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Peripheral insulin acts on the brain to regulate metabolic functions, in particular

decreasing food intake and body weight. This concept has been supported by studies

in humans relying on the intranasal route of administration, a method that permits the

direct permeation of insulin into the CNS without substantial absorption into the blood

stream. We investigated if intranasal insulin administration before nocturnal sleep, a

period of reduced metabolic activity and largely absent external stimulation, affects food

intake and energy turnover on the subsequent morning. Healthy participants who were

either young (16 men and 16 women; mean age ± SEM, 23.68 ± 0.40 years, mean

BMI ± SEM, 22.83 ± 0.33 kg/m2) or elderly (10 men, 9 women; 70.79 ± 0.81 years,

25.27± 0.60 kg/m2) were intranasally administered intranasal insulin (160 IU) or placebo

before a night of regular sleep that was polysomnographically recorded. Blood was

repeatedly sampled for the determination of circulating glucose, insulin, leptin and total

ghrelin. In the morning, energy expenditure was assessed via indirect calorimetry and

subjects were offered a large standardized breakfast buffet from which they could eat

ad libitum. Insulin compared to placebo reduced breakfast size by around 110 kcal

(1,054.43 ± 50.91 vs. 1,162.36 ± 64.69 kcal, p = 0.0095), in particular decreasing

carbohydrate intake (502.70 ± 25.97 vs. 589.82 ± 35.03 kcal, p = 0.0080). This effect

was not dependent on sex or age (all p > 0.11). Sleep architecture, blood glucose and

hormonal parameters as well as energy expenditure were not or only marginally affected.

Results show that intranasal insulin administered to healthy young and elderly humans

before sleep exerts a delayed inhibitory effect on energy intake that is not compensated

for by changes in energy expenditure. While the exact underlying mechanisms cannot be

derived from our data, findings indicate a long-lasting catabolic effect of central nervous

insulin delivery that extends across sleep andmight be of particular relevance for potential

therapeutic applications.
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INTRODUCTION

Eating behavior is tightly regulated by central nervous circuitries
that receive hormonal feedback on body fat stores and nutritional
status from the body periphery (Morton et al., 2014). In addition
to the adipocyte-derived hormone leptin, insulin is one of the
major peripheral signals that contribute to the central nervous
control of ingestive behavior. Both leptin and insulin circulate
in direct proportion to the size of body fat stores and reach
the CNS via active, saturable transport mechanisms across the
blood-brain barrier (Baura et al., 1993; Schwartz et al., 1996;
William and Banks, 2001). Studies in animals (Woods et al., 1979;
McGowan et al., 1992; Air et al., 2002) and humans (Benedict
et al., 2008; Hallschmid et al., 2012) have conclusively shown that
insulin administered directly to the brain reduces food intake,
independent of its peripheral glucoregulatory action. In humans,
the inhibitory effect of central nervous insulin on food intake
has been mainly investigated by means of the intranasal route of
peptide administration (Hallschmid et al., 2004a, 2012; Benedict
et al., 2008), a non-invasive method of substance delivery to
the brain that largely bypasses the blood-brain barrier (Born
et al., 2002; Dhuria et al., 2010). Intranasal administration
of 160 IU insulin to healthy, fasted young subjects reduced
calorie intake in male, but not female participants (Benedict
et al., 2008). Accordingly, intranasal insulin treatment (4 ×

40 IU/day) for 8 weeks resulted in loss of body weight and
body fat in men but not in women (Hallschmid et al., 2004a).
Still, young women who intranasally received 160 IU insulin
after a standardized lunch displayed an enhancement of post-
prandial satiety and a reduction in the intake of palatable snacks
(Hallschmid et al., 2012). Ample evidence for a distinct effect of
insulin on food intake-regulatory networks has also been found
in related neuroimaging studies (see Heni et al., 2015; Kullmann
et al., 2016 for reviews).

Sleep has turned out to be an important factor in the
maintenance of energy homeostasis and the regulation of food
intake (St-Onge et al., 2016). Habitually short sleep duration
is associated with increased body weight (Magee and Hale,
2012; Vgontzas et al., 2014) and a more pronounced risk
of impairments in glucose homeostasis (Gangwisch et al.,
2007; Cappuccio et al., 2010). Fittingly, individuals exposed
to acute sleep deprivation tend to consume more food on
the subsequent day (Brondel et al., 2010), to reduce their
physical activity (Schmid et al., 2009) and to display a
deterioration in glucoregulation (Schmid et al., 2011). It has
been proposed that increased energy expenditure due to sleep
loss is overcompensated by an exaggerated increase in energy
intake, resulting, on the long run, in a higher risk of obesity
and related metabolic impairments (Penev, 2012; Schmid et al.,
2015). We have previously shown that insulin applied to
the CNS before nocturnal sleep increases growth hormone
concentrations during early sleep and impacts memory function
on the subsequent day (Feld et al., 2016), indicating that
central nervous insulin signaling is relevant for sleep-associated
neuroendocrine regulation. In the present study, we investigated
the effect of intranasal insulin administered before sleep on eating
behavior on the subsequent morning. We assumed that the acute

enhancement of brain insulin signaling during sleep, i.e., a period
of reduced metabolic activity and largely absent external input,
exerts a delayed but discernible attenuating effect on breakfast
intake, i.e., calorie consumption immediately following the sleep
period. This hypothesis was tested in a group of healthy young
men and women, thereby enabling the detection of potential sex
differences. Considering reports that food-cue elicited changes in
brain activity in response to a meal decrease with advancing age
(Cheah et al., 2013), we moreover included a group of healthy
elderly participants in order to investigate if age is a relevant
modulatory factor in this context.

METHODS AND MATERIALS

Participants
Thirty-two healthy young subjects (16 men and 16 women, mean
age ± SEM, 23.68 ± 0.40 years) and 19 elderly participants
(10 men and 9 women, 70.79 ± 0.81 years) were recruited
from the community for this study. All young subjects were
normal-weight (BMI, 22.83 ± 0.33 kg/m2, p = 0.49 for men
vs. women) while the elderly participants were normal- or
mildly overweight (25.27 ± 0.60 kg/m2, p = 0.70 for men
vs. women; p < 0.001 for young vs. elderly participants). All
subjects were non-smokers. The women in the young group were
taking oral contraceptives (estrogen dominant, single-phase;
Valette, Jenapharm, Jena, Germany), but were otherwise free
of medication, as were the men. Clinical examination excluded
previous illness prior to inclusion in the study. In order to
restrict the burden of experimental participation for the elderly
subjects, some assessments (in particular energy expenditure and
continuous heart rate monitoring) were omitted and less blood
parameters were determined in this group. Written informed
consent was obtained from all subjects and the study conformed
to the Declaration of Helsinki and was approved by the local
ethics committee.

Study Design and Procedure
The experiments were conducted according to a placebo-
controlled, double-blind, within-subject crossover design. All
participants took part in two experimental sessions which were
identical except for the intranasal administration of insulin
(Actrapid R©, Novo Nordisk, Bagsværd, Denmark) or placebo
(vehicle). Sessions were performed in a balanced order, i.e., half
of the sample received first placebo and then the active agent,
with the reversed order for the other half of the sample. In
addition, participants spent an adaption night in the sleep lab
(i.e., including the placement of electrodes for polysomnographic
recordings), with at least a 24-h delay between adaptation and
the first experiment. Experimental sessions were scheduled to be
apart as close to 28 days as possible, ensuring that the young
womenwere tested during the same phase of contraceptive intake
in both sessions.

Subjects were instructed not to take naps and not to engage
in intense physical activities on experimental days. They were
told to abstain from caffeine and to follow their usual dinner
routines around 1800–1900 h. Participants arrived at the sleep lab
at 2000 h. Adherence to the instructions for the experimental day
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was confirmed and an intravenous catheter was placed in a vein of
the dominant arm. At 2120 h, participants underwent a memory
test battery (see Feld et al., 2016, for details and respective
results in the group of young subjects) before receiving intranasal
insulin or placebo via sixteen 0.1-ml puffs (8 per nostril) in 1-
min intervals, amounting to a total dose of 1.6 ml insulin (160
IU) or placebo at 2220 h. This dose was chosen in order to
enable comparisons with previous studies on the role of central
nervous insulin in the acute regulation of food intake (Benedict
et al., 2008; Hallschmid et al., 2012). Subjects went to bed at
2300 h for 8 h of polysomnographically recorded sleep, resulting
in an overnight fast of at least 12 h in all subjects. Subjects
were awakened at approximately 0700 h; care was taken not to
wake participants up from rapid eye movement (REM) sleep or
slow wave sleep. In the young subjects, heart rate was recorded
throughout the night and energy expenditure was assessed at
0710 h in the morning. At 0815 h, breakfast was offered to all
subjects. Throughout the session, blood was repeatedly sampled,
without disturbing the participants, from an adjacent room with
a thin plastic tube attached to the catheter for the determination
of relevant parameters. Venous patency was maintained with a
NaCl 0.9% drip.

Assessment of Breakfast Intake
Participants were offered a standardized test buffet of
approximately 4,550 kcal at 0815 h and were allowed to eat
ad-libitum and undisturbed for 30 min (see Table 1 for a list
of ingredients). All ingredients were weighed before and after
eating to calculate the net amount consumed. Participants were
allowed to take any leftovers with them in order to prevent them
from overconsumption. They were told that this breakfast was
scheduled to fill the gap between cognitive tests and provide them
with the possibility to follow their usual breakfast routine, so
that the experimental nature of this buffet remained undisclosed.
One male and three female participants of the young group
and one male and two female participants of the elderly group
abstained from eating breakfast and were excluded from food
intake analyses. All participants rated their hunger, thirst and
tiredness on visual analog scales (VAS) before breakfast.

Energy Expenditure
In the participants of the young group, energy expenditure was
measured at 0710 h via indirect calorimetry using a ventilated-
hood system (Deltatrac II, MBM-200 Metabolic Monitor; Datex-
Engström Deutschland, Achim, Germany). Before each use, the
device was calibrated with Quick Cale calibration gas to 5% CO2

and 95% O2. Due to technical failures, assessments were not
possible in two subjects.

Blood Parameters
Blood samples for the determination of blood glucose levels and
circulating concentrations of hormones were obtained before
intranasal insulin administration and repeatedly throughout the
night. Blood glucose was determined immediately after each
blood draw (HemoCue Glucose 201 Analyzer, HemoCue AB,
Ångelholm, Schweden). The remaining samples were centrifuged
and serum and plasma were frozen at −80◦C for later analyses.

TABLE 1 | Composition of the test breakfast buffet.

Food Weight Energy Carbohydrate Fat Protein

(g) (kcal) (g) (g) (g)

NEUTRAL

Whole milk 750 491 36 26.3 24.8

Buns 240 275 122.4 3.4 6.3

Whole wheat bread 165 360 71 2.3 12

White bread 30 72 14.6 0.4 2.2

Butter 120 928 0.7 99.8 0.8

SWEET

Orange juice 400 173 36 1 4

Strawberry milk 200 167 18.2 6.8 7.4

Apple 195 104 22.2 1.2 0.6

Orange 180 72 15 0.4 1.8

Banana 179 168 38.3 0.4 2

Pear 140 78 17.4 0.4 0.7

Fruit curd 125 140 19.3 3.3 7.7

Vanilla pudding 125 134 20.8 3.8 3.5

Tangerine 80 35 8.2 0 0.5

Strawberry jam 50 147 35.8 0.1 0.1

Hazelnut spread 40 218 21.6 12.8 2.8

Honey 40 123 30 0 0.1

Sugar 24 98 24 0 0

HEARTY

Sliced cheese 100 374 0.1 29.2 25.5

Poultry sausage 40 74 0.1 4.3 8.3

Cream cheese (herbs) 40 124 1 11.6 3.2

Cervelat sausage 34 120 0.1 10.2 6.1

Cream cheese 33 87 0.6 7.8 3

Total 3,330 4,562 553.4 225.5 123.4

All values are rounded to the closest decimal.

Insulin concentrations were determined in young and elderly
participants (Insulin ELISA Kit, Dako, Glostrup, Denmark). In
the young participants, plasma concentrations of total ghrelin
(RIA; Linco Research, St. Charles, MO; sensitivity 93 pg/ml,
intra-assay and inter-assay CV, 10 and 17.8%) and serum
concentrations of leptin (RIA; Linco Research, St. Charles, MO;
sensitivity, 0.5 ng/ml, intra-assay and inter-assay CV, 8.3% and
6.2%) were measured at time-points of relevance throughout the
night.

Polysomnography and Heart Rate
EEG was recorded continuously from electrodes (Ag-AgCl)
placed at C3 and C4 according to the 10-20 System and
referenced to two coupled electrodes attached at the mastoids.
EEG signals were filtered between 0.16 and 35 Hz and sampled
at a rate of 200 Hz using an EEG amplifier system (BrainAmp
DC, BrainProducts GmbH, Munich, Germany). Additionally,
eye movements and muscle tone were recorded by electrodes
placed diagonally above the left and below the right eye and
electrodes attached to the chin, respectively. Sleep EEG scoring
was carried out independently by two experienced technicians
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who were blind to the assigned treatment. Sleep architecture
was determined according to standard polysomnographic criteria
using EEG recordings from C3 and C4, diagonal EOG and chin
EMG (Rechtschaffen and Kales, 1968). For each night, total sleep
time, i.e., the time between the first detection of transition from
sleep stages 1 to 2 and lights on, was used to calculate relative
time spent in the different sleep stages, i.e., wake, REM sleep
and NonREM sleep stages 1–4. Heart rate was recorded by
electrocardiography (Actiheart, CamNtech, Boerne TX USA) in
the young subjects during sleep until shortly after awakening. In
the elderly subjects, it was monitored before and after sleep.

Statistical Analyses
R 3.3.1 (R Core Team, 2016) was used for statistical analyses. We
used lme4 (Bates et al., 2015) to build linear mixed-effects models
to compensate for missing blood values in some cases (less than
four per experiment). Main effects were tested for significance
using likelihood-ratio tests with Satterthwaite approximations to
degrees of freedom. For the indirect calorimetry data, we used
condition (placebo or insulin) and sex as fixed effects and random
intercepts for subjects. For breakfast consumption, we built an
initial model using condition, sex, age group (young, elderly),
macronutrient (carbohydrate, fat, protein) and interactions
between condition, sex and macronutrient, condition and sex,
condition and age and sex and macronutrient as fixed effects,
random slopes for macronutrient and random intercepts for
subjects. The inclusion of a random slope takes into account
individual food preferences of each subject, thus optimally
capturing between-subject differences. To evaluate intake by food
type (hearty, neutral, sweet), we replaced macronutrient with
food type in the previous model. For the VAS we built a model
with fixed effects for treatment, sex, age group and random
intercepts for subjects. We used lsmeans (Lenth, 2016) to run
post-hoc comparisons with multivariate t adjustment. Levene’s
test for homogeneity of variance was used to test for equality
of variances in our factors of interest, with only sex showing a
deviation (p< 0.01; p≥ 0.12 for age and treatment). For analyses
of blood parameters, the fixed factors sex, condition and time
were used and areas under the curve (AUC) according to the
trapezoidal rule were calculated. Results are presented as means
± SEM. A p < 0.05 was considered significant.

RESULTS

Breakfast Intake and Hunger Ratings
Intranasal insulin administration before sleep reduced breakfast
intake by 110 kcal or around 9% (Table 2 and Figure 1A

and Supplementary Figure 1). This hypophagic effect of insulin
primarily concerned carbohydrate intake, whereas consumption
of fat and protein was not affected [F(2, 170) = 3.23, p = 0.042
for treatment × macronutrient; Table 2]. The insulin effect was
modified neither by sex nor age (all p > 0.11 for interaction with
treatment; Figure 1B) and did not specifically affect individual
food types [hearty, neutral, sweet; F(2, 233) = 0.71, p = 0.49 for
treatment × food type]. Independent of insulin treatment, men
consumed more energy than women [1,276.23± 86.76 vs. 913.23
± 50.64 kcal, F(1, 43) = 17.34, p = 0.0001; Figures 1C–F], in T
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FIGURE 1 | Calorie intake. Mean (± SEM) calorie intake from the breakfast

buffet assessed in the morning after intranasal administration of placebo

(vehicle; blue bars) and insulin (160 IU; red bars) at 2220 h of the preceding

evening in (A) all subjects and (B) according to age groups. (C–F) Individual

calorie intake from the breakfast buffet in the placebo (left) and the insulin

condition (right) in respectively, the young and elderly men and women.

Individual values of both sessions are connected by lines. Note that omitting

the male subjects showing the largest insulin effect yielded p-values for the

factor condition of 0.015 and 0.079 in the groups of young and, respectively,

elderly subjects. n = 14 young and 9 elderly men, and 14 young and 7 elderly

women; *p < 0.05 for comparisons between conditions (least-square means

with multivariate t adjustment).

particular fat [501.01 ± 43.50 vs. 330.25 ± 29.72 kcal, t(54) =

4.33, p = 0.0008; p > 0.05 for carbohydrates and protein;
F(2, 54) = 4.13, p = 0.02 for sex × macronutrient]. Men also ate
more neutral-taste foods than women [248.74 ± 43.48 vs. 168.80
± 22.92 kcal, t(146) = 5.73, p < 0.0001; p > 0.84 for hearty
and sweet foods]. Calorie intake of young and elderly participants
was generally comparable [1,080.77± 65.85 vs. 1,156.91± 111.48
kcal, F(1, 44) = 0.64, p = 0.43; F(1, 55) = 0.69, p = 0.41 for sex ×
age; Figures 1C–F] and also did not differ regarding food types
[F(2, 231) = 0.53, p = 0.59]. Age and macronutrient showed a
significant interaction [F(2, 54) = 4.38, p = 0.02] that, however,

did not yield significant age-dependent effects on macronutrient
intake (all p > 0.17).

Overall, intranasal insulin did not alter hunger, thirst and
tiredness as rated before breakfast (all p > 0.50), and there was
no influence of sex on these values (all p > 0.33; Table 3). Elderly
participants reported significantly lower hunger than their young
counterparts [43.75 ± 3.81 vs. 67.56 ± 4.52%, t(122) = −4.64, p
= 0.0001], with no differences in thirst and tiredness (all p>0.19;
Table 3).

Energy Expenditure
Intranasal insulin administration before sleep did not affect
resting energy expenditure measured in the young subjects
before breakfast [1,637.96 ± 50.25 vs. 1,656.32 ± 50.87 kcal/day
for insulin and placebo, respectively, F(1, 29) = 0.971, p =

0.33; Figure 2] and also did not induce sex-dependent changes
[F(1, 28) = 0.07, p = 0.80]. Across conditions, women displayed
significantly lower energy expenditure than men [1,418.63 ±

41.56 vs. 1,847.05± 46.24 kcal/day, F(1, 28) = 49.27, p < 0.0001].

Blood Parameters
In the young participants, a transient peak in plasma insulin
concentration emerged 10 min after intranasal insulin
administration (111.19 ± 9.38 vs. 56.67 ± 4.79 pmol/L
after placebo; p ≤ 0.001) that was followed by a slight dip in
blood glucose values (4.38 ± 0.13 vs. 4.86 ± 0.06 mmol/L;
p ≤ 0.01). Neither of these changes was correlated with the
intranasal insulin-induced decrease in breakfast intake in the
subsequent morning (r=−0.15, p= 0.54, and r= 0.02, p= 0.95,
respectively, Pearson’s coefficients). During the rest of the night,
respective values were comparable between conditions [F(6, 156)
= 0.86, p = 0.65 for treatment × time; see Feld et al., 2016, for
detailed results], without any statistical difference to the elderly
group (p = 0.24 for age). Serum insulin as well as blood glucose
concentrations were not affected by insulin administration in the
elderly subjects (all p > 0.58). Across conditions, blood glucose
levels were lower in elderly than young [F(1, 105) = 14.49, p <

0.001 for age] and in female than male individuals [F(1, 25) =
10.14, p < 0.01 for sex].

Plasma concentrations of total ghrelin, measured only in
the group of young subjects, did not differ between conditions
[17,940.26± 830.37 vs. 17,903.28± 763.61 h× pg/ml for insulin
and placebo, respectively; F(1, 108) = 0.01, p = 0.95; F(1, 909) =

0.0042, p= 0.95 for time× treatment; Figures 3A,B]. They were
generally elevated in women compared to men [20,258.09 ±

915.24 vs. 15,429.69 ± 967.39 h×pg/ml, F(1, 29) = 16.31, p =

0.0004]. Serum leptin concentrations in the young participants
also remained unaffected by intranasal insulin [154.10± 23.25 vs.
156.47 ± 23.75 h × ng/ml, F(1, 31) = 0.04, p = 0.85; F(1, 406) =

0.18, p = 0.67 for time × treatment] and, as expected, were
markedly higher in women compared to men [259.78 ± 27.57
vs. 50.69 ± 6.30 h × ng/ml, F(1, 30) = 67.35, p < 0.0001,
Figures 3C,D].

Sleep and Heart Rate
Total sleep time for the young participants was 461.59± 3.37min
in the insulin and 460.70 ± 4.57 min in the placebo condition (p
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TABLE 3 | Visual analog scale ratings obtained before breakfast.

Overall Sex Age group

Insulin Placebo p Female Male p Elderly Young p

Hungry 58.96 ± 3.55 60.10 ± 3.63 1 55.84 ± 5.78 62.86 ± 4.26 0.4382 43.75 ± 3.81 67.56 ± 4.52 0.0001

Thirsty 63.00 ± 2.94 61.33 ± 3.25 0.9311 59.31 ± 4.77 64.72 ± 3.96 0.7564 54.69 ± 3.78 65.95 ± 4.17 0.1974

Tired 32.93 ± 3.17 36.98 ± 3.40 0.9837 41.14 ± 4.71 29.60 ± 4.37 0.3319 31.29 ± 4.61 36.83 ± 4.40 0.9398

Results are means ± SEM %. p values are derived from least-square means contrasts with multivariate t adjustment.

FIGURE 2 | Energy expenditure. Mean ± SEM energy expenditure

measured in the young participants via indirect calorimetry in the morning after

intranasal administration of placebo (vehicle; blue bars) and insulin (160 IU; red

bars) at 2220 h of the preceding evening. Calorimetry was performed in the

fasted state at 0710 h before breakfast. *p < 0.05 for comparisons between

sexes.

> 0.84). Elderly participants spent comparable amounts of time
asleep (456.57 ± 11.12 vs. 458.39 ± 5.68 min, p > 0.89; p > 0.57
for group effect). Intranasal insulin compared to placebo did not
alter sleep latency, whole-night sleep architecture and total sleep
time (all p > 0.29). Heart rate measured in the young subjects
throughout the night was unchanged by insulin [58.77 ± 1.59
vs. 58.98 ± 1.48 bpm, F(1, 29,006) = 0.08, p = 0.77; Figure 4].
Independent of treatment, it showed a trend toward increased
values in women compared to men [61.19 ± 1.96 vs. 56.63 ±

2.10 bpm; F(1, 30) = 3.72, p = 0.063]. Heart rate measured in
the elderly subjects before and after sleep was not modulated by
intranasal insulin (all p ≥ 0.18).

DISCUSSION

We investigated whether a single dose of intranasal insulin
administered to healthy young and elderly subjects before
nocturnal sleep attenuates calorie intake from a large,
standardized ad-libitum breakfast buffet on the subsequent
day. We found that pre-sleep insulin treatment reduced
breakfast consumption by around 110 kcal, which is roughly

equivalent to a large banana or half a chocolate-caramel bar.
This effect emerged against the background of unaltered energy
expenditure. Although the number of participants, in particular
of elderly subjects, may limit respective conclusions, we did not
find indicators that the insulin effect was modified by sex or age.
It was neither associated with unwanted side effects on sleep.
Our results demonstrate that insulin delivered to the brain via
the intranasal route exerts a long-lasting, behaviorally relevant
effect on eating behavior. While the exact mediators behind such
a delayed hypophagic action of enhanced brain insulin signaling
cannot be derived from our data, this finding underlines the
efficacy of intranasal insulin in curbing food intake in humans.

We have previously shown that intranasal insulin
administered to young male subjects in the fasted state
(Benedict et al., 2008) acutely decreases food intake, and reduces
the intake of palatable snacks in young female subjects after
lunch (Hallschmid et al., 2012). The latter effect concerned
post-prandial snacking in the afternoon and likely resulted from
effects on reward-processing pathways, which may be assumed
to have also played a role in the present experiments, although
our study design clearly does not allow for a differentiation
between reward- and hunger-related aspects of eating. In the
former experiment (Benedict et al., 2008), the hypophagic insulin
effect in the young men was observed in the late morning and
around 80 min after intranasal delivery of 160 IU insulin, i.e.,
the same dose as applied in the present experiments. It was
found during ad-libitum intake from a breakfast buffet that
was comparable in composition and size to the buffet offered
in the present study. Insulin administration in the morning
led to a macronutrient-unspecific reduction in calorie intake
of around 190 kcal in young men, which exceeded the drop
in food intake of 110 kcal found in the young male subjects
of the present experiments. Both effects developed against the
background of well-comparable overall calorie intake (1,350 vs.
1,330 kcal in the respective placebo conditions of the former
and, for the young men, the present study). In the former study
(Benedict et al., 2008), young female participants did not show
an insulin-induced reduction in food intake whereas pre-sleep
insulin delivery reduced breakfast size in the young women of
the present experiments. There are some indicators that central
nervous insulin, with regard to food intake, may be less efficient
in female compared to male organisms (Clegg et al., 2003, 2006).
However, the women of our previous study (Benedict et al.,
2008) ate around 130 kcal less than their female counterparts
of the present experiments (769 vs. 895 kcal in the respective
placebo conditions), so that a biasing contribution of bottom
effects cannot be excluded.
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FIGURE 3 | Blood parameters. Mean ± SEM concentrations of (A,B) plasma total ghrelin and (C,D) serum leptin measured in young male (n = 16; left panels) and

female participants (n = 16; right panels) who were intranasally administered insulin (160 IU; red lines) or placebo (blue lines) at 2220 h (dotted line). Note that leptin

concentrations were determined only until 0440 h in the morning.

Basal energy expenditure assessed in the young subgroup
before breakfast was comparable between conditions, indicating
that the reduction in breakfast intake was not a compensatory
effect, but yielded a net decrease in energy intake. This
effect was primarily caused by a drop in the consumption of
carbohydrates. This finding ties in with experiments in rats
indicating that insulin administration to the CNS reduces sugar
intake (Figlewicz et al., 2008) and suggests that, in accordance
with the major role of peripheral insulin for blood glucose
regulation, the anorexigenic effect of the hormone on the brain
might focus on carbohydrates. However, the relative paucity
of available data in humans (Benedict et al., 2008; Hallschmid
et al., 2012; Jauch-Chara et al., 2012) and animals (Woods et al.,
1979; McGowan et al., 1992; Air et al., 2002; Clegg et al., 2003,
2006) at the moment does not permit sound conclusions on
macronutrient-specific effects of brain insulin on eating behavior
(for review see Kullmann et al., 2016; Lee et al., 2016). Animal
research has indicated that the adiposity signals insulin and leptin
can directly act on the brain reward circuitry to decrease the
intake of particularly palatable foods (Figlewicz et al., 2007).
Although at a first glance, the insulin-induced reduction in

carbohydrate intake would fit with the assumption that intranasal
insulin specifically reduces the intake of highly rewarding foods
(Hallschmid et al., 2012), sweet items as a food category were
not differentially affected here. Considering that hunger ratings
were comparable between conditions, it may be concluded that
intranasal insulin did not affect hunger motivation, but rather
acted via satiating factors that contribute to the termination of
a meal. We did not find discernible treatment-induced changes
in ghrelin and leptin, two hormones of paramount relevance
for food intake control (Morton et al., 2014). A mild insulin-
induced decrease in plasma glucose concentration apparently
was restricted to the young participants although our study
was not designed to detect respective differences between age
groups. This dip in blood glucose, which was presumably due
to absorption of insulin into the blood stream via the nasal
mucosa (Ott et al., 2015), was statistically unrelated to the insulin-
induced reduction in breakfast intake. It can be safely excluded
to have affected breakfast intake because of its transient nature,
and because nocturnal decreases in blood glucose levels rather
increase than attenuate food intake in themorning (Schmid et al.,
2008).
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FIGURE 4 | Heart rate during the sleep period. Mean ± SEM heart rate

averaged across 30-min blocks from minute-to-minute recordings. No signs of

coherent treatment effects were detected (see Results).

The inhibitory impact on ad-libitum food intake exerted by
intranasal insulin emerged across 10 h, which is a surprisingly
long period of time when compared to respective effects in
related studies (Benedict et al., 2008; Hallschmid et al., 2012;
Jauch-Chara et al., 2012). Considering that degradation of the
insulin molecule in the central nervous compartment can be
assumed to be relatively delayed in comparison to its half-
life in the circulation of 4–6 min (Duckworth et al., 1998),
the enhanced brain insulin signal may in principle be still
functionally active after a prolonged period of time. This
assumption is supported by the finding that shifts in direct
current EEG potentials triggered by intranasal insulin do not
yet reach their maximum after around 90 min of recording
(Hallschmid et al., 2004b). Alternatively, an indirect mediation of
the observed effect might be assumed, but cannot be derived from
our data inasmuch as endocrine signals like ghrelin and leptin,
but also indicators of sympathovagal balance were unchanged
and our study does not warrant a strict differentiation between
central and peripheral mediators. Intranasal insulin exerted its
anorexigenic effect across an interval of nocturnal sleep which,
in itself, has turned out to be a relevant modulator of food
intake (Schmid et al., 2015). Total sleep deprivation for one
night leads to activity changes in brain functions that favor food
intake (Greer et al., 2013), and partial sleep deprivation of 4 h
for one night strongly increases breakfast intake in healthy men
(Brondel et al., 2010). Since we did not observe differences in
total sleep time nor in sleep architecture between conditions,
insulin presumably did not exert major effects on sleep. However,
sleep might have prolonged the insulin effect by reducing
interfering effects of external stimuli, or increases in hunger
typically developing in awake subjects across extended periods of
time.

The relative reduction in pre-breakfast hunger ratings in the
elderly, as compared to young participants, might be related
to decreasing responses to food cues (Cheah et al., 2013) and
impaired dynamics of satiety-regulating factors (Rolls et al., 1995)
that emerge during aging, but was not reflected in differences
in actual food intake. Young and elderly participants were
also equally responsive to the anorexigenic effect of insulin.

However, probably because of the relatively small number of
elderly participants the effect appeared to be less robust in
this group so that further studies should substantiate this
finding. While decreases in central nervous insulin sensitivity
have been linked to cognitive deficits and Alzheimer’s disease,
pathologies associated with advanced age (Freiherr et al., 2013),
our results suggest that, at least in healthy individuals, age does
not independently affect the role of insulin in central nervous
networks that control food intake. Likewise, insulin sensitivity
in the body periphery is not independently affected by biological
age as long there is no increase in fat mass (Karakelides et al.,
2010). Thus, the good health status of our elderly participants,
as verified by clinical examination and evidenced by their
merely moderately elevated body weight in comparison to our
young subjects, might have ensured sufficient potency of the
insulin signal. Vice versa, indicators of high cerebral insulin
sensitivity have been found to be associated with successful
loss of body fat during lifestyle intervention (Tschritter et al.,
2012).

CONCLUSION

In sum, we demonstrate that intranasal insulin administration
before nocturnal sleep elicits a reduction in breakfast intake in
healthy subjects that is not compensated for by changes in energy
expenditure. These findings suggest that insulin administered to
the brain before sleep may potentiate the satiating effect of food
intake in the next morning. The effect observed here was of
moderate impact, and potential compensatory changes in eating
behavior throughout the rest of the day were not investigated.
In previous studies, four daily doses of intranasal insulin, one of
them administered before going to bed, induced a reduction in
body weight and fat in healthy participants (Hallschmid et al.,
2004a), suggesting that on the long run the anorexigenic effect
of (pre-sleep) intranasal insulin administration can affect body
weight regulation. Thus, central nervous insulin administration
regimens focusing on the sleep period may exert beneficial
effects on metabolic health and might even help prevent or treat
the brain insulin resistance associated with metabolic disorders
(Kullmann et al., 2016).
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