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Motor imagery (MI) activates the sensorimotor system independent of actual movements

and might be facilitated by neurofeedback. Knowledge on the interaction between

feedback modality and the involved frequency bands during MI-related brain

self-regulation is still scarce. Previous studies compared the cortical activity during the MI

task with concurrent feedback (MI with feedback condition) to cortical activity during the

relaxation task where no feedback was provided (relaxation without feedback condition).

The observed differences might, therefore, be related to either the task or the feedback. A

proper comparison would necessitate studying a relaxation condition with feedback and

a MI task condition without feedback as well. Right-handed healthy subjects performed

two tasks, i.e., MI and relaxation, in alternating order. Each of the tasks (MI vs. relaxation)

was studied with and without feedback. The respective event-driven oscillatory activity,

i.e., sensorimotor desynchronization (during MI) or synchronization (during relaxation),

was rewarded with contingent feedback. Importantly, feedback onset was delayed to

study the task-related cortical activity in the absence of feedback provision during the

delay period. The reward modality was alternated every 15 trials between proprioceptive

and visual feedback. Proprioceptive input was superior to visual input to increase the

range of task-related spectral perturbations in the α- and β-band, and was necessary to

consistently achieve MI-related sensorimotor desynchronization (ERD) significantly below

baseline. These effects occurred in task periods without feedback as well. The increased

accuracy and duration of learned brain self-regulation achieved in the proprioceptive

condition was specific to the β-band. MI-related operant learning of brain self-regulation

is facilitated by proprioceptive feedback and mediated in the sensorimotor β-band.

Keywords: operant conditioning, reinforcement learning, brain-robot interface, brain-machine interface, brain-

computer interface, beta rhythms, neurorehabilitation, stroke
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INTRODUCTION

When motor learning via physical practice (Doyon and Benali,
2005; Halsband and Lange, 2006; Malouin et al., 2013) is
compromised due to motor deficits following stroke, motor
imagery (MI) may provide an alternative training modality
(Halsband and Lange, 2006; Boe et al., 2014). MI leads
to improved cortical facilitation and reduced intracortical
inhibition, even though the respective amplitudes achieved by
MI may be reduced in comparison to motor execution (Clark
et al., 2004; Léonard and Tremblay, 2007; Kumru et al., 2008).
MI activates the sensorimotor system independent of actual
movements (Gao et al., 2011; Szameitat et al., 2012) and
may be facilitated by neurofeedback contingent to the event
related changes in the oscillatory activities i.e., ERD/ERS (Bauer
and Gharabaghi, 2015a; Pichiorri et al., 2015; Vukelic and
Gharabaghi, 2015a). Such a feedback may be provided via visual
or proprioceptive input (Bai et al., 2014; Boe et al., 2014; Vukelic
et al., 2014; Bauer et al., 2015; Vukelic and Gharabaghi, 2015a).

Physiological knowledge of the impact of feedback modality
on operant learning of the MI task, i.e., brain self-regulation is,
however, still scarce. A detailed exploration would necessitate a
refined study design for disentangling the contribution of the task
condition and the feedback modality, separately: Previous studies
compared the cortical activity during theMI task with concurrent
feedback (MI with feedback condition) to cortical activity during
the relaxation task where no feedback was provided (relaxation
without feedback condition). The observed differences might,
therefore, be related to either the task or the feedback. A proper
comparison would necessitate studying a relaxation condition
with feedback and a MI task condition without feedback as well.

Moreover, particularly proprioceptive input, e.g., by passive
movement, is known to modulate the ongoing cortical activity in
itself in a similar way to MI, but independently of any volitional
brain modulation (Salenius et al., 1997; Pfurtscheller et al.,
2002; Muller-Putz et al., 2007; Reynolds et al., 2015). However,
previous studies (Gomez-Rodriguez et al., 2011) explored the
effect of proprioceptive input on brain oscillations during the
feedback period, which potentially clouds the MI-related cortical
activity by the additional input of the feedback modality. Thus,
knowledge on task-related cortical activity independent of the
feedback period, i.e., during MI without feedback, is necessary.

We therefore compared visual and proprioceptive feedback
during either sensorimotor MI-related desynchronization or
relaxation-related synchronization. Furthermore, we applied a
delayed feedback onset paradigm to study the cortical activity
over the sensorimotor cortex in the absence/presence of feedback
provision.

METHODS

Ethics Statement
The study conformed to principles outlined in the Declaration of
Helsinki and was approved by the local human ethics committee
of the University of Adelaide. All participants gave their written
informed consent to participate in the study and all recorded data
were de-identified.

Participants
In this study, 10 able-bodied participants (four females, sixmales)
aged 24–40 years were recruited. Participants were asked to
remain alert, immobile, and to concentrate during the trials.
The different types of MI, i.e., visual and kinesthetic MI, were
explained to the participants and it was explicitly stated that
the participants were expected to perform kinesthetic MI only.
Participants were asked to minimize head and facial movements,
swallowing, and blinking during the signal recording. They were
given break periods to relaxation or move between consecutive
runs when necessary.

Brain-Interface System
For data acquisition, a 72-channel Refa TMSi EXG amplifier,
containing 64 unipolar and 8 bipolar channels and a 64-
channel Waveguard EEG cap were used. The EEG data were
recorded from 8 channels (F3, F4, T7, C3, Cz, C4, T8, and
Pz) positioned according to the international 10–20 system of
electrode placement. The AFz channel was used as the ground
channel based on the recommendation of the manufacturer. The
impedance between electrodes and the scalp was kept below 50
k� and this is sufficient due to the amplifier input impedance
in the order of tera-Ohms (Volosyak et al., 2010). The amplifier
does not require a reference channel as it uses built-in common
average referencing of the recorded channels. It also disregards
any electrodes with very high impedance (more than 256 k�)
and excludes them from the common average reference. The
signals were digitized at 1024 Hz and were then passed through
a 50 Hz notch filter (3rd order Chebyshev) followed by a band
pass filter (1st order Butterworth) with corner frequencies set
to 0.1 and 49 Hz. Note that the built-in bandpass filter within
the BCI2000 software is a first-order Butterworth filter that has
a slower roll-off compared to a Chebyshev filter or an elliptic
filter. Accordingly, the band pass filter with cut-off frequencies
at 0.1 and 49 Hz did not filter out the 50 Hz power line noise
completely. Therefore, a 50 Hz notch filter (3rd order Chebyshev)
was applied as well to further suppress the power line noise.

Two orthoses (one for each hand) were designed to
passively flex four fingers incrementally following the MI of the
target hand. Each orthosis comprised a mechanical structure
made of PVC and a Blue Bird BMS-630 servomotor. The
control commands for servomotors were generated through the
customized software and then translated to the servomotors of
each orthosis using a Micro Maestro servo controller module.

The adopted software was a customized version of the
BCI2000 Cursor Task (Schalk et al., 2004). The source code
was modified to provide auditory commands. The application
module of the software was also modified to update the position
of the servomotors. The Micro Maestro servo controller received
an updated command simultaneously with every cursor update
on the monitor.

Experimental Design
To calculate event-related desynchronization (ERD)
(Pfurtscheller and Lopes da Silva, 1999), the spectral power
during MI performance is typically compared to the spectral
power of a relaxation period before MI. However, since the
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relaxation period before MI occurs after a preceding MI trial,
it may be affected by MI “after-effects,” such as slowly damping
β-synchronization (Pfurtscheller, 2001; Pfurtscheller et al., 2005).
Moreover, in classical setups for neurofeedback training, MI
periods are paralleled by feedback while relaxation periods
are usually not. The impact of the concurrent feedback may
potentially cause cortical activities unrelated to MI. To overcome
these limitations, we chose a specific paradigm in the present
study characterized by the following features: (i) Disentangling
MI and relaxation phases into two different tasks and providing
both of them with feedback. (ii) Performing each of these tasks
with a delayed feedback onset design to study the cortical activity
in the absence/presence of feedback provision. (iii) Comparing
different feedback modalities (proprioceptive vs. visual).

The delayed feedback onset design divides each task in a
phase before feedback provision and a phase after feedback
provision; these phases are referred to as without and with
feedback, respectively, for the sake of simplicity, even though
the former phase (“without”) is followed by the feedback phase
(“with”). Importantly, the task phase before feedback onset
(“without”) will allow capturing fast operant learning of brain
self-regulation of intrinsic sensorimotor oscillations without
concurrent extrinsic interferences.

The proprioceptive feedback modality was indeed a
combination of visual and proprioceptive feedback as
participants were instructed to observe the finger movement.
Thus, visual feedback was provided in both paradigms, and
thereby, any difference in performance between different setups
is most likely related to provision of proprioceptive feedback.
Therefore, for the sake of simplicity, the setup that provided
combined proprioceptve and visual feedback is regarded as the
“proprioceptive condition,” while the other setup that provided
visual feedback only is referred to as the “visual condition.”
Furthermore, a potential bias regarding action observation
cannot be excluded when providing feedback during the
relaxation task.

Every participant attended two sessions: one screening
session and one online feedback session. During the screening
sessions the optimum features of the EEG that resulted in the
highest discrimination between MI and relaxation trials of each
participant were defined. Then the defined optimum features of
each participant’s MI were used in the subsequent neurofeedback
session. Eight out of 10 participants (four females, four males)
who had EEG signals with distinctive features during hand
MI passed the screening test (see below) and attended the
neurofeedback training session.

Screening Session
In the screening session, the subjects were asked to perform
three runs of motor imagery, i.e., hand flexion of all four
fingers, with 20 trials per run (Figure 2). Each trial started with
an auditory command of “left” or “right” in parallel with a
matching visual stimulus on a screen in front of the participant
provided as an arrow pointing to the left or right. Each run
included 10 trials of right and left motor imagery, respectively,
in a randomized order without feedback provision; each trial
lasted for 3 s and was followed by 3 s of relaxation. During

relaxation trials participants had to stop MI and concentrate on
their breathing. For further details on the time course of the
screening session refer toDarvishi et al. (2015). The instruction to
concentrate on breathing was given to ensure that (i) participants
switch between MI and relaxation at the right time, and (ii) to
provide participants with a tangible example ofmental relaxation.

Previous studies (Pfurtscheller et al., 1997) demonstrated that
performance of handMI leads to a decrease in the spectral power
of sensorimotor rhythms, i.e., event related desynchronization
(ERD), followed by an increase in their spectral power, i.e.,
event related synchronization (ERS). In most participants these
phenomena occur in the contralateral sensorimotor area within
the α (8–13 Hz) and β (18–26 Hz) frequency bands. Thus, MI of
the right or left hand is expected to lead to ERD followed by ERS
in channels C3 or C4, respectively. However, some participants
exhibited concurrent ERD over both contralateral and ipsilateral
hemispheres during MI (Pfurtscheller et al., 1997).

Therefore, we searched for the occurrence of either unilateral
or bilateral ERD during the (MI) trials of the screening session.
The spectral power in each 2-Hz-wide frequency bin within α

and β-frequency bands of the imagery and relaxation trials were
compared to determine the combination of tasks that maximized
the coefficient of determination (r2, representing the proportion
of the single-trial variance in power that is due to the task).
Right vs. left hand MI often causes the highest discrimination
in sensorimotor rhythms. However, we only considered right vs.
relaxation and left vs. relaxation in this study to minimize the
cognitive load and fatigue. Thereby, we compared the r2-value
between right/relax and left/relax combinations and selected
the combination that maximized the r2-value. Thus, channel
selection was made based on the pattern of ERD occurrence
(contralateral or bilateral) and task selection, i.e., right vs.
relax or left vs. relax, with the aim of a maximum r2-value.
According to the mentioned guidelines, the optimum channel
(s), i.e., C3 and/or C4, and the center of the optimum frequency
bins selected for the neurofeedback sessions were operator
independent.

After analyzing the screening session data, two participants
revealed r2 < 0.05 and were, therefore, excluded from the
study. Among those eight participants who demonstrated r2-
values larger than 0.05, six participants (P1–P4, P7, P8) exhibited
contralateral ERD, while two participants (P5, P6) revealed
simultaneous ERD over both C3 and C4 channels (Table 1). For
these two subjects with bilateral ERD, we provided the same
weights to these features by averaging both ipsi- and contralateral
ERDs.

Neurofeedback Training Session
The eight participants who passed the screening criteria were
invited to return for an online feedback session within 2
weeks of their screening session. During the training session,
four runs of MI of right/left hand four-finger flexion were
performed. Those participants, who were willing to continue
after four runs, participated in additional four runs (Table 1).
Feedback modality (proprioceptive or visual) was interleaved
over consecutive runs and there was a 2-min break between runs.
Each run included 15 trials with 8 or 7 MI and 7 or 8 relaxation
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TABLE 1 | Results of the screening session indicating the optimum side of

imagined hand movement, channels and frequency bands for each

participant, and number of runs performed in the following training

session.

Participants Side of imagined

hand movement

Channels Frequencies (Hz) Number

of runs

P1 Left vs. Relax C4 18 4

P2 Right vs. Relax C3 13 4

P3 Right vs. Relax C3 15 4

P4 Right vs. Relax C3 17 8

P5 Right vs. Relax C3, C4 15, 15 8

P6 Right vs. Relax C3, C4 12, 18 4

P7 Left vs. Relax C4 15 8

P8 Right vs. Relax C3 15 8

trials, respectively, which were sequenced randomly. Figure 1
illustrates the neurofeedback training time course.

In runs with visual feedback, at the start of each trial a red
rectangle was displayed as a target at either the upper or lower
half of the right side of the monitor, simultaneously with auditory
commands indicating “relaxation” or “right” (“left” for P1 and
P7), respectively. After 2 s, a cursor was shown on the middle of
the left side of the monitor to indicate the start of the feedback
period. The cursor was thenmoved horizontally from left to right
with a constant speed within the next 2.5 s. Every 24 ms (105
times in 2.5 s), the vertical position of the cursor was updated
depending on the classification result. The cursor went up and
down during ERS and ERD, respectively. After reaching the right
side of the screen, either with a hit or miss of the target, the next
trial started after a 4 s inter-trial interval. For further details on
cursor position updates we refer to Schalk and Mellinger (2010).

In runs with proprioceptive feedback, however, participants
sat in an armchair with their target hand placed on the
orthosis (e.g., right hand on right orthosis) and their non-
target hand placed on the armrest. For imagery trials (“right”
or “left”), participants received proprioceptive feedback through
congruent passive flexion of their target hand by the orthosis. For
“relaxation” trials, participants received feedback by observing
the flexion of the non-target orthosis with no hand engagement.
This feedback design was intentionally chosen to overcome
inherent limitations of providing real proprioceptive feedback
for relaxation (see the discussion section for further details). In
short, the setup with proprioceptive feedback studied here was
intended for stroke rehabilitation and thus had to avoid feedback
that might be counter-intuitiive. For simplicity, this condition
will, however, be referred to as the proprioceptive condition
as well in contrast to the visual condition where feedback for
“relaxation” was provided by the position of a cursor only. The
auditory command, i.e., “relaxation” or “right”/”left,” initiated the
trial. After 2 s, the feedback period was commenced by instantly
returning the orthosis to the fully extended start position. Every
24 ms, the orthosis flexed, if ERD was detected (see section
Signal Processing), with up to 105 incremental flexions per 2.5 s
feedback period. At the end of each feedback period, a “beep”
signaled an inter-trial break and the next trial started after 4 s.

Figure 2 illustrates the time course of a MI trial for right hand
finger flexion with proprioceptive feedback.

Signal Processing
For online signal processing during the training session, a
large Laplacian (LLP) spatial filter was used to derive surrogate
channels C3-LLP and C4-LLP. The maximum entropy method
(Marple, 1987) (MEM)was employed to define the autoregressive
(AR) model of the EEG data. Using an 20th order AR model, the
spectral power of the most recent 500 ms was estimated at the
subject-specific frequencies and electrode positions determined
from the screening session. To minimize the occurrence of
false positives in the classifier, the following normalization
procedure was adopted: (i) the spectral power of the most
recent 18 s period of imagery and relaxation trials (equally
represented) were buffered and continuously updated; (ii) the
average and standard deviation of the buffer contents were
calculated; (iii) every calculated spectral power component using
the AR model was normalized by subtraction of the buffer’s
average followed by division of the buffer’s standard deviation;
(iv) if the normalized spectral power was negative, it was classified
as ERD, whereas positive values were considered as relaxation.
Normalized classifier outputs were used to update either the
vertical velocity of the cursor on the monitor (visual feedback) or
the flexion angle of the orthosis (proprioceptive feedback) every
24 ms. The chosen value for feedback update rate (i.e., every 24
ms) was adopted on the basis of a previous study of our group
(Darvishi et al., 2013).

Performance Measures
We employed the following indices to compare the effect of
visual and proprioceptive feedback on MI performance with
and without feedback: (i) the spectral power in α and β-bands
during MI/relaxation tasks; (ii) accuracy, i.e., the percentage of
trials in which the feedback conformed to the MI task, i.e.,
equivalent to the classical target hit rate in the cursor position
update paradigm, (iii) ERD duration in imagery trials, i.e., the
average percentage of times in each trial that the classifier output
conformed to the MI task and moved either the orthosis (with
proprioceptive condition) or the cursor in the expected direction
(with visual condition). The second and third measures were
also computed for the subject specific frequencies (Table 2) in
addition to the α and β-bands (Figures 3–5).

To calculate the first measure, offline spectral analysis of the
EEG signals was performed with EEGLAB (Delorme andMakeig,
2004) and custom made Matlab scripts. Here, EEG signals
were spatially filtered to derive C3-LLP and C4-LLP surrogate
channels as in the online processing. For the two participants
with the left hand as the target hand, C3-LLP and C4-LLP were
swapped resulting in group-wide “contralateral” and “ipsilateral”
channels. Channel data were bandpass filtered between 3 and
47 Hz and resampled at 128 Hz. Channel data were segmented
into epochs from −2 to 4 s after the auditory command and
each trial had its average baseline value subtracted. Outlier
trials were rejected using EEGLAB based on signal amplitude,
variance, probability, and spectral power according to previous
recommendations (Daly et al., 2012). This included signals with
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FIGURE 1 | Time course of the neurofeedback training sessions. Each session comprised at least four runs (eight runs for P4, P5, P7, and P8) with a 2 min

break between runs. Each run included 15 trials with relaxation and imagery trial performed in a randomized order. The feedback modality was interleaved between

visual and proprioceptive across consecutive runs. Each trial started with a 2 s interval of imagery/relaxation without feedback followed by a 2.5 s section during which

real time visual or proprioceptive feedback was provided. Following a 4 s inter-trial interval the next trial started.

FIGURE 2 | Time course of a MI trial for right hand finger flexion with BRI. Each imagery trial starts with a 2 s period of right hand finger flexion imagery without

feedback provision. Then at t = 2 s, contingent proprioceptive feedback is provided through stepwise flexion of the orthosis. The feedback section lasts for 2.5 s and

at t = 4.5 s the trial ends and after a 4 s interatrial interval the next trial starts.

TABLE 2 | Comparison of subject-specific accuracy and ERD duration with and without visual/proprioceptive feedback.

Studied conditions Accuracy ERD duration

Visual (%) Proprioceptive (%) p-value Visual (%) Proprioceptive (%) p-value

With feedback 75 83 0.0011 65 75 < 0.0001

Without feedback 60 75 0.0027 63 76 0.0028

amplitudes larger than ±50 µV as they most probably represent
either biological (such as muscle artifacts) or environmental
noise. In total, 4.1% of trials were rejected. For each retained

trial, the spectral band power was integrated over two frequency
bands: α (8–13 Hz) and β (16–26 Hz). The spectral power
for MI without feedback was calculated for 1 s in the delay
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FIGURE 3 | Spectral analysis of imagery and relaxation with feedback. Section (A) illustrates the log-transformed (10log10) spectral power of imagery and

relaxation trials during visual or proprioceptive feedback for eight participants. The solid lines represent mean spectral power for each task and their circumscribing

shaded area indicates the standard deviation. Section (B) presents the results of repeated measures 2-way ANOVA that analyses the task (levels: relaxation and MI)

and feedback modality (levels: visual and proprioceptive) effects on the log-transformed and z-cored spectral power in α and β bands for eight participants. The

horizontal line in each boxplot, represents the mean value and the lower and upper whiskers depict the minimum and maximum values for each condition, respectively

(sample size: 8; *p < 0.05; ***p < 0.001; prop: proprioceptive).

period, i.e., in the interval from +1 to +2 s after the auditory
command. Accordingly, the spectral power of MI with feedback
was estimated for 1 s as well, i.e., from +3 to +4 s after the
auditory command.

To re-calculate accuracy a 10-fold cross-validated linear
discriminant analysis was used to classify trials as “relaxation”
or “imagery.” Predictors included spectral power in contralateral,
central and ipsilateral channels. Classification was performed
separately for α and β power, and for visual and proprioceptive
feedback. Time windows for the “without” and “with” feedback
conditions were defined as 1–2 and 3–4 s, respectively.

To re-calculate ERD duration in α and β-bands with and
without feedback, the same time windows as for the accuracy
(see above) were used. To simulate the real time situation, the
spectral power of a 500 ms target window (shifting 24 ms at
each step across the 1-s time window) was calculated until
the whole time window was swept. This methodology provided
a collection of 42 (≈1,000/24) spectral power data for each
condition (relaxation/imagery). Then, using the z-score of all
spectral data (both relaxation and imagery trials), the spectral
data were normalized and only negative values (indicating ERD)

were counted. The resultants were divided by 42 and multiplied
by 100 to determine offline ERD duration percentage for (MI)
trials.

Statistical Analysis
GraphPad Prism version 6.05 was used for statistical analysis.
For the accuracy and ERD duration with and without feedback,
an unpaired Wilcoxon rank-sum test was applied for statistical
analysis. Due to application of multiple comparisons, Bonferroni
correction was adopted.

Prior to statistical analysis, the spectral power in α and β-
bands was normalized using a z-score transformation, resulting
in intra-individual zero-mean and unit-variance spectral data.
The normalized spectral data were subjected to a repeated-
measures 2-way ANOVA with factors Task (levels “relaxation”
and “imagery”) and Feedback Modality (levels “proprioceptive”
and “visual”) and two-sided t-tests (Holm-Sidak’s multiple
comparison tests) for post-hoc comparisons. The statistical
analysis of spectral data was performed separately for with and
without feedback conditions.
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FIGURE 4 | Spectral analysis of imagery and relaxation without feedback. (A) Illustrates the log-transformed (10log10) spectral power of imagery/relaxation

trials without feedback (i.e., during the delay period before visual or proprioceptive feedback onset). The solid lines represent mean spectral power for each task and

their circumscribing shaded area indicate the standard deviation. (B) Illustrates the results of repeated measures 2-way ANOVA that analyses the task (levels:

relaxation and MI) and the modality effects before feedback (levels: visual and proprioceptive) onset on the log-transformed and z-cored spectral power in α and β

bands for eight participants. The horizontal line in each boxplot, represents the mean value and the lower and upper whiskers depict the minimum and maximum

values for each condition, respectively (sample size: 8; *p < 0.05; **p < 0.01; prop: proprioceptive).

The data must satisfy a number of assumptions to allow
the application of ANOVA. Such assumptions include (i)
normality, (ii) homogeneity of variance, and, (iii) sphericity
of the dependent factor for different conditions. The first two
criteria are soft, which means that ANOVA is robust against
some level of their deviation; sphericity, however, is the hard
criterion. The applied logarithmic transform that was used to
present the spectral power in decibel (dB), made them normally
distributed, which was further verified using the Jarque-Bera
test. Also, all data blocks showed to be either symmetric or at
most mildly asymmetric, i.e., they revealed absolute skewness
<1. Regarding homogeneity of variance, the applied z-score
transformation that was employed to remove a potential subject-
specific bias turned the spectral power into zero-mean and
unit-variance data for each participant and thereby minimized
the differences in variance among different conditions. The
homogeneity of variance for the within-subject factor was verified
using calculation of Fmax (to be <4) for all combinations of data
blocks. Finally, since each independent factor (task and feedback
modality) had only two levels, sphericity was not a concern and
did not need to be checked for a 2-way ANOVA. Therefore, the
adopted logarithmic and z-score transformations have turned the

data into a valid format for application of a repeated measures
2-way ANOVA.

RESULTS

Task and Feedback Modality Effects for
with Feedback Condition
Figure 3 illustrates the spectral power of the 3–4 s post-stimulus
period in which either relaxation or (MI) was performed
with proprioceptive or visual feedback. There were task-related
changes in spectral power in α and β-bands (Figure 3A).
The repeated measures 2-way ANOVA analysis of α band
revealed a significant main effect for task [F(1, 7) = 97.37, p <

0.0001] and a significant interaction between task and feedback
modality [F(1, 7) = 6.128, p = 0.0426]. The post-hoc t-test
(Figure 3B) showed that during both proprioceptive and visual
feedback provision the spectral power were significantly larger
for relaxation than imagery trials [t(7) = 6.09, p = 0.0010,
and t(7) = 2.59, p = 0.0358, respectively]. Moreover, feedback
modality was indifferent for relaxation trials [t(7) = 0.44, p =

0.6710], whereas imagery trials produced significantly stronger
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FIGURE 5 | Accuracy and ERD duration with and without feedback. (A) Classification accuracy with visual or proprioceptive feedback in α and β bands. (B)

Event-related desynchronization (ERD) duration with visual or proprioceptive feedback in α and β bands. (C) Classification accuracy without visual or proprioceptive

feedback in α and β bands. (D) ERD duration without visual or proprioceptive feedback in α and β bands. The horizontal line in each boxplot, represents the mean

value and the lower and upper whiskers depict the minimum and maximum values for each condition, respectively (*p < 0.05; **p < 0.01).

ERDs with proprioceptive feedback than with visual feedback
[t(7) = 3.06, p = 0.0365]. Similarly, the β-band showed a
significant main effect for task [F(1, 7) = 62.76, p < 0.0001]
and a significant interaction between task and feedback modality
[F(1, 7) = 10.23, p = 0.0151]. The post-hoc t-test between
imagery and relaxation trials (Figure 3B) revealed a significant
difference with proprioceptive feedback [t(7) = 6.326, p =

0.0003] but not for visual feedback [t(7) = 1.803, p = 0.1145].
Investigation of the impact of feedback modality on the β

power (Figure 3B) indicated that imagery with proprioceptive
and visual feedback were significantly different [t(7) = 2.94,
p = 0.0429], whereas relaxation trials showed no significant
difference between feedback conditions [t(7) = 1.582, p =

0.1576]. In summary, α ERD was facilitated by both feedback
modalities with stronger impact of proprioceptive feedback;
whereas β ERD was facilitated by proprioceptive feedback only.
In addition, proprioceptive feedback was essential to achieve
ERD consistently below baseline (Figure 3B) across both α and
β-frequency bands [t(7) = 9.017, p < 0.0001 for proprioceptive
feedback and t(7) = 2.225, p= 0.1192 for visual feedback].

Task and Feedback Modality Effects for
without Feedback Condition
Figure 4 shows the spectral power from the 1–2 s period of the
proprioceptive and visual conditions during which participants
performed the task without feedback. Figure 4A depicts the
spectral power in α and β-bands for each feedback modality.
Analysis of the α band showed significant main effects only
for task [F(1, 7) = 840.8, p < 0.0001], but neither for feedback

[F(1, 7) = 1.116, p = 0.3258] nor interaction [F(1, 7) = 0.7129,
p = 0.4264]. The post-hoc t-test showed that relaxation and
imagery trials were significantly different for both proprioceptive
[t(7) = 4.961, p = 0.0033] and visual [t(7) = 3.767, p = 0.0140]
conditions (Figure 4B). However, analysis of the β-band power
showed a significant main effect for both task [F(1, 7) = 79.68,
p < 0.0001] and feedback modality [F(1, 7) = 11.30, p =

0.0121] but revealed no interaction between two factors [F (1, 7)

= 4.869, p = 0.0631]. The post-hoc t-test between imagery
and relaxation showed a significant difference for both the
proprioceptive [t(7) = 5.994, p = 0.0011] and the visual [t(7)
= 2.87, p = 0.0478] conditions (Figure 4B). Comparing the
effect of feedback modality on the β power (Figure 4B) revealed
significant differences between conditions for (MI) [t(7) = 3.54,
p = 0.0189], but not for relaxation [t(7) = 0.42, p = 0.69].
The findings indicate that in both conditions sufficient α and β

ERD was achieved, even prior to feedback onset. However, the
proprioceptive condition was superior to the visual condition
with regard to β-band modulation. Similar to the situation “with
feedback,” the proprioceptive condition was essential to keep
ERD consistently below baseline (Figure 4B) across both α and
β-bands [t(7) = 12.00, p < 0.0001 for the proprioceptive and
t(7) = 2.831, p= 0.0501 for the visual conditions].

Accuracy and ERD Duration for Individual
Frequencies
Motor imagery (MI) performance with and without feedback
were quantified using average accuracy, and the average
percentage of ERD duration in each trial. These measures
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were obtained through calculation of spectral power in each
subjects’ optimum frequency according to their screening
session. Results are summarized in Table 2 where medians
of all studied measures and their corresponding p-values are
reported. For (MI) with feedback, accuracy was 8% higher for
the proprioceptive compared to the visual feedback condition
(p = 0.0011). In addition, ERD duration was also longer with
proprioceptive than with visual feedback by 10% (p < 0.0001).
Considering (MI) without feedback, the proprioceptive input
was superior to the visual input for both the accuracy and
ERD duration by 15% (p = 0.0027), and 13% (p = 0.0028),
respectively.

Accuracy and ERD Duration for the α and
β-Bands
Figure 5 depicts the accuracy and duration of ERD with
(Figures 5A,B) and without feedback (Figures 5C,D) in α and
β-bands. Trial task (“Imagery” vs. “Relaxation”) was classified
by linear discriminant analysis using band-power in three
channels (ipsilateral, Cz, and contralateral), separately for the
α and β-bands, and separately for proprioceptive and visual
feedback. According to the paired Wilcoxon rank-sum tests, the
accuracy with proprioceptive input was superior to accuracy
with visual input for the β-band with (p = 0.0078) and without
(p= 0.0234) feedback. Similarly, ERD duration was longer for the
proprioceptive condition as compared to the visual condition for
the β-band with (p= 0.0313) and without (p= 0.0156) feedback.
In summary, there was a significantly different behavioral impact
for proprioceptive and visual inputs with regard to accuracy and
duration of ERD specific to the β-band.

DISCUSSION

This study demonstrated that MI with proprioceptive feedback
was superior to MI with visual feedback to increase the spectral
modulation range in α- and β-bands. Moreover, proprioceptive
feedback was necessary to consistently achieve MI-related
sensorimotor desynchronization (ERD) significantly below
baseline. These effects on both the modulation level and MI-
related ERD persisted, even in the absence of feedback, thereby
indicating fast operant learning of oscillatory self-regulation–
which was superior in the proprioceptive as compared to the
visual condition. The increased accuracy and duration of learned
brain self-regulation achieved in the proprioceptive feedback
condition was mediated in the β-band. The particular relevance
of β-band oscillations (15–30 Hz) for this approach has been
postulated previously (Gharabaghi et al., 2014a,c; Naros and
Gharabaghi, 2015) since they mediate the cortico-muscular
communication during motor tasks (Riddle and Baker, 2005;
Boulay et al., 2011; Witham et al., 2011; Davis et al., 2012; Kilavik
et al., 2013) and are linked to the extent of functional impairment
after stroke (Rossiter et al., 2014). The findings of the current
study also corroborate a recent study (Naros et al., 2016) that
demonstrated a link between the operant conditioning of beta
desynchronization and subsequent improvements in motor skills
via neurofeedback.

Two out of 10 participants were unable to sufficiently
modulate their brain activity in this study. This is in line with
15–30% BCI illiteracy reported previously. Recent studies based
on mathematical simulation (Bauer and Gharabaghi, 2015a) and
empirical evidence (Naros et al., 2016), however, suggest that this
limitation might be overcome by novel training regimes which
consider the cognitive load (Bauer and Gharabaghi, 2015b),
considering the specificity of the feedback (Bauer et al., 2016a)
and apply threshold adaptation of the classifier in the course of
the intervention (Bauer et al., 2016b).

Feedback Modality and Oscillatory
Modulation Range
Previous works showed that neurofeedback training with visual
feedback provision increased both laterality (Boe et al., 2014)
and movement-associated desynchronization of the targeted
β-frequency band for healthy subjects (Bai et al., 2014).
Proprioceptive input, however, induced a distributed increase
of corticospinal connectivity (Kraus et al., 2016a), involved
an extended cortical network including precentral, postcentral
and parietal areas (Vukelic et al., 2014) and bridged the gap
between individuals’ abilities and cortical activations pattern for
(MI) and motor execution (Bauer et al., 2015). Moreover, a
direct comparison between visual and proprioceptive feedback
revealed that the latter was superior the former in activating a
distinct cortical network resembling the natural activation during
overt movement (Vukelic and Gharabaghi, 2015a). Furthermore,
pairing MI-related cortical activity and afferent input increased
the corticospinal excitability as further evidence for the critical
role of afferent input to improvement in task performance
(Mrachacz-Kersting et al., 2012; Niazi et al., 2012; Xu et al., 2014;
Gharabaghi et al., 2014a).

Along these lines, the modulation level of the power in
α and β-bands in the present study was influenced by the
feedback modality as well. The power in the α band, which
typically reflects sensorimotor activation and visual information
processing (Pfurtscheller, 2001), was modulated by both visual
and proprioceptive feedback, with stronger effects of the latter
(Figure 3B left). By contrast, the power in the β-band, which is
thought to be associated with cortico-muscular communication
(Miller et al., 2010; Takemi et al., 2013a,b; Schulz et al.,
2014) during MI (Kilavik et al., 2013) and actual movement
(McFarland et al., 2000), required proprioceptive input for
modulation (Figure 3B right). This significant feedback effect on
the modulation range of both α and β-bands was caused by the
proprioceptive input on the MI task and not on the relaxation
task (Figure 3B). This task-dependency of the feedback effect
on cortical activity may be interpreted as follows: (i) The
feedback during the relaxation task was visual in both conditions,
i.e., observing cursor movement vs. orthosis movement (with
no hand involvement). Providing real proprioceptive feedback
during the relaxation trials, instead of a modified version of visual
feedback (observing orthosis movement), might have resulted in
power changes in comparison to the visual feedback condition
(observing cursor movement). (ii) The relaxation task might
in general be insensitive to the feedback modalities applied in
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this study. (iii) Proprioceptive input might reveal its effects
on cortical physiology during specific brain states only, which
are particularly receptive to afferent input, e.g., sensorimotor
desynchronization.

Notably, proprioceptive feedback was essential to consistently
achieve MI-related sensorimotor ERD significantly below
baseline in both α and β-bands. This suggests that coupling
proprioceptive feedback with MI provides a better substrate
for closing the sensorimotor loop than visual feedback only.
This finding is particularly relevant for future rehabilitation
applications as ERD has been suggested as a biomarker for
corticospinal excitability which is mediated via down-regulation
of intracortical inhibition in the human primary motor cortex
(Takemi et al., 2013a,b). Furthermore, the amount of β ERD
during a MI task with propriceptive feedback has been shown
to correlate with robust increases of corticospinal excitability
following the intervention (Kraus et al., 2016a). In this context,
the present study revealed that rewarding (MI) with contingent
proprioceptive feedback will result in stronger (Figure 3B) and
longer lasting β ERD (Figure 5B), compared to visual feedback
only, and might therefore be especially relevant for restorative
approaches (Gharabaghi, 2016; Bauer and Gharabaghi, under
review).

Feedback Modality and Operant Learning
The participants of this study regulated their brain oscillations
in both α and β-bands even in those task periods in which
they did not receive real-time feedback. This finding might be
interpreted in different ways: At first glance, this result might
suggest that (i) no feedback at all was necessary to achieve brain
self-regulation. However, such a notion would be challenged by
several other observations of this study. (ii) Indeed, the feedback
phase may also be considered as delayed reward to the phase
before feedback onset (i.e., the delay period). (iii) The oscillatory
modulation range was relatively larger in the proprioceptive than
in the visual condition (Figure 4B). Since the feedback modality
in this study was alternating from run to run, i.e., every 15
trials, such a finding would most likely be related to the feedback
modality within one run. (iv) Moreover, the ERD remained
consistently below baseline only in the proprioceptive condition.
(v) There was a significant difference between the β ERD
levels of the proprioceptive and visual conditions with stronger
desynchronization in the former (Figure 4B). We interpret these
converging findings, therefore, as evidence for fast operant
learning of oscillatory self-regulation with a stronger impact of
the proprioceptive condition. The higher consistency between
kinaesthetic MI and proprioceptive feedback (as compared to
visual feedback) may have contributed to this finding.

Operant conditioning of neural activity was first demonstrated
in animal models (Fetz, 1969, 2007; Ganguly and Carmena,
2009; Engelhard et al., 2013; Hiremath et al., 2015). In humans,
the reinforcement learning of self-regulated changes in cortical
activity is usually acquired after several training sessions (Zoefel
et al., 2011; Florin et al., 2013; Boe et al., 2014; Kaiser et al.,
2014). The observed fast operant learning in the present study
might be due to different reasons: The delayed feedback onset
design may possibly have facilitated brain self-regulation by (i)

providing the participants with a preparation period for ramping
volitional oscillatory modulation (Donoghue et al., 1998; Fetz,
2013), and/or (ii) increasing their reward expectation (Leon
and Shadlen, 1999; Savage and Ramos, 2009) during the 2 s
lag. Moreover, the interleaved feedback design, switching every
15 trials between proprioceptive and visual feedback, might
have caused (iii) sustained attention levels (Lorenz et al., 2014)
and/or provided (iv) sufficient novelty to keep up motivation;
a moderate level of novelty during learning has been shown to
correlate with the highest level of motivation (Heckhausen and
Heckhausen, 2008). Finally, applying a specific relaxation task
that is (v) rewarded by feedback as well appears to be more able to
enhance the modulation of the oscillatory range than a relaxation
condition without feedback.

However, even within such an optimized environment for
operant learning, the feedback modality seems to play a relevant
role, suggesting that proprioceptive input may provide a better
mean for self-regulation of sensorimotor rhythms than visual
input only.

β-Band and the Sensorimotor Loop
Optimum frequencies, for which participants received feedback,
lay within 12–18 Hz frequency band (Table 1). However, subjects
modulated their brain oscillations in both α and β-bands.
This might be unexpected at first glance, because successful
neurofeedback is known to be frequency-specific (Zoefel et al.,
2011; Florin et al., 2013; Naros and Gharabaghi, 2015). However,
it has to be considered that this previous frequency-specificity
was achieved in the course of several sessions, while the present
intervention lasted for one session only. Moreover, the feedback
modality was alternated in the present examination, while it
remained unchanged in previous studies. Furthermore, recent
findings suggest that neurofeedback may not only reinforce the
feedback frequency band itself, but may be related to different
cortical oscillations as well, thus, suggesting cross-frequency
interactions. More specifically, a distributed α network has
been shown to regulate the local sensorimotor β activity in a
performance dependent way, i.e., with good and poor performers
of β-band brain-self-regulation revealing different extents of α

network lateralization (Vukelic et al., 2014). Along the same lines,
a single neurofeedback session that rewarded spatially selective
and spectrally specific cortical activities with proprioceptive
feedback, modulated the connectivity of distributed resting state
networks of the sensorimotor cortex in different frequency bands
(Vukelic and Gharabaghi, 2015b). This is particularly relevant
for new rehabilitation strategies, since resting state functional
connectivity of the motor cortex seems to be relevant for motor
learning (Mottaz et al., 2015) and for prediction of functional
improvement after stroke (Nicolo et al., 2015).

In the present study, the feedback modality had a
behaviourally relevant impact, as well, by improving the online
classification accuracy and duration of brain self-regulation
in the proprioceptive as compared to the visual condition
(Table 2). Importantly, the proprioceptive input allowed the
subjects to achieve an accuracy of > 70% even before feedback
onset, a level which is regarded as the threshold for achieving a
sense of self-efficacy during operant learning in brain-interface
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procedures (Kubler et al., 2001). Analysing α and β-bands
separately (Figure 5) revealed the relevance of the latter for
mediating these performance gains. These findings are in line
with the current literature indicating that β-band oscillations
mediate the cortico-muscular communication (Riddle and
Baker, 2005; Boulay et al., 2011; Witham et al., 2011; Davis
et al., 2012; Kilavik et al., 2013), sensorimotor control (Boulay
et al., 2011; Brittain et al., 2014) and motor learning (Herrojo
Ruiz et al., 2014; Pollok et al., 2014). The particular relevance of
β-band oscillations with behavioral gains in the present study
is congruent with recent proof of concept data indicating that
operant conditioning of β-band ERD will lead to task-specific
motor improvement after stroke (Naros and Gharabaghi,
2015). Overall, it suggests the suitability of β-band oscillations
as a biomarker for state-dependent stimulation (Gharabaghi
et al., 2014a; Kraus et al., 2016b; Raco et al., 2016; Royter and
Gharabaghi, 2016) and restorative neuroprosthetics (Gharabaghi
et al., 2014b,c; Grimm and Gharabaghi, 2016; Grimm
et al., 2016a,b,c) in the context of motor rehabilitation after
stroke.

CONCLUSION

The present study provided empirical evidence that
proprioceptive feedback was superior to visual feedback

with regard to the induced strength and duration of ERD as
well as the accuracy of task performance. Proprioceptive input
provides, therefore, a better environment for operant learning
via neurofeedback training. The observed MI-related effects
were present not only during real-time feedback provision,
but also in the delay period prior to feedback onset. Since the
observed effects occurred within only one training session
they may be considered as fast operant learning of brain self-
regulation. Reinforcing β-band ERD via proprioceptive feedback
may, therefore, provide a suitable approach for enhancing the
sensorimotor loop for rehabilitation that needs to be confirmed
in future patient studies.
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