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The human brain is an extremely complex system of interacting physical and functional units,
ranging from single neurons to complex networks. Cognition is a network phenomenon because it
does not exist in isolated synapses, neurons, or even brain areas. In spite of that, a great amount of
functional magnetic resonance imaging (fMRI) studies have explored what areas are involved in a
variety of cognitive processes, merely localizing where in the brain those processes occur. Instead,
the very notion of network phenomena requires understanding spatiotemporal dynamics, which, in
turn, depends on the way fMRI data are analyzed.What are themechanisms for simulating different
cognitive functions and their spatiotemporal activity patterns? In order to bridge the gap between
brain network activity and the emerging cognitive functions, we needmore plausible computational
models, which should reflect putative neural mechanisms and the properties of brain network
dynamics.

THE TALES

With the advent of fMRI, neuroscientists have focused on the neuroanatomical localization of
stimulus/task-induced changes in the blood-oxygenation level dependent (BOLD) signal. Indeed,
analysis of fMRI data has been mainly based on univariate methods (i.e., the General Linear
Model—GLM), which impose a series of critical assumptions and constraints. Crucially, the GLM
is a voxel-wise analysis, in which each voxel time-series is analyzed independently, ignoring
functional interactions among voxels within adjacent or non-adjacent brain areas. In addition,
the GLM assumes a predefined shape of the Hemodynamic Response Function (HRF), which is
convolved with each stimulus or task event for creating a hypothetical model of brain activity.
Subsequently, multiple linear regression is used to search for voxels correlated with the predicted
response. The HRF, however, may differ from the a priori assumed shape (Aguirre et al., 1998;
Handwerker et al., 2004). Another critical point is the systematic use of spatial smoothing in
the pre-processing phase. Spatial smoothing can dramatically increase the probability of false
positives (Stelzer et al., 2014) and might cancel out differences between anatomically adjacent, but
functionally distinct, brain areas. Hence, many aspects of the GLM were severely criticized (e.g.,
O’Toole et al., 2007; Stelzer et al., 2014).

In recent years, the Multivoxel Pattern Analysis (MVPA) has been extensively employed for
analysing fMRI data. MVPA has done away with the GLM assumptions because it is a multivariate
approach, for which neither spatial smoothing nor a parametric model of the HRF is required.
Typically, a classifier is trained to distinguish trials among different conditions, using information
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coded within patterns of voxel activity. The trained model is
then tested, through a cross-validation procedure, by predicting
the conditions of the remaining (independent) data (Pereira
et al., 2009). Classifiers were largely employed for predicting
specific cognitive states in perceptual (e.g., Haynes and Rees,
2005; Kamitani and Tong, 2005, 2006) and other domains, like
numerical cognition and motor control (e.g., Di Bono and Zorzi,
2008; Eger et al., 2009; Gallivan et al., 2011; Zorzi et al., 2011; Di
Bono et al., 2015). MVPA can also capture temporal dynamics
of brain networks, when used on spatiotemporal patterns of
brain activity. Being able to predict cognitive states with a
classifier, however, does not mean that we have understood
what kind of spatial/spatiotemporal representation is encoded by
brain activity. How can we break these codes? Representational
similarity analysis (RSA) by Kriegeskorte et al. (2008) partially
answers this question: for each region of interest, a similarity
metric (e.g., correlation) is computed between pairs of distributed
activity patterns representing different experimental conditions.
In the same vein, multivariate cross-classification has been used
for characterizing abstraction in neural representations across
cognitive domains (for review, see Kaplan et al., 2015).

In addition, functional connectivity (FC) analysis can capture
brain dynamics. FC allows one to identify significant brain
networks with a coherent activity, either while a task is being
performed or during a resting state. Indeed, by identifying
changes in neuronal activity that are significantly predicted
by stimulus manipulation, we see only part of the story. In
effect, there is another part of brain activity that is internally
generated. It must be kept in mind that the brain is continuously
active, even in the absence of stimulation, and, therefore,
quantifying stimulus-response relations alone does not fully
capture brain dynamics. That is because stimulus-response
relationsmight well be influenced by such “spontaneous” activity.
Resting-state network analysis has increased our understanding
of brain functional organization. FC analysis of resting-state
fMRI (rs-fMRI) data has proved to be a powerful tool for
investigating brain functional organization, both in healthy
people and in patients (e.g., Baldassarre et al., 2014; Bassett
and Bullmore, 2009). Traditional methods for analyzing FC
in resting state mostly rested on a seed-based approach (Cole
et al., 2010). Multivariate data-driven methods, like independent
component analysis (ICA), principal component analysis (PCA),
or clustering procedures (e.g., k-means, fuzzy c-means) offer
an alternative way for identifying spontaneous coherent brain
activity (McIntosh and Lobaugh, 2004; Beckmann et al., 2005,
2009; Lee et al., 2012).

The intrinsic limit of FC, however, is that its results are
correlational in nature and, as such, do not index causality. If
two regions are temporally correlated, there is no way of knowing
whether one region influences the other (i.e., causality), or rather
a third region affects both (i.e., mere correlation).

Effective-connectivity (EC) analysis can tackle this question.
EC has been used to explore the possible causal influence of
the activity in certain brain regions on the activity of other
brain regions. Classic approaches for analyzing EC are based
on Granger Causality (GC—Friston, 1994; Büchel and Friston,
2000), which captures only linear interactions. The dynamic

causal modeling (DCM) of Friston et al. (2003) captures non-
linear interactions (Friston et al., 2003; Stephan et al., 2008),
but requires knowledge about the input to the system, as well
as a priori knowledge about connectivity of the investigated
network (Friston et al., 2003). DCM compares evidence for
several competing a priori models with respect to the observed
data (Penny et al., 2004). It may not be optimal for exploratory
analyses (e.g., for studying resting state), although a new version
of the DCM for resting state analysis has been proposed (Friston
et al., 2014). A critical limit of DCM is that model selection
procedures for connectivity should include more than just
a few brain structures (for a critical review, see Roebroeck
et al., 2011). Information theory also provides an excellent basis
for formulating causal hypotheses, especially in the case of
exploratory analyses. For example, Transfer Entropy (Schreiber,
2000) is a model-free measure, which is able to capture linear
and non-linear causal interactions (e.g., Vicente et al., 2011).
The preservation of temporal dependencies is mandatory when
investigating causality because causes have to precede their
effects. However, the temporal precedence might exist only at
a certain time scale (e.g., milliseconds), and it is a potentially
confounding concept when analysing fMRI time series, because
of the regional variability of hemodynamic properties (David
et al., 2008).

The analysis of FC and EC on rs-fMRI data (as described
above) cannot describe both segregation and integration
properties of brain functioning. Instead, graph-theoretical
analysis provides a mathematical language for describing these
properties, allowing one to analyze functional interactions among
brain voxels at a topological level (Bullmore and Sporns, 2009;
Sporns, 2011). The brain is modeled as a graph in which each
node (e.g., each brain area) is linked to all the other nodes within
the graph, through edges that are weighted by some measure of
linear or non-linear functional correlation (or by some measure
of EC). Numerous mathematical measures characterize graph
topology, both at the global level of the graph structure and
at the local level of constituent nodes (for details, see Rubinov
and Sporns, 2010). Graph metrics provide evidence of both
segregation (e.g., modularity and clustering) and integration (e.g.,
efficiency) properties of the graph. An emergent property of
many complex networks is the “small-world” topology (Watts
and Strogatz, 1998), which is in-between regular (i.e., each
node is linked only to its neighbors) and random (i.e., each
node is randomly connected to all the other nodes) graph
topologies. Small-worldness characterizes graphs with dense local
clustering and relatively few long-range connections, which is
an appealing property, because it can globally account for both
specialized (segregated) and distributed (integrated) information
processing. In order to compute small-worldness, the standard
quantitative application is to compare path length (a measure
of distributed processing) and clustering (a measure of regional
specialization), to an equivalent random network. It is interesting
to note, however, that the small-world property seems to be less
ubiquitous than suggested in the current literature. Telesford
et al. (2011) have proposed a new small-world metric (ω) that
compares network clustering to an equivalent lattice network,
and path length to a random network. The ω metric accurately
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identifies small-world networks. Critically, the authors showed
examples of networks that would be interpreted as small-
world when the clustering coefficient is compared to a random
network, but are not small-world according to ω. This is just
an example of the critical points (including all the mathematical
procedures needed to define the final network metrics) to
be carefully considered when using graph theory in network
neuroscience.

The investigation of how these topological properties
are modulated by experimental manipulations has allowed
neuroscientists to move from the level of representational codes
to a level (still merely descriptive, though) of the mechanisms
mediating the transition among different representations.

Indeed, understanding brain functioning is not only a
matter of localizing functions and/or representations. Rather,
we need to understand what are the mechanisms driving
the transformation of such representations during different
cognitive processes. We believe that graph theory is an excellent
framework for topologically describing these mechanisms. The
challenging question is: what is the learning mechanism, which,
within spatial/anatomical constraints, has shaped the flexible
representational code of the brain? Can we simulate it in a
realistic way?

BEYOND THE TALES

Conceiving the brain as a complex network has been the
prevalent view in connectionist models, deriving from the
principles of parallel and distributed information processing
(PDP; McClelland et al., 1986). These models are intrinsically
linked to the temporal dynamics of undirected/directed graphs,
and their learning mechanism(s) should help us understand how
cognition emerges from the activity of a complex network. In the
latest generation of PDP models, hierarchical generative models,
like Deep Belief Networks (Hinton, 2007), have been the main
focus of interest in computational modeling. The reason for the
interest in hierarchical generative models is attributable to their
biological plausibility in terms of auto-organization, hierarchy,
and unsupervised learning capability in a probabilistic fashion.
These models are structured into a hierarchical composition of
complete bipartite graphs (i.e., Restricted Boltzman Machines;
Hinton and Salakhutdinov, 2006), and learn to reconstruct their
input by discovering latent structures of the sensory data. In
these networks, the analysis of the internal representations, both
in terms of single-neuron activity (e.g., De Filippo De Grazia
et al., 2012; Stoianov and Zorzi, 2012; Di Bono and Zorzi, 2013)
and layer-pattern activity (e.g., Di Bono and Zorzi, 2013), has
revealed emergent coding strategies, which closely mirror single-
cell recording and neuroimaging data. Nonetheless, because

only between- but no within-layer bidirectional connections are
present, the biological plausibility of these models needs to be
improved.

In our view, time is ripe for neuroimaging data to
converge into the computational modeling ground, and for
us to understand what kind of complex network/graphical
model is the brain. We believe that graph theory can

help us to construct a consistent empirical network model
of the brain across the life span. Also, we believe that
hierarchical generative models are a promising framework
for constructing a more realistic brain network model. New
plausible computational models are needed, which explain how
complex brain networks can emerge and evolve mirroring
biological complex systems. We have to understand what are
the more plausible and efficient learning mechanisms, which,
under physical/structural constraints, can allow the emergence
of topological properties of segregation and integration within
the brain, such as small-worldness, modularity, and rich-club
organization. Because representing connectivity as a graph
definitely enables the application of the same inference methods,
across modalities, scales and experimental paradigms, graph
theory provides a common language for better describing and
understanding non-linear representations within computational
network architectures. This is a yet unexplored area in
computational modeling. We do not know whether functional
dynamics within hierarchical generative models are topologically
organized according to the same principles as those of complex
brain networks. Finally, we expect that virtual “lesions” to
those computational models provide evidence concerning the
topology modulation, in accordance with neuropsychological
findings.

CONCLUSION

The human brain is a complex, dynamic-adaptive system
of networks, from which cognition emerges. This viewpoint
has led to a new era for neuroimaging, where graph theory
is an excellent framework for topologically describing the
mechanisms underlying cognition. We believe that time is ripe
for neuroimaging to converge into the common ground of
computational models, where hierarchical generative models
represent a promising starting point for explaining these
mechanisms in a probabilistic fashion.
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