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Structured sparse methods have received significant attention in neuroimaging. These

methods allow the incorporation of domain knowledge through additional spatial and

temporal constraints in the predictive model and carry the promise of being more

interpretable than non-structured sparse methods, such as LASSO or Elastic Net

methods. However, although sparsity has often been advocated as leading to more

interpretable models it can also lead to unstable models under subsampling or slight

changes of the experimental conditions. In the present work we investigate the impact

of using stability/reproducibility as an additional model selection criterion1 on several

different sparse (and structured sparse) methods that have been recently applied for

fMRI brain decoding. We compare three different model selection criteria: (i) classification

accuracy alone; (ii) classification accuracy and overlap between the solutions; (iii)

classification accuracy and correlation between the solutions. The methods we consider

include LASSO, Elastic Net, Total Variation, sparse Total Variation, Laplacian and

Graph Laplacian Elastic Net (GraphNET). Our results show that explicitly accounting for

stability/reproducibility during the model optimization can mitigate some of the instability

inherent in sparse methods. In particular, using accuracy and overlap between the

solutions as a joint optimization criterion can lead to solutions that are more similar

in terms of accuracy, sparsity levels and coefficient maps even when different sparsity

methods are considered.

Keywords: sparse methods, structured sparsity, model selection, reproducibility, predictive models

1. INTRODUCTION

Supervised machine learning techniques are being increasingly used in neuroimaging analysis
for their inherent ability to deal with multivariate data, higher sensibility and possibility of
incorporating specific prior-information.

Given the high-dimensionality of neuroimaging, and the few number of samples, regularized
linear models have been applied in order to produce effective predictive models (Mourao-Miranda
et al., 2006, 2007; Grosenick et al., 2011; Michel et al., 2011). However, ordinary linear models, such

1Model selection is a procedure through which, one among many possible statistical models is selected. The prototypical case

is when each model corresponds to a different hyper-parameter, e.g., the regularization parameter in ridge regression, SVMs,

or LASSO.
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as, the Least Squares Ridge Regression (Tikhonov and Arsenin,
1977) or standard Support Vector Machines (SVMs) (Cortes and
Vapnik, 1995) employ an l2 regularization scheme, hence they are
incapable of discriminating which areas (or voxels) of the brain
mostly contribute to the model’s predictions. In other words,
these models are dense, in the sense that they use the information
contained in the entire voxel set to generate a predictive function.

Sparse methods, like the LASSO (Tibshirani, 1996) or the
Elastic Net (Zou and Hastie, 2005), are able to estimate solutions
for which only few voxels are deemed relevant, therefore aiding
interpretation. However, often these models provide overly
sparse solutions, where the non-zero coefficients are assigned to
disparate regions across the brain, without exploiting any spatial
or temporal prior information (Grosenick et al., 2011; Michel
et al., 2011; Rasmussen et al., 2012).

Structured sparsity models (Chambolle, 2004; Bach et al.,
2011; Baldassarre et al., 2012a; Micchelli et al., 2013) extend the
well-known methods of LASSO by encouraging models which
are sparse in some preferred way, e.g., the non-zero regression
coefficients may be preferred to be associated to the same brain
region or nearby voxels. Furthermore, the coefficients may be
encouraged to be constant or vary smoothly within regions of
the brain. Despite sparsity has traditionally been connected with
interpretability, in the sense that sparser models are easier to
interpret, these new structured sparsity models promise an even
greater ease of interpretation of the coefficient maps, because the
active voxels are grouped together in possibly few clusters, which
fits well with our knowledge about the brain’s specialized regions
and networks. These method hence have the potential to further
improve out-of-sample performance in comparison to standard
sparsity methods such as the LASSO.

1.1. Structured Sparse Models in
Neuroimaging
Recently, (structured) sparsity methods have received significant
attention in neuroimaging, see Gramfort et al. (2013), Mohr et al.
(2015), Belilovsky et al. (2015), Jenatton et al. (2012), Hoyos-
Idrobo et al. (2015), Dohmatob et al. (2014), and Grosenick
et al. (2013) and references therein. For example Jenatton et al.
(2011) investigated the benefits of using hierarchical structured
sparsity for brain decoding, taking into account the spatial
and multi-scale structure of the fMRI data. Their proposed
approach yielded similar or higher prediction accuracy than
the compared approaches (l1 and squared l2 regularization
penalties), and the obtained map of weights or coefficients
exhibited a cluster-like structure. Fiot et al. (2014) compared a
number of structured sparse methods (Sobolev, total variation,
fused LASSO) with regularization methods which do no take into
account the spatial structure (LASSO, Ridge and Elastic-Net) on
a clinical classification problem. Their results showed that the
structured sparse approaches can lead to coherent and improved
coefficient maps with better classification performance than the
ones obtained with the standard regularization methods.

Mohr et al. (2015) presented a comparison of different sparse
and non sparse regularization methods for brain decoding. They
focused on a classification problem and use the Logistic Loss or

Hinge Loss (SVMs). The authors argued that l1 regularization
can improve classification performance over l2 approaches (using
SVM as an example of an l2 approach) as well as improve model
interpretability. In addition, by considering the 3D structure
of fMRI data, even better interpretability of the weights or
coefficient maps could be possible. For this purpose, one more
promising method which was not considered in Mohr et al.
(2015) is sparse total variation. This method has been suggested
in the context of fMRI by Baldassarre et al. (2012b) as means
to learn interpretable and more stable brain maps. Further work
investigating applications of sparse total variation in this context
include Gramfort et al. (2013), Dohmatob et al. (2014), and
Eickenberg et al. (2015).

Despite of all the evidence that sparsity and structured sparsity
can lead to predictive models that are easier to interpret, sparsity
alone is not sufficient for making reasonable inferences as sparse
models can be unstable under subsampling or slight changes
of the experimental conditions. One key source of instability is
correlation between features, a problem specific to multivariate
methods but not univariate methods. However, univariate
methods are often too simplistic andmay be suboptimal. Another
difficulty with sparse models is that there are many possible
ways of imposing sparsity or structured sparsity in predictive
models. Finding the ideal sparsity for a specific problem is
therefore a model selection problem. A common difficulty in
neuroimaging applications is that often different models lead to
very similar generalization performance (e.g., accuracy), then it
becomes difficult to choose the best model and identify the “true
brain map” of informative or predictive regions. Some authors
have used the capacity to recover the “best brain regions” as
alternative criterion to evaluate the models. In theses cases the
“best regions” are based either on prior knowledge about the
problem or univariate statistical tests applied to the data, both
of which might not correspond to the ground truth. In fact,
in most neuroimaging applications we do not know a-priori
which regions are expected to be relevant for prediction therefore
alternative approaches for model comparison are necessary.

One way to increase the stability or reproducibility of
sparse models is to explicitly account for it during the model
selection procedure. The use of a tradeoff between accuracy and
reproducibility as a model selection criterion has been previously
proposed in neuroimaging (e.g., Strother et al., 2002; Rasmussen
et al., 2012). For example, in Rasmussen et al. (2012), the authors
investigated the relative influence of model regularization
parameter choices on both the model generalization and the
reliability of the spatial patterns (coefficient maps) extracted from
a classification model. Building upon their work, we advocate
stability/reproducibility as the natural counterpart of sparsity in
order to obtain interpretable inferences from sparse supervised
learning methods.

The issue of improving interpretability and stability of
predictive brain maps has also been studied from a different
perspective by Hoyos-Idrobo et al. (2015) and Wang et al.
(2014). In Hoyos-Idrobo et al. (2015) the authors focused
on feature clustering and bagging as a means to improve
stability of l1 regularization and interpretability of the associated
brain maps. In Wang et al. (2014) the authors proposed
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a “randomized structural sparsity,” incorporating the idea of
structural sparsity in the stability selection framework. They
demonstrated that their proposed approach can achieve better
control of false positives and false negatives than alternative
methods.

1.2. Our Contribution
In this paper, we investigate the role of model selection criteria
on different sparsity (and structured sparsity) methods that have
been recently applied for decoding fMRI data, including one
we proposed in a previous work (Baldassarre et al., 2012b),
and assess their performance with respect to accuracy, sparsity
and reproducibility. In order to investigate the impact of using
reproducibility as an additional criterion for model selection, we
compare three different model selection criteria: (i) classification
accuracy alone; (ii) classification accuracy and overlap between
the solutions (or coefficient maps); (iii) classification accuracy
and correlation between the solutions (or coefficient maps). The
methods we consider include LASSO (Tibshirani, 1996), Elastic
Net (Zou and Hastie, 2005), Total Variation (Michel et al., 2011),
Graph Laplacian Elastic Net (GraphNET) (Grosenick et al., 2011)
and sparse Total Variation (Baldassarre et al., 2012b). For our
comparison, we use a dataset of fMRI scans collected from 16
healthy volunteers while watching pleasant or unpleasant images
(Mourao-Miranda et al., 2006, 2007; Hardoon et al., 2007).

Model selection is performed by a Leave-One-Subject-Out
Cross-Validation (LOSO-CV) scheme, which we describe in
detail in the methods section. Although regularization helps
to reduce model variance, the value of the regularization
parameter(s) which yield a maximal accuracy model varies
across the cross-validation folds, resulting in models with
varying degree of sparsity and sets of selected variables
(voxels). A main point of this paper is to show that this
instability effect can be substantially reduced by employing a
different model selection criterion which involves accuracy and
“reproducibility” simultaneously. Specifically, we discuss the
relevance of our findings with respect to using classification
accuracy as a proxy for statistical significance of a given
model. Our results suggest that the model selection criterion
plays a more important role than the choice of the sparsity
or structured sparsity. When using sparsity and overlap
between the solutions as a joint optimization criterion
the solutions for different methods became very similar
in terms of accuracy, sparsity levels and coefficient maps.
These results demonstrate the added value of accounting
for reproducibility/stability in addition to generalization
performance during model selection in supervising learning
models.

The paper is organized in the following manner. In Section
2 we present the sparse (and structured) methods, experimental
protocol, model selection criteria and dataset. We present the
results in Section 3 and the discussion in Section 4.

2. MATERIALS AND METHODS

2.1. Supervised Learning for Classification
Given a training set of input-output pairs D = {(xi, yi)}

m
i=1, with

xi ∈ R
p and yi ∈ R, a supervised learning method infers the

relationship between x and y by estimating a function f :R
p → R

such that, for every x ∈ R
p, f (x) provides the prediction of y

given x.
In neuroimaging studies, the input xi represents the brain

scans in vector format and the number of variables p corresponds
to the number of recorded voxels. In the present paper we
consider a binary classification task, so that y ∈ {−1, 1}, but our
results can easily be extended to the regression or the multi-class
setting. Furthermore, we limit our analysis to linear models, so
that the decision function can be written as f (x) = sign(xTβ),
where β ∈ R

p is a vector of coefficients to be estimated, one
associated to each voxel.

The aim of a machine learning algorithm is to find a
coefficient vector β able to classify new examples and with
specific properties such as sparsity (i.e., few non-zero coefficients)
or smoothness. Regularization methods find β by minimizing
an objective function consisting of a data fit term E(β) and a
penalty term �(β) that favors certain properties and improves
the generalization over unseen examples (outside the training set
D).

As data fitting term we consider the square loss that can be
concisely written as

E(β) =
1

m
‖Xβ − Y‖22

where X ∈ R
m×p is the matrix that contains the training

examples as rows and Y = (y1, . . . , ym)
T is the column vector

formed by the target variables.

2.2. Structured Sparsity Models
Note that, since for a linear model each regression coefficient
is associated to a voxel, the vector β can also be interpreted as
3D matrix of the same size as the brain scans and we use this
3D structure to define particular penalty functions β 7→ �(β).
We define the ℓ1 norm of β as ‖β‖1 =

∑p
i=1 |βi|; the discrete

gradient of β in 3 dimensions as ∇β , with

(∇β)1i,j,k = β(i, j, k)− β(i− 1, j, k)

(∇β)2i,j,k = β(i, j, k)− β(i, j− 1, k)

(∇β)3i,j,k = β(i, j, k)− β(i, j, k− 1)

and (∇β)ℓ
i,j,k

= 0 if (i, j, k) is on the boundary w.r.t. the

direction ℓ. Finally,
∑

i∼j(βi − βj)
2 means that the sum is only

for neighboring voxels i and j.
For each method, the model β̂ is estimated by solving the

optimization problem

min
β∈Rp

{

E(β)+ �(β)
}

(1)

where �(β) is defined as follows.

2.2.1. Elastic Net (ENET) and LASSO

�(β): = λ1||β||1 + λ2‖β‖
2
2 .

This regularizer entails a tradeoff between variable selection and
coefficient shrinkage. For λ2 = 0, we obtain the LASSO, while
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λ2 6= 0 allows for correlated features to be selected together.
Notice also that unlike the structured sparsity regularizers
described below, the location of the non-zero components is not
constrained in any manner.

2.2.2. Total Variation (TV)

�(β): = λ||∇β||1.

This regularizer favors solutions that have constant value in
contiguous regions and has its origins in image de-noising
applications (Rudin et al., 1992), however it does not enforce any
coefficient to be exactly zero.

2.2.3. Sparse Total Variation (STV)

�(β): = λ (‖∇β‖1 + ‖β‖1) .

By adding a ℓ1-penalty term to the Total Variation functional, this
regularize favors solutions whose coefficients are constant within
contiguous regions, but also promotes sparsity. This hybrid
method has been proposed in other domains, such as image de-
noising using Fourier or wavelet representations (see e.g., Ma
et al., 2008) and was applied to brain decoding in our previous
work (Baldassarre et al., 2012b). Notice also that (Sparse) Total
Variation reduces to a fused Lasso in 3D space (Dohmatob et al.,
2014).

2.2.4. Laplacian (LAP)

�(β): =
1

2
λ

∑

i∼j

(βi − βj)
2.

This regularizer relaxes the constancy requirement of the Total
Variation method, allowing for smooth variations within regions.
It is called “Laplacian” since the regularizer can be rewritten as
∑p

i,j=1 βiβjLij, where the matrix L is the Laplacian associated to a

3D grid graph modeling neighboring voxels.

2.2.5. Sparse Laplacian (SLAP)

�(β): =
1

2
λ(1− α)

∑

i∼j

(βi − βj)
2 + λα||β||1

where α ∈ [0, 1]. This regularizer encourages both smooth
variations within regions and sparsity of the regression vector.
The corresponding method is similar to GraphNET (Grosenick
et al., 2011), with λ1 = λα and λG = λ(1 − α). Note
also that LAP corresponds to the special case that α = 0. In
all cases, λ and α are hyper-parameters (often referred to as
regularization parameters) that control the trade-off between the
data fitting term, typically measured by classification accuracy,
and the degree of regularization, which measures the parsimony
(sparsity) of the model. These hyper-parameters must be chosen
in an unbiased way during learning. The numerical algorithm
employed to solve the optimization problem (Equation 1) is
outlined in Appendix 1 (Supplementary Material).

2.3. Experimental Protocol and
Assessment
In this section we present details about the experimental protocol
used, including criteria for model selection and measures used to
assess the performance of the different methods.

Our aim is to provide a consistent and unbiased procedure
in order to best compare different supervised learning methods
that goes beyond the simple prediction accuracy performance
measure. For this purpose, we introduce two measures of
model reproducibility/stability and study their impact for model
selection and model assessment.

2.3.1. Nested Cross-Validation
We perform two nested loops of Leave-One-Subject-Out Cross-
Validation (LOSO-CV). The external loop is used for assessing
the classification accuracy, the sparsity and the stability of the
methods; the internal loop is used for selecting the hyper-
parameter(s) in each method (e.g., λ1 and λ2 for Elastic Net).
Hence, for each method, we train N different models, where N
is the number of subjects in the dataset. Note that each subject
has many examples of each class, therefore the LOSO-CV used
in the present work does not correspond to the commonly used
Leave-One-Out Cross-Validation (LOO-CV) procedure, where
only one example is left for test in each cross-validation fold.

2.3.2. Thresholding
Although the sparse methods should yield sparse coefficient
vectors, due to numerical approximations during optimization
some of the estimated coefficients might not have been set exactly
to zero. Therefore, we adopt the heuristic of setting to zero the
smallest components of the regression vector which contribute to
only 0.01% to the ‖β‖1. Specifically we reorder the components
of β so that |β1| ≥ |β2| ≥ · · · ≥ |βp|, choose the smallest
integer r such

∑r
k=1 |βk| ≥ (1− 10−4)‖β‖1 and set to zero the

components βr+1, . . . ,βp.

2.3.3. Performance Measures
Let β(s) (the signature) be the coefficient vector estimated when
the data for subject s is left out for testing. We define the model
or signature support Is: = {i | β(s)i 6= 0} the index set of the
locations of the non-zero coefficients (or sparsity pattern), the

model sparsity S(s): = |Is|
p as the relative number of non-zero

coefficients and the pairwise relative overlap as

Os,s′ : =
|Is ∩ Is′ |

max(|Is|, |I′s|)
.

We then define the corrected pairwise relative overlap as

Oc
s,s′ : =

|Is ∩ Is′ | − E

max(|Is|, |I′s|)
,

where E is the expected overlap between the support of two
random vectors with sparsity S(s) and S(s′), respectively, given
by the formula2

E = pS(s)S(s′) . (2)

2We remark that there is a typo in the definition of E in Baldassarre et al. (2012b),

which should coincide with Equation (2) hereafter.
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The correction term E compensates the fact that the pairwise
relative overlap increases with the size of the sparsity pattern of
the models, see Rasmussen et al. (2012) for a discussion; note
also that in that paper model sparsity is defined as the number
of non-zero coefficients.

Next we define the average pairwise overlap

O: =
1

N(N − 1)

N
∑

s6=s′=1

Os,s′ (3)

and the average corrected pairwise overlap

O
c
: =

1

N(N − 1)

N
∑

s6=s′=1

Oc
s,s′ (4)

as measures of stability and corrected stability, respectively.
As a further measure of stability we also use the average

pairwise correlation defined as

C: =
1

N(N − 1)

N
∑

s6=s′=1

Cs,s′ , (5)

where C(s, s′) is the sample Pearson’s correlation between β(s)
and β(s′).

The accuracy of a method is the average percentage of
correctly classified examples over all the LOSO folds, namely

Accuracy =
1

N

N
∑

s=1

1

ms

ms
∑

i=1

δ(fs(xi) = yi) (6)

where fs(xi) = sign(β(s)Txi) and ms is the number of examples
for subject s.

2.4. Model Selection
Since we are interested in evaluating methods not only
according to classification accuracy, but also with respect to
measures of reproducibility/stability such as correlation and
corrected overlap, it behooves us to consider these measures
also during model selection. Obviously, the stability measures
by themselves cannot directly be used for model selection,
because selecting the model’s hyper-parameters that only
maximize stability will yield highly biased models that do
not actually learn from data. For instance, a model with
just one constant non-zero coefficient will maximize both
correlation and corrected overlap, but won’t be able to accurately
predict.

Henceforth, adopting and extending the procedure proposed
by Rasmussen et al. (2012), we consider both prediction accuracy
and either correlation or corrected overlap simultaneously3.
We can use a diagram to visualize the dependency between
accuracy and one of the stability measures: by varying

3Specifically, Rasmussen et al. (2012) has not employed the accuracy—

reproducibility diagram as model selection criterion for sparse models. They have

only used it to assess the ENET performance.Whereas in this paper these measures

are used both for model selection and assessment of different sparse methods.

the model’s hyper-parameters values we obtain different
points on this diagram. Ideally, we would like to find the
values that yield exactly the point (1, 1), that is perfect
accuracy and perfect stability. However, since this hardly
happens in practice, we are satisfied with the hyper-parameters
values that yield the point closest (with respect to the
Euclidean distance) to (1, 1) in either the accuracy vs.
correlation or accuracy vs. corrected overlap diagrams. An
example of these diagram is reported in Figure 1 for the
LASSO.

Summarizing, we consider three model selection criteria:

1. Accuracy-based. The model hyper-parameters are selected
to maximize the classification accuracy over the internal
LOSO-CV.

2. Corrected overlap based. The hyper-parameters are selected
in order to minimize the distance to (1, 1) in the mean
accuracy vs. mean corrected overlap diagram. Note that this
criteria was only applied to the sparse methods (LASSO,
ENET, STV, and SLAP).

3. Correlation-based. The hyper-parameters are selected in
order to minimize the distance to (1, 1) in the mean accuracy
vs. mean correlation diagram.

2.5. Multi-Measure Assessment
The accuracy vs. stability diagrams introduced in the previous
section for model selection can also be used for model
assessment. In fact, when training a model and selecting its
hyper-parameters in order to maximize both accuracy and
stability, it is appropriate to compare its performance to
other methods with respect to the same criterion used for
model selection. In this case, each method yields a single
point in the accuracy vs. stability diagram and we can both
visually assess the differences in the methods—which is the
most accurate, which is the most stable and which obtains
the best balance between accuracy and stability—but also
quantitatively compute their distances to the ideal (1, 1) point.
In Figure 2 we use these diagrams to visualize the performance
of the various methods on the dataset considered in this
paper.

2.6. Dataset
We used fMRI data from 16 male healthy US college
students (age 20–25) (Mourao-Miranda et al., 2006,
2007; Hardoon et al., 2007). Participants did not have
any history of neurological or psychiatric illness, had
normal vision and had given written informed consent to
participate in the study after the study was explained to
them.

The fMRI data were acquired on a 3T Allegra Head-only MRI
system, using a T2∗ sequence with 43 axial slices (slice thickness,
3 mm; gap between slices, 0 mm; TR = 3 s; TE = 30 ms; FA
= 80◦; FOV= 192×192 mm; matrix, 64×64; voxel dimensions,
3× 3× 3mm).

2.6.1. fMRI Experimental Design
There were three different active conditions: viewing unpleasant
(dermatological diseases), neutral (people) and pleasant images

Frontiers in Neuroscience | www.frontiersin.org 5 February 2017 | Volume 11 | Article 62

http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Neuroscience/archive


Baldassarre et al. Neurosparse

FIGURE 1 | Mean accuracy vs. mean corrected overlap (left) and mean accuracy vs. mean correlation (right) for the first external LOSO fold for the LASSO

model. The curves are obtained by varying the regularization parameter and computing the measures across the internal LOSO folds.

FIGURE 2 | Summary results for different models when the model

selection criteria Acc/Corr and Acc/OC are employed.

(pretty girls in swimsuits), and a control condition (fixation).
In each run, there were 6 blocks of the active condition (each
consisting of 7 brain scans) alternating with control blocks
(fixation) of 7 brain scans. The six blocks of each of the 3 stimuli
were presented in random order. Here we focus the analyses on
two active conditions: viewing unpleasant and pleasant images.
The fMRI scans acquired during the pleasant and unpleasant
conditions (considering an hemodynamic delay of 3 s) defined
the input patterns.

2.6.2. Preprocessing
The data were pre-processed using SPM24. All the scans were
realigned to remove residual motion effects and transformed into
standard space (Talairach and Tournoux, 1988). The data were
de-trended and smoothed in space using an 8mmGaussian filter.
Finally, a mask was applied to select voxels that have probability
0.5 or higher of being located in gray matter. This operation
nearly halves the number of voxels from 219, 727 to 122, 128.
The preprocessed dataset consists of 1344 scans of size 122, 128
voxels, with 42 scans per subject per active condition.

2.7. Summarization of the Coefficient Maps
In order to summarize the coefficient maps for the sparse
methods (LASSO, ENET, STV and SLAP) we listed the
clusters according to their extension using the script 3dclust
from AFNI (https://afni.nimh.nih.gov/afni/) and found the
brain regions correspondent to the maximum coefficient
within each cluster using the software Talairach Daemon
(http://www.talairach.org/daemon.html).

3. RESULTS

In this section, we describe the experimental results obtained
applying the different sparsity regularization methods as well as
non sparse ones to decode the mental state (i.e., viewing pleasant
or unpleasant images) of the subject left out of the LOSO-CV
as described in the methods section. The Matlab code one may
use to reproduce our results is available at https://github.com/
lucabaldassarre/neurosparse.

4Wellcome Department of Imaging Neuroscience, http://www.fil.ion.ucl.ac.uk/

spm/.
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TABLE 1 | Model performance.

Method Accuracy Correlation Sparsity Overlap OC

LASSO - Acc 86.31 ± 5.86% 69.63 ± 11.92% 0.64 ± 0.11% 53 ± 12% 52 ± 12%

LASSO - Acc/OC 82.12 ± 8.42% 76.13 ± 19.30% 0.25 ± 0.07% 59 ± 20% 59 ± 20%

LASSO - Acc/Corr 83.78 ± 5.53% 83.24 ± 2.49% 0.27 ± 0.03% 67 ± 4% 66 ± 4%

E-Net - Acc 88.02 ± 5.51% 92.06 ± 7.93% 84.14 ± 21.27% 77 ± 24% 2 ± 3%

E-Net - Acc/OC 84.08 ± 6.39% 96.00 ± 0.82% 3.00 ± 0.09% 84 ± 2% 81 ± 2%

E-Net - Acc/Corr 87.80 ± 5.42% 94.57 ± 1.56% 88.39 ± 14.07% 83 ± 14% 2 ± 4%

TV - Acc 85.79 ± 5.10% 86.86 ± 6.99% n.a. n.a. n.a.

TV - Acc/Corr 83.48 ± 6.69% 87.68 ± 8.23% n.a. n.a. n.a.

STV - Acc 85.86 ± 5.30% 52.40 ± 17.72% 12.37 ± 14.38% 25 ± 19% 20 ± 16%

STV - Acc/OC 81.03 ± 7.15% 86.23 ± 15.07% 2.56 ± 0.86% 69 ± 22% 67 ± 22%

STV - Acc/Corr 83.93 ± 4.70% 85.63 ± 8.71% 39.97 ± 24.93% 47 ± 25% 21 ± 17%

SLAP - Acc 87.05 ± 5.93% 72.66 ± 18.04% 10.77 ± 6.50% 42 ± 31% 35 ± 25%

SLAP - Acc/OC 81.70 ± 6.80% 80.66 ± 16.07% 1.18 ± 1.28% 53 ± 33% 52 ± 32%

SLAP - Acc/Corr 86.18 ± 5.63% 92.98 ± 1.29% 3.34 ± 0.09% 78 ± 2% 75 ± 2%

Lap - Acc 83.71 ± 5.30% 85.51 ± 7.86% n.a. n.a. n.a.

Lap - Acc/Corr 84.97 ± 5.67% 91.72 ± 7.39% n.a. n.a. n.a.

The main aim of the experiments is to compare three
different model selection criteria: (i) classification accuracy, (ii)
classification accuracy and overlap between the solutions, (iii)
classification accuracy and correlation between the solutions; and
investigate their impact on the different performance measures:
Accuracy, Sparsity, Correlation, Overlap, and Corrected Overlap
(OC). As we noted in the previous section, the last three quantities
are stability/reproducibility measures which indicate the extent
to which maps of coefficients or sparsity patterns associated with
a learning method are stable across LOSO-CV folds and hence
reproducible.

Table 1 reports the average and standard deviation for the five
performance measures computed on the external LOSO-CV (test
error) of each learning method and model selection criterion.
Each row in the table refers to one learning method trained
with one of the three model selection criteria: “Acc,” “Acc/OC,”
and “Acc/Corr.” For example, in the table,“LASSO - Acc” means
that we run LASSO and selected its regularization parameter
according to best accuracy, whereas “LASSO - Acc/OC” means
that we run LASSO and selected the regularization parameter
which minimizes the distance in the Accuracy/Corrected
Overlap diagram. Likewise, “LASSO - Acc/Corr” means that
we run LASSO and selected the regularization parameter which
minimizes the distance in the Accuracy/Correlation diagram.
As expected when test performance is measured according to
accuracy, the most effective model selection criterion is accuracy
itself. Similarly, when test performance accounts for correlation
or corrected overlap, the best performance tends to be obtained
by using Acc/Correlation or Acc/OC as the model selection
criterion, respectively. In Figure 1, we show an example of
“Mean Accuracy vs. Mean Corrected Overlap” and of “Mean
Accuracy vs. Mean Correlation” plot for the LASSO model
trained for the first external LOSO fold. Note that for each
learning method, there is significant discrepancy between the
different optimization criteria used.

One interesting observation from Table 1 is the fact that using
accuracy and stability (measured by OC) as a joint criterion for
model selection leads to solutions that are more similar across
different sparsity models in terms of accuracy, sparsity levels
and corrected overlap, with respect to using only accuracy as
optimization criterion. For example, when using the criterion
Acc/OC the accuracy across different sparsity models varies from
81.03% (STV) to 84.08% (E-NET), the sparsity varies from 0.25
(LASSO) to 3 (E-NET) and the corrected overlap (OC) varies
from 52 (SLAP) to 82 (E-NET). These variations are much
smaller than the ones observed for model selection based on
accuracy only. In this case the accuracy varies from 83.71% (LAP)
to 88.02% (E-NET), the sparsity varies from 0.64 (LASSO) to
84.14 (E-NET) and the corrected overlap (OC) varies from 2
(E-NET) to 35 (SLAP). Interestingly, when using the criterion
Acc/Corr this effect is not observed.

In Figure 2, we present the results for the different methods
in the planes “Mean Accuracy vs. Mean Corrected Overlap”
and “Mean Accuracy vs. Mean Correlation.” Overall the best
performing method is the Elastic Net, achieving an average
accuracy of over 84% when the model selection criterion Acc/OC
is employed, yielding at the same time a highly stable sparsity
pattern. The LASSO gives the most sparse coefficient vectors
(maps), however these are less stable than those obtained by
Elastic Net.

Figures 3–5 show the coefficient maps for the different
methods and different optimization criteria (averaged across
the external LOSO folds). Figure 3 shows the coefficient maps
when accuracy was employed as a model selection criterion. It is
possible to notice that the coefficient maps present very different
levels of sparsity and smoothness even though the accuracy for
the different methods varies less than 5% (from 83.71 to 88.02%).
These results illustrate the effect of different sparsity constraints
on the coefficient maps. As expected the LASSO solution is
extremely sparse regardless of the model selection criterion. The
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FIGURE 3 | Coefficient maps for different models when the model selection criterion Acc is employed.

coefficient maps for ENET are not sparse and show a smooth
variation over the voxels/regions. Not surprisingly, the coefficient
maps for Total Variation (TV) and Laplacian (LAP) methods led
to non-sparse solutions, however the TV coefficients show large
regions with constant values while the LAP coefficients show a
smooth variation across the brain voxels/regions, presenting a
similar pattern as the ENET. Finally, the coefficient maps for
Sparse Total Variation (STV) and Sparse Laplacian (SLAP) are
sparser versions of the TV and LAP. Including correlation across
the LOSO solutions as an additional model selection criterion
leads to coefficient maps similar to the ones obtained using
only accuracy (Figure 4), with STV showing a pattern similar
to TV.

In Figure 5, we can see the coefficient maps when accuracy
and corrected overlap (OC) were employed as model selection
criteria for the sparse methods (LASSO, ENET, STV, and SLAP).

It is interesting to see that in this case all maps became very
similar both in terms of sparsity and smoothness. In all cases the
coefficient maps are very sparse with well localized clusters and
peaks. Overall, the Acc/OC model selection criterion seems to
lead to solutions that are the most sparse and stable (according to
the overlap and corrected overlap measures), while the observed
decrease in accuracy performance is not significant (according to
the Welch’s t-test).

In order to illustrate the impact of the model selection criteria
on the stability of the coefficients across folds, in Figure 6 we
present the coefficient maps for the first and second LOSO folds
for the STV method using the different model section criteria.
As we can see there is a lot of variation between the coefficients
when the regularization parameters are selected according to
accuracy, whereas when distance in the “Mean Accuracy vs.
Mean Corrected Overlap” diagram is used the coefficients
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FIGURE 4 | Coefficient maps for different models when the model selection criterion ACC/Corr is employed.

become very similar which indicates that the solutions become
more reproducible/stable.

A more objective description of the coefficient maps is
provided in Tables 2–4with a list of the five top clusters found by
eachmethod and eachmodel selection criterion. This description
was not done for the non sparse approaches as in this case
all voxels within the image are included in a single cluster.
The Tables show the total number of clusters found and the
brain regions (including the corresponding Brodman Area -
BA) corresponding to the five top clusters ranked according to
the maximum coefficient within the cluster. It is possible to
see that although different methods find very different numbers
of clusters depending on the sparsity constraint and model
selection criteria, there is a good agreement between the main
clusters found by the different methods. In particular when
the optimization criteria Acc/OC was used the different sparse

methods (LASSO, ENET, STV, and SLAP) identified the same
regions (Table 4), with some differences in the ranking order. As
expected, considering the fMRI experimental task (visualization
of pleasant or unpleasant pictures), the main clusters include
visual areas (e.g., left and rightmiddle occipital gyrus), areas often
associated with emotional processing (e.g., right medial frontal
gyrus, right anterior cingulate) and cerebellum (left cummen).
A visual inspection of the non-sparse approaches shows that
their peaks are also in similar regions selected by the sparse
approaches.

4. DISCUSSION

During the last years there has been a huge increase in
the application of machine learning methods to analyse
neuroimaging data (see Pereira et al., 2009; Haynes, 2015, and
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FIGURE 5 | Coefficient maps for different sparse models when the model selection criterion Acc/OC is employed.

references therein), varying from neuroscience applications for
decoding mental or cognitive states (e.g., Polyn et al., 2005;
Mourao-Miranda et al., 2006; Haynes et al., 2007; Schrouff et al.,
2012) to clinical applications for diagnoses and prognoses (e.g.,
Kloppel et al., 2012). Despite their inherent ability to deal with
multivariate data and their predictive framework which enables
decisions at the single subject level, one of their main limitations
is the interpretability issue. For linear machine learning models,
the vector of coefficients (also known as weight vector) can be
plotted and visualized as a brain image showing the contribution
of each voxel in the image to the decision function. The main
issue is that, for non sparse approaches (e.g., Kernel Ridge
Regression, Support VectorMachines) all voxels within the image
will have some contribution to the decision function, making it
difficult to decide which voxels contribute the most. A number of
approaches have been proposed to ease the interpretability issue,
such as feature selection (e.g., Martino et al., 2008; Langs et al.,
2011; Rondina et al., 2014), searchlight (Kriegeskorte et al., 2006)
and sparse models (see references in the introduction). Sparsity
has often been advocated as a proxy for interpretability, however
sparsity can be imposed by very different penalties or constraints
which should be related to prior knowledge about the problem
considered.

Our previous work (Baldassarre et al., 2012b) showed that
different sparsity constraints can lead to similar performance in
terms of accuracy, but the resulting models differ in term of
sparsity and stability. In the present work, we investigated the
impact of the model selection criteria (parameter optimization

criteria) on models with different sparsity penalties. Our results
show that having a second criterion (in addition to accuracy) for
model selection improves the stability/reproducibility (measured
by OC or correlation across LOSO solutions) of the sparse
models, i.e., the instability of the sparse models decreases
by including reproducibility as an additional model selection
criterion.

When trying to interpret brain maps resulting from sparse
models it is important to have in mind that the properties of the
maps, such as sparsity and smoothness, are strongly driven by the
choice of the penalty term in the objective function. The effect
of the chosen penalty on the map of coefficients can be clearly
seen in Figure 3. It is possible to observe that when accuracy is
used for model selection, methods with different penalties can
have similar performance and very different coefficient maps.
However, when reproducibility (measured by OC) is used in
addition to accuracy for models selection, the solutions or maps
became more similar even across the different sparse methods
(Figure 5). Interestingly the same effect is not observed when
reproducibility (measured by correlation) is used as additional
model selection criterion (Figure 4). One possible explanation
for the difference observed on the results when using OC or
correlation representing stability is the fact that correlation is
significantly affected, i.e., reduced, by differences in models’
supports. Therefore, correlation betweenmodels can be very high
when the models are both very sparse or both very dense, leading
to choosing such models during model selection, as evidenced
by Figure 4. We also noticed that the criteria Acc/OC tended
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FIGURE 6 | Coefficient maps for the first two LOSO folds for the STV method using different model selection criteria (Accuracy, Accuracy and

Correlation, Accuracy and Corrected Overlap).

to select higher sparsity regularization parameters, because
corrected overlap (due to its correction term) favors highly
overlapping, but not dense models. This might explain the
reason why the models using the criteria Acc/OC are very sparse
(Figure 5). Although a sparse solution seems the most stable for
the considered data set, the sparsity of the learned solution is
likely to be dataset dependent. Different fMRI datasets might
have different levels of sparsity depending on the cognitive task.

If a cognitive task only engages a very small network of few
regions, then very sparse solutions will probably show the best
performance in terms of accuracy and stability. On the other
hand, if a cognitive task engages a large network, then less sparse
solutions will probably lead to best overall performance. The
stability or reproducibility of the model is also an important
aspect to be considered for the interpretation as sparsity in
itself can produce highly unstable models. Figure 6 illustrates
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TABLE 2 | List of clusters for sparse methods when the model selection

criterion Acc is employed.

Method Number of clusters Top five clusters

LASSO 61 Left middle occipital gyrus - BA 19

Right middle frontal gyrus - BA 11

Right middle occipital gyrus - BA 19

Left culmen

Left superior temporal gyrus - BA22

STV 35 Right middle occipital gyrus - BA19

Left superior frontal gyrus - BA 8

Left inferior parietal lobule - BA 40

Right inferior temporal gyrus - BA 20

Right inferior frontal gyrus - BA 47

SLAP 49 Left middle occipital gyrus - BA 37

Right middle occipital gyrus - BA19

Right middle frontal gyrus - BA 11

Right postcentral gyrus - BA 7

Right anterior cingulate - BA 24

TABLE 3 | List of clusters for sparse methods when the model selection

criterion Acc/Corr is employed.

Method Number of clusters Top five clusters

LASSO 60 Left middle occipital gyrus - BA 37

Right middle occipital gyrus - BA19

Left culmen

Right middle frontal gyrus - BA 11

Right anterior cingulate - BA 24

SLAP 148 Left middle occipital gyrus - BA 37

Right middle occipital gyrus - BA19

Right postcentral gyrus - BA 7

Right anterior cingulate - BA 24

Left culmen

In this case we only present the list of cluster for LASSO and SLAP since the other
approaches did not lead to sparse solutions.

the impact of including reproducibility as a second criterion for
model selection for STV. The STV solutions for two different
cross validations folds of the LOSO are extremely different when
accuracy is used for model selection and become much more
similar/stable when correlation or OC is included as a second
criterion for model selection.

If we compare the clusters’ location for different sparse
methods it is interesting to observe that the solutions of LASSO,
ENET, STV, and SLAP include basically the same top five regions
(with some differences in the ranking order) when accuracy and
OC are used as model selection criteria. The top clusters include
left middle occipital gyrus (BA 37), right middle occipital gyrus
(BA19), left culmen, right middle frontal gyrus (BA 11/10), and
right anterior cingulate (BA 24). The fist two regions are known
to be involved in visual processing (e.g., Wandell et al., 2007) and

TABLE 4 | List of clusters for sparse methods when the model selection

criterion Acc/OC is employed.

Method Number of clusters Top five clusters

LASSO 62 Left middle occipital gyrus - BA 37

Right middle occipital gyrus - BA 19

Left culmen

Right middle frontal gyrus - BA 11

Right anterior cingulate - BA 24

ENET 71 Left middle occipital gyrus - BA 37

Right middle occipital gyrus - BA19

Right medial frontal gyrus - BA10

Right anterior cingulate - BA 24

Left culmen

STV 10 Left middle occipital gyrus - BA 37

Right middle occipital gyrus - BA19

Right anterior cingulate - BA 24

Right middle frontal gyrus - BA 11

Left culmen

SLAP 106 Left middle occipital gyrus - BA 37

Right middle occipital gyrus - BA19

Right medial frontal gyrus - BA10

Right anterior cingulate - BA 24

Left culmen

the last two have been associated with emotional processing (e.g.,
Etkin et. al., 2011). The involvement of these regions would be
expected in the problem considered, i.e., decoding visualization
of emotional pictures.

The potential gains of unstructured vs. structured sparse
models for neuroimaging applications will depend on how well
the model assumptions (or sparsity penalty) agree with the
data structure. Structured sparse models can incorporate more
prior knowledge about the data structure and therefore can
potentially lead to models with higher performance. However,
since neuroimage data, in general, has very high dimensionality
and complex structure it is not certain that structured sparse
models will have the highest performance when compared
with other types of sparsity, as was the case in the present
work. Among the penalties considered in the present work,
the SLAP penalty seems closer to our beliefs about how the
brain works, i.e., the brain is organized in regions and the
activities within these regions are expected to vary smoothly.
Nevertheless, ENET presented the best performance in terms of
accuracy and reproducibility. Our results show that SLAP can
lead to very noisy maps with hundreds of cluster, many of them
being very small and more likely to be related to noise than
brain activity. One difficulty to choose the optimal penalty is
the lack of an absolute ground truth in terms of informative
or predictive regions in the brain, making it difficult to define
an objective criterion for model comparison. Some studies have
used results from mass univariate statistical tests between the
classes (e.g., t-test) as a proxy for the ground truth, however such
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tests would fail to capture multivariate properties (e.g., subtle
differences observed when a set of voxels is considered jointly).
Here we investigate the use of two criteria for model selection,
decoding accuracy and stability/reproducibility (measured byOC
or correlation across LOSO folds). Although these criteria do
not embed a metric of distance to the ground truth solution,
the combination of decoding accuracy and overlap between
the solutions leads to similar solutions across different learning
methods.

Rasmussen et al. (2012) have previously investigated the
impact of choices of model regularization parameters on the
generalization and the stability/reproducibility of spatial patterns
extracted from classification models in neuroimaging. The
authors evaluate the models using the NPAIRS resampling
scheme (i.e., half-splits resamples Strother et al., 2002) and
constructed performance-vs.-reproducibility curves (pr-
curves) for three classifiers: Support Vector Machine, Fisher
Discriminant Analyses and Logistic Regression. For each
classifier type, they compared the models that optimized
the prediction accuracy, joint prediction accuracy and
reproducibility (measured by Pearson correlation coefficient
between the models’ coefficients), and only reproducibility. The
authors observed a trade-off between prediction accuracy and
reproducibility and argued that regularization parameters must
be selected to balance this trade-off in order to provide a more
accurate representation of the underlying brain networks. They
also investigated how performance and stability/reproducibility
(measured by overlap and mutual information between the
solution) varied for the logistic regression with ENET penalty as
function of the regularization parameters, however in this case
the stability/reproducibility metrics were only used to access the
models and not for parameter optimization. Other studies also
reported a tradeoff between prediction vs. reproducibility using
a penalized Fishers discriminant analysis (FDA) on PCA basis
(Strother et al., 2004; Yourganov et al., 2011).

Our work builds upon Rasmussen et al. (2012), as we
also investigate the trade-off between prediction accuracy and
reproducibility as model selection criteria, but differs from
it in many aspects. First, our goal was to investigate the
role of model selection criteria on several different sparse
methods (LASSO, ENET, TV, LAP, STV, and SLAP). Second,
we used a LOSO framework with nested cross-validation
for parameter optimization instead of a half-split framework.
Third, we investigated two stability/reproducibility metrics,
the Pearson correlation coefficient and the pairwise corrected
overlap across the LOSO solutions. Using our framework, we
observed that when using prediction accuracy and corrected
overlap as joint optimization criterion the solutions for
different sparse methods become very similar in terms of
performance and brain regions identified as relevant. These
results suggest that the choice of model regularization parameters
might be more important than the choice of the sparsity
constraint.

One limitation of our work is to use the LOSO cross-validation
framework, i.e., the LOSO framework is known to have high

variance and the solutions for different cross-validation folds
are not independent. Nevertheless, considering the sample
size of 16 subjects, it would be difficult to explore other
cross-validation frameworks. It should be noted that since each
subject has 42 scans of each active condition, leaving one
subject out corresponds to leaving 84 examples out for test.
Future work, using larger sample sizes should be performed
to investigate the impact of adding stability/reproducibility as
model selection criteria in other cross-validation frameworks.
A possible future direction could be to explore multitask
learning methods, in which the subjects are treated as distinct
classification or regression tasks, which are related by means
of a joint regularizer (see, for example, Argyriou et al., 2008;
Romera-Paredes et al., 2013, and references therein). Ideas
from Bzdok et al. (2015) may also prove valuable in this
direction.
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