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Cellular Regulation of Amyloid
Formation in Aging and Disease

Esther Stroo, Mandy Koopman, Ellen A. A. Nollen * and Alejandro Mata-Cabana *

European Research Institute for the Biology of Aging, University of Groningen, University Medical Center Groningen,
Groningen, Netherlands

As the population is aging, the incidence of age-related neurodegenerative
diseases, such as Alzheimer and Parkinson disease, is growing. The pathology of
neurodegenerative diseases is characterized by the presence of protein aggregates
of disease specific proteins in the brain of patients. Under certain conditions these
disease proteins can undergo structural rearrangements resulting in misfolded proteins
that can lead to the formation of aggregates with a fibrillar amyloid-like structure. Cells
have different mechanisms to deal with this protein aggregation, where the molecular
chaperone machinery constitutes the first line of defense against misfolded proteins.
Proteins that cannot be refolded are subjected to degradation and compartmentalization
processes. Amyloid formation has traditionally been described as responsible for
the proteotoxicity associated with different neurodegenerative disorders. Several
mechanisms have been suggested to explain such toxicity, including the sequestration
of key proteins and the overload of the protein quality control system. Here, we review
different aspects of the involvement of amyloid-forming proteins in disease, mechanisms
of toxicity, structural features, and biological functions of amyloids, as well as the cellular
mechanisms that modulate and regulate protein aggregation, including the presence of
enhancers and suppressors of aggregation, and how aging impacts the functioning of
these mechanisms, with special attention to the molecular chaperones.

Keywords: neurodegeneration, protein aggregation, amyloid, protein quality control, SERF

INTRODUCTION

The process of aging is defined as a time-dependent functional decline eventually resulting in an
increased vulnerability to death (reviewed in Lopez-Otin et al., 2013). Gaining knowledge about
the molecular events that occur in the cell during aging is important in order to understand
the disease process of age-related diseases. Some neurodegenerative diseases, including Alzheimer
(AD), Parkinson (PD), and Huntingtin disease (HD), share as hallmark the appearance of protein
aggregates with fibrillary amyloid-like structures in the brain. These amyloid fibrils are composed of
aggregation-prone proteins, such as mutant huntingtin (HTT) in Huntington disease, a-synuclein
in Parkinson disease, and amyloid-beta (AB) in Alzheimer disease (Scherzinger et al., 1999; Chiti
and Dobson, 2006; Goedert and Spillantini, 2006; See Table 1 for a list of aggregation-prone
proteins involved in neurodegenerative diseases). The role of these aggregates in disease is not fully
understood: the most prevalent hypothesis is that aggregation intermediates—single or complexes
of aggregation-prone proteins—are toxic to cells and that the aggregation process represents a
cellular protection mechanism against these toxic intermediates (Lansbury and Lashuel, 2006; Hartl
and Hayer-Hartl, 2009).
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TABLE 1 | Neurodegenerative diseases associated with protein aggregation.

Identified disease genes

Location of
aggregates

Protein that aggregates Affected brain region

Alzheimer disease (AD) APP (Chartier-Harlin et al., 1991; Goate

et al.,, 1991; Murrell et al., 1991)
PS1 (Sherrington et al., 1995)

PS2 (Levy-Lahad et al., 1995; Rogaev,
1995)

Amyloid-beta, Tau Extracellular Cortex and Hippocampus

Intracellular

Huntington disease (HD) HD (Hess et al., 2016)

Huntingtin Intracellular Striatum

Parkinson disease (PD) SNCA (Polymeropoulos et al., 1997)
Parkin (Kitada et al., 1998)

PINK1 (Valente et al., 2001)

DJ1 (Bonifati et al., 2003)

LRRK (Zimprich et al., 2004) e.a.

Alpha synuclein Intracellular Substantia Nigra

Dementia with Lewy bodies (DLB) SNCA (Higuchi et al., 1998)

SNCB (Ohtake et al., 2004)

Alpha synuclein Intracellular Cortex and hippocampus

Frontotemporal dementia (FTA) MAPT (Wilhelmsen et al., 1994)

Tau Intracellular Frontal and temporal cortex

Prion disease (PrD) PRNP (Oesch et al., 1985)

Prion protein Extracellular Brain and spinal cord

Amyotrophic lateral sclerosis
(ALS)

SOD1 (Rosen et al., 1993)

FUS (Kwiatkowski et al., 2009)

C9orf72 (Dedesus-Hernandez et al., 2011;
Renton et al., 2011) e.a.

SOD, FUS, TDP-43 Intracellular Upper and lower Motor neurons

The familial forms of many neurodegenerative diseases
appear to involve toxic gain-of-function mutations in disease-
specific proteins that increase their misfolding and aggregation
properties. The resulting misbalance in protein homeostasis
can speed up the process of amyloid formation, thereby often
provoking an early-onset of several neurodegenerative disorders.

In this review, we address the involvement of aggregation-
prone proteins in the development of different age-related
disease. We describe how different cellular regulators impact on
protein aggregation and how they are affected by aging, with
special focus on the molecular chaperone machinery and other
pathways involved in maintaining protein homeostasis. We also
discuss different mechanisms that may underlie the toxicity of

Abbreviations: AP, amyloid-beta; AD, Alzheimer disease; ALS, amyotrophic
lateral sclerosis; APP, amyloid precursor protein; APR, aggregation prone region;
ATTR, transthyretin amyloidosis; CMA, chaperone mediated autophagy; CJD,
Creutzfeldt-Jakob disease; CPEB, cytoplasmic polyadenylation element-binding
protein; DLB, dementia with Lewy bodies; ER, endoplasmic reticulum; FTD,
frontal temporal dementia; HD, Huntington disease; HSF-1, heat shock factor 1;
HSP, heat shock protein; HTT, huntingtin; IAPP, islet amyloid polypeptide; IIS,
insulin/insulin-like growth factor 1 signaling; IPOD, insoluble protein deposit;
JUNQ, juxtanuclear quality control compartments; LLPS, liquid-liquid phase
separation; MOAG-4, modifier of aggregation 4; NPC, nuclear pore complex;
PD, Parkinson disease; PolyQ, polyglutamine; PQC, protein quality control; PrD,
prion disease; PrP, prion protein; RNP, ribonucleoprotein; SAA, serum amyloid
protein; SERE small EDKR rich factor; UPR, unfolded protein response; UPS,
ubiquitin-proteasome system.

amyloid-forming proteins and we highlight some new findings
in the amyloid field.

CELLULAR REGULATORS OF PROTEIN
AGGREGATION

Protein Quality Control

Cells have a protein quality control (PQC) system to maintain
protein homeostasis. Preserving protein homeostasis involves the
coordinated action of several pathways that regulate biogenesis,
stabilization, correct folding, trafficking, and degradation of
proteins, with the overall goal to prevent the accumulation of
misfolded proteins and to maintain the integrity of the proteome.

Chaperones

One of the cellular mechanisms that copes with misfolded
proteins is the chaperone machinery. A molecular chaperone
is defined as a protein that interacts with, stabilizes or assists
another protein to gain its native and functionally active
conformation without being present in the final structure (Ellis,
1987). Many members of the chaperone protein family are
referred to as heat shock proteins (HSP), as they are upregulated
during stress conditions such as heat shock (Ellis and Hartl,
1999; Kim et al, 2013). In addition to folding of misfolded
proteins, molecular chaperones are also involved in a wide
range of biological processes such as the folding of newly
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synthesized proteins, transport of proteins across membranes,
macromolecular-complex assembly or protein degradation and
activation of signal transduction routes (Kim et al., 2013; Kakkar
etal., 2014). Under the denomination of “molecular chaperones”
there are a variability of proteins that have been classified
into five different families according to sequence homology,
common functional domains or subcellular localization: the
HSP100s, the HSP90s, the HSP70/HSP110, HSP60/CCTs, and
the a-crystallin-containing domain generally called the “small
HSPs” (Lindquist and Craig, 1988; Sharma and Priya, 2016).
Typically, molecular chaperones recognize exposed hydrophobic
domains in unfolded or misfolded proteins, preventing their self-
association and aggregation (Hartl et al., 2011; Kim et al., 2013).
The regulation of chaperones can be divided into three categories,
(1) constitutively expressed, (2) induced upon stress, and (3)
constitutively expressed and induced upon stress (Morimoto,
2008). Under normal conditions the HSP levels match the
overall level of protein synthesis, but during stress when mature
proteins are unfolded the chaperone machinery is challenged
and the expression of specific HSPs increases (Kakkar et al.,
2014).

Next to their function under normal cellular conditions,
chaperones play an important part during neurodegeneration
when there is an overload of the PQC system by unfolded
proteins (Kim et al., 2013; Kakkar et al., 2014; Lindberg
et al, 2015). Each neurodegenerative disease is associated
with a different subset of HSPs that can positively influence
the overload of unfolded proteins (Kakkar et al., 2014). One
example is the molecular chaperone DNAJB6b that can suppress
polyglutamine (polyQ) aggregation and toxicity in a cell model
for polyQ diseases (Hageman et al., 2010; Gillis et al., 2013),
and suppress the primary nucleation step by a direct protein-
protein interaction with polyQ proteins (Mansson et al., 2014b)
and AB42 (Mansson et al., 2014a). Overexpression of DNAJB6
in a mouse model for HD results in reduction of the disease
symptoms and increase life span (Kakkar et al., 2016). In PD,
the overexpression of HSP70 can prevent a-synclein-induced cell
death in yeast, Drosophila and mouse models of this disease
(Auluck and Bonini, 2002; Klucken et al., 2004; Flower et al.,
2005; Sharma and Priya, 2016). HSP70 has been shown to
bind prefibrillar species of a-synclein and to inhibit the fibril
formation (Dedmon et al., 2005). There is also a role for
molecular chaperones in AD, where the overexpression of heat
shock factor 1 (HSF-1), main regulator of HSPs expression, in
an AD mouse model diminished soluble Af levels (Pierce et al.,
2013), and multiple HSPs alleviated Tau toxicity in cells (Kakkar
et al., 2014).

Additionally to the inhibition of protein aggregation of
misfolded proteins, a disaggregase activity has been described
for some molecular chaperones that can solubilize aggregated
proteins (Glover and Lindquist, 1998; Tyedmers et al., 2010;
Winkler et al., 2012). In bacteria, yeast, fungi and plants the
HSP100 disaggregases are highly conserved (Tyedmers et al,
2010; Torrente and Shorter, 2013). In yeast, HSP104 collaborates
with the other HSPs, to effectively disaggregate and reactivate
proteins trapped in disordered aggregates (Glover and Lindquist,
1998; Shorter, 2011; Torrente and Shorter, 2013; Lindberg et al.,

2015). Metazoans entirely lack HSP100 disaggregases in the
cell, however, it has recently shown that in mammalians the
disaggregase function is performed by the HSPH (Hsp110)
family in cooperation with the HSP70-40 machine (Rampelt
et al., 2012; Gao et al., 2015; Nillegoda and Bukau, 2015). This
machinery has been shown to fragmentize and depolarize large
a-synclein fibrils within minutes into smaller fibrils, oligomers
and monomeric a-synclein in an ATP-dependent fashion (Gao
et al., 2015).

Chaperones are also involved in other pathways of PQC. As
discussed below they can mediate the degradation of misfolded
proteins or their sequestration in cellular compartments.

Together, this shows the important direct role chaperones play
in the formation of amyloids and thereby making chaperones an
interesting therapeutic target for neurodegenerative diseases.

Protein Degradation

Protein degradation is another key mechanism to deal with
misfolded proteins. Three pathways have been described, i.e., the
ubiquitin (Ub)-proteasome system (UPS), chaperone mediated
autophagy (CMA), and macroautophagy (Ciechanover, 2006;
Ciechanover and Kwon, 2015). Soluble misfolded proteins are
degraded by the UPS, a system that is dependent on a cascade
of three enzymes E1, E2, and E3 ligase that conjugate ubiquitin to
the misfolded proteins. The ubiquitinated protein is transported
by molecular chaperones to the proteolytic system, where the
protein is unfolded and passed through the narrow chamber of
the proteasome that cleaves it into short peptides (Ciechanover
et al., 2000). The CMA degrades proteins that expose KFERQ-
like regions, these regions are recognized by the chaperone heat-
shock cognate 70 (Hsc70) and delivered to the lysosomes and
degraded by lysosomal hydrolases into amino acids (Kiffin et al.,
2004; Rothenberg et al., 2010). Protein aggregates or proteins
that escape the first two degradation pathways are directed
to macroautophagy, a degradation system where substrates are
segregated into autophagosomes which in turn are fused with
lysosomes for degradation into amino acids (Koga and Cuervo,
2011). The proteins involved in neurodegenerative disease can
rapidly aggregate and can thereby escape degradation when
they are still soluble, the aggregates, and intermediate forms are
partly resistant to the known degradation pathways (reviewed in
Ciechanover and Kwon, 2015).

Unfolded Protein Response

In the endoplasmic reticulum (ER), the unfolded protein
response (UPR), induced during periods of cellular and ER
stress, aims to reduce unfolded protein load, and restore
protein homeostasis by translational repression. ER stress can
be the result of numerous conditions, including amino acid
deprivation, viral replication and the presence of unfolded
proteins, resulting in activation of the UPR. The UPR has three
pathways activated through kinases, (1) protein kinase RNA
(PKR)-like ER kinase (PERK), (2) inositol-requiring enzyme 1
(IRE1), and (3) activating transcription factor 6 (ATF6; Halliday
and Mallucci, 2015). These kinases are kept in their inactive
state by the binding immunoglobulin protein (BiP), during ER
stress this protein binds to exposed hydrophobic domains of
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unfolded proteins and thereby allowing activation of these factors
(Gething, 1999). In neurodegenerative diseases markers of the
UPR, like PERK-P and eIF2a-P, have been reported in the brain
of patients with neurodegenerative disease and in mouse models
of neurodegeneration (Hetz and Mollereau, 2014; Scheper and
Hoozemans, 2015).

Protein Compartmentalization

In the cell, misfolded proteins can be sequestered in distinct
protein quality control compartments by chaperones and sorting
factors. These compartments function as temporary storage until
the protein can be refolded or degraded by the proteasome.
Different compartments have been described in the literature
that sequester different kind of misfolded proteins at various
conditions, these include JUNQ, IPOD, Q-body, and aggresome
(Sontag et al., 2014). Insoluble proteins are sequestered into
insoluble protein deposit (IPOD) compartments that are located
near the periphery of the cell (Kaganovich et al., 2008; Specht
et al., 2011). If the proteasome is impaired these insoluble
proteins can also be sequestered in aggresomes (Johnston et al.,
1998), whereas, soluble misfolded proteins can be sequestered
into ER-anchored structures named Q-bodies (Escusa-Toret
et al, 2013). However, when the proteasome is impaired
soluble ubiquitinated misfolded proteins are sequestered into ER-
associated juxtanuclear quality control compartments (JUNQ)
compartments (Kaganovich et al., 2008; Specht et al., 2011).

The JUNQ and Q-bodies concentrate misfolded proteins in
distinct compartments together with chaperones and clearance
factors, which makes processing them easier and more efficient.
The IPOD and aggresomes are thought to protect the cell
from toxic misfolded species, they do however also contain
some disaggregases and autophagy related proteins and might
therefore be recovered from these compartments (Kaganovich
et al., 2008; Specht et al., 2011).

Drivers of Amyloid Formation
Most studies on neurodegenerative diseases focus on either the
toxic mechanisms or on the PQC system as possible targets for
treatment. Only a few studies so far have focused directly on
modifiers of the protein aggregation pathway. One example is the
study that focused on a reduced insulin/insulin-like growth factor
1 signaling (IIS), which induces the assembly of AB into densely
packed and larger fibrillar structures (Cohen et al., 2009). The
exact mechanisms behind the formation of these tightly packed
amyloid structures by IIS signaling remains to be unraveled.
MOAG-4 (modifier of aggregation 4) was found in a forward
genetic screen using C. elegans models for neurodegenerative
diseases, as an enhancer of aggregation and toxicity of
several aggregation-prone disease proteins, including polyQ,
a-synuclein, and AB (van Ham et al, 2010). MOAG-4 is a
small protein of unknown function that is evolutionarily highly
conserved. It contains a 4F5 domain of unknown function and is
predicted to have a helix-loop-helix secondary structure. MOAG-
4 itself was excluded from the polyQ aggregates in the C. elegans
model. Based on biochemical experiments with worm extracts,
MOAG-4 has been suggested to act on the formation of a
compact aggregation intermediate. Furthermore, in vitro studies

with mutant HTT exon 1 and MOAG-4 show a direct increase in
aggregation (Unpublished data). Moreover, it was shown that the
effect on aggregation works independent from DAF-16, HSF-1,
and chaperones.

The human orthologs of MOAG-4 were found to be a two
small proteins with unknown function, i.e., Small EDKR Rich
Factor (SERF) 1A and 2. These two orhologs are 40% identical
and 54% similar to MOAG-4 (van Ham et al.,, 2010). It was
found that SERFla (Falsone et al., 2012) is able to directly
drive the amyloid formation of mutant HTT exon 1 and alpha-
synuclein in an in vitro assay. It has been suggested that
SERFla directly affects the amyloidogenesis of alpha-synuclein
by catalyzing the transition of an alpha-synuclein monomer into
a amyloid-nucleating species (Falsone et al., 2012). From cell
culture experiments we know that overexpression of SERFla or
SERF2, together with mutant HTT exon 1 results in an increase
in toxicity and aggregation of the polyQ protein. Whereas, knock
down of SERF using siRNA results in reduced toxicity and
aggregation (van Ham et al,, 2010).

PROTEIN HOMEOSTASIS IN AGING

Under normal conditions, the PQC can rapidly sense and correct
cellular disturbances, by e.g., activating stress-induced cellular
responses to restore the protein balance. During aging or when
stress becomes chronic, the cell is challenged to maintain proper
protein homeostasis (Figure 1; Koga et al., 2011; Labbadia and
Morimoto, 2015; Radwan et al., 2017). Eventually, this can lead
to chronic expression of misfolded and damaged proteins in
the cell that can result in the formation of protein aggregates.
The presence of aggregation-prone proteins contributes to the
development of age-related diseases (Chiti and Dobson, 2006;
Kalkkar et al., 2014). The decline of protein homeostasis during
aging is a complex phenomenon that involves a combination of
different factors.

In line with the decreased protein homeostasis, there appears
to be an impairment of the upregulation of molecular chaperones
during aging (reviewed in Koga et al., 2011). This has been
reported for HSP70 in senescent fibroblasts and in different
tissues from different species, including monkeys (Fargnoli
et al., 1990; Pahlavani et al., 1995; Hall et al., 2000). The
importance to regulate the expression of HSPs is seen in flies
and worms, where upregulation of HSPs leads to increase
in lifespan (Walker et al, 2001; Hsu et al, 2003; Morley
and Morimoto, 2003). Furthermore, lymphocytes from human
centenarians show chaperone-preserved upregulation during
heat shock (Ambra et al., 2004). It has been proposed that
inability of the transcription factor HSF-1 to bind the chaperone
gene promoter could explain the failure of hsp70 to respond
to stress during aging (Ambra et al., 2004; Singh et al., 2006).
The functional decline of chaperones during aging also impairs
proper folding of proteins in the ER resulting in activation of the
UPR (reviwed in Taylor, 2016). Moreover, it has been shown that
the capacity of some elements of the UPR, like PERK or IRE-1
also decline with age (Paz Gavildn et al., 2006; Taylor and Dillin,
2013).

Frontiers in Neuroscience | www.frontiersin.org

February 2017 | Volume 11 | Article 64


http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Neuroscience/archive

Stroo et al.

Protein Aggregates in Age-Related Diseases

Young

©

\

Chaperones
% M|sfolded
@V ATP 4G

@ -
Proteasome

Folded

N @s

Autophagy

DNA damage
Mitochondrial dysfunction
Dysfunctioning of protein quality control system
ER stress

FIGURE 1 | The aging cell. Important cellular processes are affected during aging. This will result in several cellular phenotypes, including the overload of the protein
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Since all major classes of molecular chaperones, with the
exception of the small HPSs, are ATPases it has been suggested
that the depletion of ATP levels during aging due to mitochondria
dysfunction would affect their activity (Kaushik and Cuervo,
2015; Yerbury et al., 2016). This is reflected by the repression
of ATP-dependent chaperones and the induction of ATP-
independent chaperones in the aging human brain (Brehme
et al., 2014). This may contribute to the decline of chaperoning
function during aging.

The activity of the degradation pathways of the PQC,
autophagy and the proteasome, are also reduced during aging
(reviewed in Koga et al,, 2011 and Kaushik and Cuervo, 2015).
The proteasome decline is caused by a down-regulation or
deregulation of different proteasomal subunits and regulatory
factors (Keller et al., 2000; Ferrington et al., 2005). In autophagy,
fusion between the vesicles carrying the cytosolic cargo and
lysosomal compartments is severely impaired. The chaperone-
mediated autophagy is reduced due to progressively lower levels
of receptors at the lysosomal membrane with age (Cuervo and
Dice, 2000; Koga et al, 2011). Furthermore, a more active
proteasome has been found in fibroblasts from centenarians
(Chondrogianni et al., 2000; Koga et al., 2011) and reactivation
of the proteasome and/or autophagy pathways increases lifespan
of yeast, worms, and flies (Chondrogianni et al., 2015; Kaushik
and Cuervo, 2015; Madeo et al., 2015). Altogether, showing the
importance to remain a functioning PQC during aging.

MECHANISMS OF PROTEIN TOXICITY IN
NEURODEGENERATIVE DISEASES

Neuronal loss is one of the hallmarks of neurodegenerative
diseases, where the neurons that are vulnerable to disease
pathology differ for each disease. Initially it was thought that
the protein aggregates that are observed in post-mortem brain
material of patients were toxic (Davies et al, 1997; Kim
et al., 1999). But this view shifted toward the hypothesis that
the protein aggregates may actually be neuroprotective and
that intermediate species are toxic. Indeed, the presence of
diffuse protein resulted in higher toxicity compared to the
presence of protein aggregates only (Arrasate et al., 2004).
Furthermore, overexpression of HSF-1 in a cell model for HD
leads to fewer but larger aggregates and increased viability
(Pierce et al, 2010). The toxicity of intermediate species
may arise from the presence of hydrophobic groups on their
surface, that under normal physiological conditions would
not be accessible within the cellular environment (Campioni
et al., 2010). Accessible hydrophobicity in proteins can result
in inappropriate interactions with many functional cellular
components like the plasma membrane (Bucciantini et al.,
2012). Therefore, aggregation might be a mechanism to assist
in the clearance of misfolded proteins. In this regard, it has
been described that chaperones can supress the toxicity of the
oligomeric intermediate species by promoting the formation of
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larger aggregates (Lindberg et al., 2015). The question remains
why these intermediate species are toxic. Different mechanisms
have been suggested.

The increase of misfolded proteins during aging or disease
can interfere with the PQC system by overloading the system
(Figure 2), which in turn, can result in a propagation of
folding defects and eventually protein aggregation (Labbadia and
Morimoto, 2015). In polyQ worm models disruption of the PQC
system by the polyQ aggregates resulted in the loss of function
of several metastable proteins with destabilizing temperature-
sensitive mutations, which also enhanced the aggregation of
polyQ proteins (Gidalevitz et al., 2006). Furthermore, polyQ
aggregates also impair the ubiquitin-proteasome system in
cellular models for disease (Bence et al., 2001).

A “gain of function” mechanism is another form of cellular
toxicity. Due to misfolding, hydrophobic residues of the protein
can be located at the surface, permitting uncommon interactions
with a wide range of cellular targets (Figure2; Stefani and
Dobson, 2003), including molecular chaperones (Park et al.,
2013). Using cytotoxic artificial B-sheet protein aggregates it
was found that the endogenous proteins that are sequestered
by these aggregates share many physicochemical properties,
including their relatively large size and enriched unstructured
regions. Many of these proteins play essential roles in the

several pathways, including translation, chromatin structure, and
cytoskeleton. A loss of these proteins might results in a collapse of
essential cellular functions and consequently may induce toxicity
(Olzscha et al., 2011).

Recently, an effect of protein aggregation on the nuclear pore
complex (NPC) was described. The GGGGCC (G4C,)repeat
expansion in the non-coding region of the C9orf72 protein
is the most common cause of sporadic and familial forms
of amyotrophic lateral sclerosis (ALS) and frontal temporal
dementia (FTD), (DeJesus-Hernandez et al., 2011; Renton et al.,
2011). However, the exact mechanism of how the C9orf72
mutations contribute to the disease remains elusive. Two
hypotheses are proposed, the first describes that the repeat
containing transcripts can form intra-nuclear RNA foci that
sequester various RNA-binding proteins (Donnelly et al., 2013),
and the second describes the production of toxic dipeptide
repeat proteins (DPRs; Ash et al, 2013). New insights have
shown that mutant C9orf72 RNA affects nuclear transport of
proteins and RNA (Figure 2). Loss of NPC proteins were found
to enhance G4C, repeat toxicity in fly and human cell models
for disease (Freibaum et al., 2015; Zhang et al., 2015). Moreover,
a screen to identify modifiers of toxicity by PRsoDPR identified
an enrichment in nucleocytoplasmic transport proteins, in which
the six strongest hits were members of the karyopherin family of

Aggregates

\
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cellular organelles
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9
(@)
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-

B ¥
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Impaired nuclear
transport

FIGURE 2 | Toxic mechanism of misfolded proteins. Important cellular processes are affected as a result of misfolded proteins, including overload of the protein
quality control (PQC) system, sequestering of functional proteins, disruption of the nuclear core complex and dysfunction of other cellular organelles as mitochondria,
ER stress, and trans-Golgi network (the figure focuses on only one intermediate species, other species can be toxic too).
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nuclear-import proteins (Jovici¢ et al., 2015). Furthermore, it was
shown that nuclear localization of artificial B-sheet-, HTT-, and
TDP-43 aggregates reduces toxicity in comparison to cytoplasmic
aggregates. Because the cytoplasmic aggregates interfere with
both import and export of proteins through the nuclear pore
complex, they specifically affect proteins containing disordered
and low complexity domains including many nuclear transport
factors (Woerner et al., 2016). These studies show that reduced
nuclear transport, as a result of protein aggregates, results in
cellular toxicity. However, a better understanding of the exact
mechanism behind these observations could provide us with a
new therapeutic target to restore nuclear transport. In addition,
several studies described toxic effects of protein aggregates on the
functioning of other cellular organelles as the ER (Duennwald
and Lindquist, 2008), mitochondrion (Rhein et al., 2009), and the
trans-Golgi network (Cooper et al., 2006). Identifying different
toxic consequences of misfolded proteins gives possibilities for
treatments options.

Another mechanism of toxicity has been proposed in the
literature, in which oligomeric aggregation intermediates bind
and disrupt lipid membranes (Lashuel and Lansbury, 2006).
Annular oligomeric structures have been identified for different
amyloidogenic proteins, such as AB (Lashuel et al., 2002a,b), a-
synuclein (Lashuel et al., 2002b,c), PrP (Sokolowski et al., 2003),
or polyQ proteins (Wacker et al., 2004). These are pore-like
structures that can embed into lipid bilayers and permeabilize
membranes allowing the transit of small molecules. Diseases-
associated mutations in AP (E22G) and oa-synuclein (A53T
and A30P) promote the formation of amyloid pores (Lashuel
et al., 2002b,c; Lashuel and Lansbury, 2006). This is known
as the amyloid pore hypothesis (Lashuel and Lansbury, 2006;
Stockl et al., 2013). Alternatively, a different explanation has
been proposed for the permeabilization of membranes by a-
synuclein, in which oligomers of this protein would not form
pores, but they rather decrease the lipid order by incorporating
between the tightly packed lipids, facilitating the diffusion of
molecules through the membranes (Stockl et al., 2013). Whether
this alternative hypothesis can also be applicable to other
amyloidgenic proteins still needs to be revealed. Furthermore,
recent studies on non-pathological (Oropesa-Nufiez et al., 2016)
and pathological proteins (Di Pasquale et al., 2010; Fukunaga
et al, 2012; Mahul-Mellier et al., 2015) show that negatively
charged ganglioside rich lipid rafts mediate toxicity of the
prefibrillar oligomers.

Probably the toxicity of the disease proteins cannot be
wholly explained by one of these mechanisms but rather by a
combination of them.

Gliosis

Neuroinflammation or gliosis, a reactive change of the glial cells
in response to damage, is a common pathological feature in
neurodegenerative diseases like AD and HD (Perry et al., 2010).
However, whether inflammation plays an active or consequential
role in disease is still a topic for debate. Glial cells are divided
into two major classes: microglia and macroglia, where microglia
are the phagocytes that are ubiquitously distributed in the brain
and are mobilized after injury, disease, or infection. Pathological

triggers, such as neuronal death or protein aggregates, activate
the migration of microglia, which accumulate at the site of
injury. This migration and recruitment is followed by the
initiation of an innate immune response, which is a non-
specific reaction resulting in the release of pro-inflammatory
chemo- and cytokines (Gordon and Taylor, 2005; Hanisch and
Kettenmann, 2007; Perry et al., 2010). The importance of glial
cells in neurodegeneration is supported by the association found
in genome wide association studies of immune receptors like
TREM2 (Guerreiro et al., 2013; Jonsson et al., 2013) and CD33
(Griciuc et al.,, 2013) in AD. Gliosis has also been described for
other neurodegenerative diseases as PD (Gerhard et al., 2006) and
HD (Shin et al., 2005), but as the main aggregates are intracellular
the response from microglia is not as strong as in AD.

Spreading

Prion diseases (PrD) are a group of fatal neurodegenerative
disorders caused by infectious proteins called prions. In humans
most PrD can be identified under the name Creutzfeldt-
Jakob disease (CJD), and in animals under the name bovine
spongiform encephalopathy (BSE; Collinge, 2001). In PrD,
the cellular form of the prion protein (PrPC) undergoes a
conformational conversion into a p-sheet enriched isoform
denoted as PrPS¢. This occurs when the PrPS¢ comes in
contact with the mostly a-helical PrP®, as a result the PrP®
is misfolded into pathogenic PrP%, which in turn can become
a template for conversion of other PrPC. The PrP5¢ form
can form protein aggregates, prion deposits, often present as
amyloid structures, which can propagate and possibly cause
cell death (Collinge and Clarke, 2007; Collinge, 2016). PrDs
are well-known to be able to spread throughout the brain via
infectious prions. By the conversion of the protein into “seeds”
due to stress, mutations or when PrP® comes in contact with
PrP5¢, it incites a chain reaction of PrP misfolding (Halliday
et al., 2014). Prions are out of scope for this review, although
they are one of the most relevant topics in neurodegenerative
diseases especially due to their infectivity. This “prion-like”
character of other neurodegenerative disease proteins has been
proposed.

Spreading of AP in AD was first observed in a marmoset
injected with brain extract from AD patients or AD affected
marmosets, leading to AD pathology 6-10 years after injection
(Baker et al, 1993; Ridley et al., 2006). Injection with only
cerebrospinal fluid of AD patients or synthetic AB did not result
in AD pathology in the marmoset (Ridley et al., 2006). As studies
with marmosets are limited, these studies were replicated in
mice to further investigate the spreading of AP. Brain extracts
from AD patients or transgenic mouse models can initiate
AD pathology in the brains of transgenic mice overexpressing
the Swedish-mutated human APP (Meyer-Luchmann et al,
2006). Injection of synthetic human A fibrils can induce AD
pathology in mice, however the potency is lower than with
AD brain extract (Stohr et al., 2012). In mice depleted of
amyloid-beta precursor protein (APP) there is no spreading
of the disease, however if you take brain extracts of APP
depleted mice inoculated with AP seeds, this can lead to
propagation after second transmission for up to 180 days,
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suggesting extreme longevity of the AP “seeds” (Ye et al., 2015).
Infectiousness of AD in humans has not yet been proven,
though possible spreading of AP in humans was observed in
two individual studies. The first study described four individuals
with infectious Creutzfeldt-Jakob disease (CJD) who also showed
moderate to severe AD pathology, they were injected as children
with human growth hormone from cadaveric pituitary glands
that contained PrP (Jaunmuktane et al., 2015). Another study
observed infectious CJD in patients who received a dura mater
transplant as a result of brain trauma or tumor, in five patients
AD pathology was observed (Frontzek et al, 2016). As the
patients in both studies did not carry pathogenic AD mutations
or risk alleles and were too young to develop sporadic AD,
the studies suggested that the treatment samples contained Af
peptides.

Spreading of the PD pathology was first suggested when
healthy dopaminergic neurons injected into the brain of
PD patients showed Lewy body formation 11-16 years after
transplantation (Kordower et al., 2008; Li et al., 2008). Follow-
up studies in PD mouse models show that injection of brain
extracts of PD transgenic mice results in the formation of
PD pathology and increased mortality (Luk et al, 2012b;
Mougenot et al.,, 2012). Furthermore, injection of synthetic a-
synuclein (Luk et al., 2012a) or dementia with Lewy bodies
(DLB) patient brain extract (Masuda-Suzukake et al., 2013)
also results in PD pathology and neuronal death in healthy
mice.

PROTEIN TOXICITY IN
NON-NEURODEGENERATIVE DISEASES

Protein aggregation is also involved in non-neurodegenerative
diseases, and can be distinguish into two groups: non-
neuropathic systemic amyloidosis and non-neuropathic localized
disease (reviewed in Chiti and Dobson, 2006; Figure 3). Similar
to neurodegenerative diseases they arise from the failure of
a specific protein or peptide to acquire its native functional
conformational state resulting in aggregation of the protein.

In non-neuropathic localized disease, the protein aggregation
occurs in a single cell type or tissue other than the brain.
The most well-known disease is type II diabetes, an age-
related disease in which the glucose homeostasis is disturbed
due to pancreatic islet B-cell dysfunction and death caused by
aggregation of the islet amyloid polypeptide (IAPP; Abedini and
Schmidt, 2013; Westermark and Westermark, 2013; Knowles
et al., 2014). The amyloid deposits in the islet B-cells were first
described over 100 years ago (Opie, 1901), and are a common
feature in the pancreas of post-mortem material of type II
diabetes patients. Pancreatic p-cells normally secrete insulin to
regulate glucose uptake and metabolism in the body, mature
IAPP is stored in the insulin secretory granule and co-secreted
with insulin (Marzban et al., 2005). The exact role of IAPP is
still unknown, although many functions have been suggested
including regulation of glucose homeostasis (Abedini and
Schmidt, 2013). The human IAPP is extremely amyloidogenic
in vitro, and amyloids accumulate in the pancreatic islet in the

majority of the type II diabetes patients (Westermark et al., 1989;
Betsholtz et al., 1990).

Another common non-neuropathic localized disease is
cataracts, a common form of blindness affecting more than
50% of the individuals over the age of 70. Normally, the lens
can stay transparent throughout life, as there is no protein
turnover or synthesis. In cataracts soluble proteins of the lens
accumulate into amyloids, resulting in reduced transparency
and thus reduced sight. Thirty percent of the lens is made
up of the molecular chaperones aA-crystallin and aB-crystallin
that maintain the solubility of other lens proteins. However,
during aging damaged proteins accumulate which can lead to
aggregation of the crystalline proteins (Bloemendal et al., 2004).
Furthermore, the R120G mutation in aB-crystallin causes early
onset cataracts (Vicart et al., 1998; Perng et al., 1999).

The non-neuropathic systemic amyloidosis are rare diseases
caused by protein aggregation in multiple tissues (Falk et al.,
1997). The most common non-neuropathic systemic amyloidosis
is AL amyloidosis, a mainly sporadic disease that is characterized
by aggregation of fragments of the misfolded monoclonal
immunoglobin light chains in various organs (Comenzo, 2006;
Chaulagain and Comenzo, 2013). The fragment can form
B-sheets that are prone to form amyloids. The protein is
produced by a plasma cell clone in the bone marrow and after
internalization it can cause severe organ dysfunction and failure.
The main organs affected by AL amyloidosis are the heart and
kidneys, however, also other organs such as the liver, nervous
system, and spleen can be affected (Falk et al., 1997; Comenzo,
2006). The treatment of the disease is aimed at eliminating the
plasma cell clone, but a delay in the diagnosis of the disease often
results in irreversible organ damage and thus poor prognoses
(Chaulagain and Comenzo, 2013). Two other common non-
neuropathic systemic amyloidosis are caused by transthyretin
amyloidosis (ATTR) and serum amyloid A protein (SAA), both
proteins are produced in the liver and affect various organs,
however in ATTR heart failure is most common whereas SAA
often results in renal failure (reviewed in Chiti and Dobson,
2006).

STRUCTURAL AND FUNCTIONAL
PROPERTIES OF AMYLOID

The first amyloid was observed and described in 1854 by Rudolph
Virchow for systemic amyloidosis (Sipe and Cohen, 2000). Since
then, many diseases have been associated with amyloids. The
proteins associated with protein aggregation diseases have no
obvious similarity in sequences, native structures, or function.
They do however, share characteristics in their amyloid state
as they can undergo structural rearrangements leading to the
formation of amyloid fibrils (Figure 4A). The amyloid fibrils have
a highly organized and stable structure composed of proteins
with a cross B-sheet structure oriented vertically to the fibril
axis. They appear under the electron microscope as unbranched
filamentous structures of just a few nanometers in diameter
while up to micrometers in length. The cross p-sheet structure
of amyloid fibrils provides a stable structure for the formation
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FIGURE 3 | Amyloids in health and disease. Amyloids are present throughout the body in health and diseases, in green examples of functional amyloids described
in the section is called “Functional Amyloid”. In red examples of amyloids resulted causing disease, the non-neuropathic systemic amyloidosis AL, ATT, and SAA are
located at the point where they are produced, they do however affect multiple organs as the heart and kidney.

of continuous arrangement of hydrogen bonds between fibrils,
eventually resulting in the formation of amyloids. The amyloid
structures can be characterized by their following properties:
insolubility to detergents like SDS and NP40, binding to specific
dyes such as Thioflavins and Congo Red and resistance to
proteases (reviewed in Chiti and Dobson, 2006). To learn more
about intermediate species of the aggregation process the kinetics
of aggregation can be studied in vitro. Using purified protein and
a amyloid dye in a test tube, three phases of aggregation can be
distinguished (Figure 4B). During the first lag phase there are
mainly protein monomers and oligomers, this is followed by a
rapid growth phase in which protein fibrils are formed, followed
by a plateau phase in which the reaction is ended due to depletion
of soluble proteins (Blanco et al., 2012).

The aggregation propensity of a protein is determined by
short aggregation prone regions (APR) that are generally buried
in the hydrophobic core of the protein. However, due to
misfolding or mutations, these regions can be exposed and
therefore self-assemble into aggregates. APRs are typically short
sequence segments between 5 and 15 amino acids with high
hydrophobicity, low net charge, and have a high tendency to
form f-sheet structures (Ventura et al., 2004; Esteras-Chopo

et al., 2005). Different algorithms have been generated to predict
protein aggregation propensity of proteins or the effect of disease
mutations, for example WALTZ an algorithm to determine
amyloid forming sequences (Maurer-Stroh et al., 2010) and
TANGO an algorithm that identifies the B-sheet regions of a
protein sequence (Fernandez-Escamilla et al,, 2004). Disease
associated variants, not only related with neurodegenerative
diseases, but also for cancers and immune disorders, tend to
increase the predicted aggregation propensity of proteins (De
Baets et al., 2015).

Amyloid in Disease
Proteins or peptides of most neurodegenerative diseases are
intrinsically disordered in their free soluble form, like the AP
peptide in AD and a-synclein in PD (Chiti and Dobson, 2006,
2009). Mutations in these disease proteins can make the protein
even more prone to aggregate. For example, the A53T and A30P
mutation of a-synclein found in early onset PD, promotes the
acceleration of amyloid fibrils in vitro (Conway et al., 1998, 2000).
Furthermore, having too many copies of an aggregation-
prone protein itself can lead to disease by increasing protein
concentrations in the cell (Chiti and Dobson, 2006, 2009). This
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FIGURE 4 | Proposed mechanism for amyloid formation. (A) A misfolded protein can be refolded (1), degraded (2), or aggregated (3), the first step in the
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increase in protein concentration can switch the stability of the ~ was an arrest of the AD pathology without clearance of the
soluble state toward the amyloid state. For examples trisomy  excising plaques (Jankowsky et al., 2005), resulting in a significant
21 patients (Down’s syndrome) who have an extra copy of the  effect on cognitive function (Fowler et al, 2014). Indicating
APP protein and a highly increased risk of developing early  that the concentration of disease proteins influences the disease
onset AD (Wiseman et al., 2015). In addition, duplication or  progression, thereby affecting the development of disease.

triplication of the a-synuclein gene (SNCA) results in early onset That structural differences between amyloid “strains” can
PD (Singleton et al., 2003), besides, the onset, progression, and  influence disease phenotype was first described for PrD,
severity of the disease phenotype increases with the number  where isolated strains of PrP aggregates from different sources
of copies of the SNCA gene (Chartier-Harlin et al., 2004). To  propagated different in mice showing distinct incubation
this end, also proteins that regulate expression levels of disease ~ times and patterns of neuropathology (Fraser and Dickinson,
proteins can cause or influence diseases, an example is the  1973). Furthermore, different human PrP strains have been
RNA binding protein Pumiliol that regulates the mRNA levels  associated with differences in proteinase K digestion and
of Ataxinl RNA. Pumiliol haploinsufficiency accelerates the  distinct phenotypes of neuropathology (reviewed in Collinge
SCA1 disease progression in a mouse model for disease due  and Clarke, 2007). More recently, investigation of two familial
to increase of the Atxnl mRNA and protein levels (Gennarino ~ human AD patients with different disease symptoms, showed a
et al,, 2015). If protein levels strongly influence the toxicity and  structural difference in amyloid fibril structure (Lu et al., 2013).
disease phenotype this would suggests that lowering the protein ~ Furthermore, Arctic and Swedisch familial AD patients brain
load could be a therapeutic strategy. This was shown in an AD  homogenate results in distinct disease phenotypes in transgenic
mouse model where the APP transgenes could be turned off  mice even after serial passage (Watts et al., 2014). Comparable
with a tet-off system, when the APP levels were halted there  results were found for Tau, another aggregation-prone protein

Frontiers in Neuroscience | www.frontiersin.org 10 February 2017 | Volume 11 | Article 64


http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Neuroscience/archive

Stroo et al.

Protein Aggregates in Age-Related Diseases

involved in AD. Injection of two distinct in vitro generated Tau
strains into transgenic mice resulted in distinct pathologies up
to three generations (Sanders et al., 2014). These studies suggest
that variations in the properties of amyloid fibrils could affect
disease pathology and symptoms. How these different strains are
formed and how they contribute to the disease pathology is still
unknown. It was however found that reduced IIS signaling in
the APP/PS1 AD mouse model induces the assembly of AB into
densely packed and larger fibrillar structures later in life, resulting
in reduced AD symptoms (Cohen et al., 2009). Suggesting that
altering the structure of the amyloid fibrils could be beneficial for
patients, as certain structures appear to be more toxic than others.

Functional Amyloid

Amyloids structures are known to have biological functions
in Escherichia coli, silkworms, fungi, and mammals (Fowler
et al., 2007). One example in mammals is Pmell7 (Figure 3), a
highly aggregation-prone protein that forms functional amyloid
structures that are the main component of melanosome fibrils,
membrane-bound organelles in pigment cells that store and
synthesize melanin. Plem17 contains a partial repeat sequence
that is essential for amyloid formation that can only be formed
in the mildly acid pH of melanosomes (McGlinchey et al., 2009).
The exact function of Pmell7 in melanosomes is unknown,
although a role in protection against oxidative damage has
been suggested, as well as a role in concentrating melanins
to facilitate intra- and extracellular transport (Watt et al,
2013).

More functional amyloids in mammals can be found in
hormone release, it was shown that certain hormones can be
stored in amyloid-like aggregates in the secretory granules of the
cell. These secretory granules have a B-sheet rich structure that
is Thioflavin S and Congo Red positive and are able to release
functional monomeric hormone structures upon dilution, and
show only moderately toxicity on cell cultures, possibly due to
their membrane-encapsulated state in the granules (Maji et al,,
2009).

Interestingly, the formation of amyloids has recently
been associated with long-term memory. The cytoplasmic
polyadenylation element-binding protein (CPEBs) is a regulator
of activity dependent synthesis in the synapse. The fly homolog
Orb2 (Majumdar et al., 2012) and mouse homolog CPEB3
(Fioriti et al., 2015) are present in the brain as a monomer
and SDS-resistant oligomer. Activation of the fly or mouse
brain results in increase of the oligomeric Orb2/CPEB3 species.
Selectively disrupting the oligomerization capacity of Orb2
by a genetic mutation resulted in long-term memory loss
in flies (Majumdar et al, 2012) and loss of CPEB3 in the
mouse brain resulted in impaired long term memory (Fioriti
et al., 2015). Orb2 alters protein composition of the synapse
by a mechanism in which the oligomeric Orb2 stimulates
translation by elongation and protection of poly(A) tail,
whereas the monomeric Orb2 does the contrary (Khan et al,
2015).

These functional amyloids point toward the origin of amyloid-
prone sequences and their suppressors and enhancers. Even
though, these functional amyloids have not been linked to human

diseases, a functional role might be the case for the amyloid
domains of disease proteins with unknown functions. More
studies toward understanding the functionality of these amyloids
and the difference with the disease amyloids are required to have
a better understanding of why certain amyloids are toxic while
others are not.

Liquid Droplets/Liquid-to-Solid-Phase
Transition

It was recently found that proteins with prion-like domains
can form functional non-membrane-bound organelles like
ribonucleoprotein (RNP) bodies, that behave like liquid droplets
which can rapidly assemble and disassemble in a response to
changes in the cellular environment (Han et al., 2012; Kato et al.,
2012). The RNP bodies include processing bodies and stress
granules in the cytoplasm, and nucleoli, Cajal bodies and PML
bodies in the nucleus. Due to the dynamic structures of RNPs
there is free diffusion within the bodies and rapid exchange with
the external environment. Like in liquid-liquid phase separation
(LLPS) the RNP bodies exhibit liquid-like behaviors such as
wetting, dripping, and relaxation to spherical structures upon
fusion (Chong and Forman-Kay, 2016; Uversky, 2017). These
properties can facilitate their function, by allowing for high
concentration of molecular components that nonetheless remain
dynamic within the droplet. Interestingly many of the proteins
known to segregate into RNP bodies contain repetitive putatively
prion-like domains, that can reversibly transform from soluble
to a dynamic amyloid-like state (Kato et al., 2012). Furthermore,
dysregulation of these RNP bodies by RNA-binding proteins
have been associated with neurodegenerative diseases as ALS
(Ramaswami et al., 2013).

The link for these RNP bodies in disease was first found
for the FUS protein, mutations in the N-terminal prion-like
domain have been associated with ALS, and FTD. This protein
plays an important role in RNA processing and localizes to
both cytoplasmic RNP bodies and transcriptionally active nuclear
puncta, the prion-like domain is essential for forming these
liquid-like compartments (Shelkovnikova et al., 2014). The N-
terminus of FUS is structurally disordered both as a monomer
and in its liquid state (Burke et al, 2015). In vitro, these
droplets convert with time from a liquid to an aggregated state
(Figure 4C), and this conversion is accelerated by patient-derived
mutations (Patel et al., 2015). Furthermore, concentrated liquid
droplets increase the probability of aggregation events of RNA-
binding proteins in the RNP bodies in a concentration dependent
manner (Molliex et al., 2015). mRNA itself can drive its phase
transition of the disordered RNA binding-protein Whi3, and
thereby altering the droplet viscosity, dynamics, and propensity
to fuse. Suggesting that, mRNA contains biophysical properties
of phase-separated compartments. Like FUS droplets the Whi3
droplets mature over time and appear to be fibrillar (Zhang et al.,
2015).

This new line of research indicates another possible function
for prion-like domains of various proteins and the proteins it
interacts with. Furthermore, research to these RNP bodies shows
possible reasons why these proteins form amyloids. However,
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much is still unknown about the exact mechanisms of the
amyloid like domains and the RNP bodies that have to be
investigated.

CONCLUSION

Protein aggregation is a complex process influenced by many
factors, pathways, and mechanisms. Under the right conditions
any protein could form amyloid-like structures (Chiti and
Dobson, 2006). Although amyloids have been traditionally
related to diseases, they also have diverse functions in organisms
from bacteria to human that may underlie their nature.
Nevertheless, the toxicity of amyloid intermediate species
associated with disease makes protein aggregation a process that
has to be under tight control and regulation. In this context,
aging is a key risk factor due to the progressive decline of
protein homeostasis, which leads to increased protein misfolding
and aggregation. This can eventually result in the onset of age-
related diseases characterized by protein aggregation. Mutations
or duplications that lead to the appearance of aggregation-prone
proteins that are constitutively expressed in the cell, creating a
chronic stress situation, leads to an early onset of those diseases
due to the deregulation of the protein homeostasis balance.

As the human population becomes older, it is essential
to understand the processes underlying age-related diseases
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biophysics to clinical trials. Every year discoveries are made
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like RNA granules and liquid droplets formation. It can
be concluded that the overall knowledge of the aggregation
process is improving, which will allow for the development
of new and accurate treatments against aggregation-linked
diseases.
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