 2012) with the number of bootstrap samples set to
1000.

The first step in ANOCVA analysis is the construction
of the average dissimilarity matrix

=
A and its clustering.

The estimated number of clusters by the silhouette criterion
was five as depicted in Figure 2. Notice that the highest
silhouette statistic was obtained when the number of clusters
is five. The sub-networks obtained by applying the spectral
clustering on the dissimilarity matrix

=
A can be visualized

in Figure 3 where each color represents one sub-network
(cluster).

Then, ANOCVA calculates the silhouette statistic for each
ROI by using the labels obtained by clustering the dissimilarity
matrix

=
A and performs the test. We verified that in fact the

entire clustering structure of subjects diagnosed with ASD
differs from controls (p < 0.001). Next, we tested each
ROI to identify which ones significantly contribute to the
differential clustering between controls and subjects diagnosed
with ASD. ROIs that presented a difference in p > 5%
between “scrubbed” and “not scrubbed” datasets were excluded
for subsequent analysis. Remaining p-values were corrected
for multiple comparisons by the Bonferroni method. Figure 4
illustrates the statistically significant ROIs at a p-value threshold
of 0.05 after Bonferroni correction. The highlighted regions
include portions of the cerebellum and middle frontal gyrus,
pre- and post-central gyri, inferior temporal gyrus, and lateral
occipital cortex.

DISCUSSION

In the current study, we combined spectral clustering analysis
with ANOCVA implemented in R to investigate which brain
regions are clustered in a different way between controls and
ASD groups. Our results suggest that several regions distributed
across different neurocognitive systems significantly contributed
to the different clustering network structure observed in ASD.
First we demonstrated that the spectral clustering method
yielded partitions that were well-characterized as functional
modules of the brain that have been consistently identified
in previous studies using different approaches (Damoiseaux
et al., 2006; Power et al., 2011), including the fronto-temporal,
sensorimotor, visual, and cerebellar systems. This is consistent
with the hypothesis that the spectral clustering algorithm groups
anatomically contiguous and also spatially distributed areas with
common brain functionalities in the same cluster. Then, using
ANOCVA we showed that the superior division of the lateral
parietal cortex, precentral, and postcentral gyri, anterior dorsal
middle frontal gyrus, and a medial portion of the cerebellum
and of the brainstem have a distinct cluster organization between
ASD and controls. All these brain regions have been previously
identified as presenting ASD-related differences in studies using
functional MRI. For example, the recruitment of portions of the
precentral and postcentral gyri as well as the cerebellum across
sensorimotor tasks are atypical in ASD, and may underlie deficits
in fine motor sequencing and visual motor learning observed in
autistic individuals (Müller et al., 2001; Mostofsky et al., 2009).

FIGURE 3 | The five brain sub-networks obtained by the spectral clustering algorithm on the dissimilarity matrix
=

A. Each color represents one functional

sub-network: sensorimotor (blue), visual (green), frontotemporal (orange), cerebellar (pink), and brainstem (white). R, right; L, Left.
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FIGURE 4 | ROIs clustered in a different manner between controls and ASD. ROIs that present a p-value (obtained by ANOCVA) lower than 5% after

Bonferroni correction were converted to z-scores and highlighted.

Interestingly, these regions have also been implicated in cognitive
process crucial for interpersonal interactions such as theory-of-
mind (Martineau et al., 2010; Wang et al., 2014). This suggests
that these areas are involved in the social communication deficits

that are a core clinical feature of ASD. Moreover, the lateral
parietal cortex is an important node of the default-mode network,
and abnormalities in the connectivity between nodes of this
network have been widely investigated in ASD (Kennedy and
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Courchesne, 2008; Assaf et al., 2010; Weng et al., 2010) giving
its associations with social cognition (Buckner et al., 2008). The
identification of these regions by our study therefore confirms
that they are key brain structures in ASD that may have a
role in the development of sub-networks organization in this
population.

Head motion is one of the most challenging obstacles in
functional connectivity studies involving clinical populations,
which usually present high levels of movement. Our attempt
to handle this problem was to apply the scrubbing method
proposed by Power et al. (2012), which discards scans acquired
under excessive head motion. However, although this approach
may reduce the influence of movement artifacts, they may
still be present in the scrubbed data. Thus, we opted for a
more conservative approach, which consisted in excluding the
regions where the p-values were more sensitive to scrubbing. We
assumed that the analyses of these regions were more vulnerable
to artifacts and thus they were removed. This approach is
also helpful to reduce the number of multiple comparisons, by
excluding the less reliable tests. Another important limitation
to be mentioned is that the ABIDE data is multicentric
with heterogeneous acquisition parameters across sites. We
minimized the site effect by removing it in the pre-processing
stage of the data. Finally, all analyses are based on the CC400
atlas (Craddock et al., 2012), obtained by using a functional
parcellation. Since other atlases are different on ROIs size,
number of ROIs and spatial location, the parcellation choice
is expected to influence our findings. However, this variability
does not invalidate the results obtained with CC400 because

the procedures adopted here are conservative (regarding type
I error control). Finally, an important future question for the
presented results is whether the contribution of these specific
brain regions to a differential network clustering in ASD is static
or may exhibit dynamic changes during rest (Hutchison et al.,
2013).
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