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Motion segmentation is a critical pre-processing step for autonomous robotic systems to

facilitate tracking of moving objects in cluttered environments. Event based sensors are

low power analog devices that represent a scene by means of asynchronous information

updates of only the dynamic details at high temporal resolution and, hence, require

significantly less calculations. However, motion segmentation using spatiotemporal data

is a challenging task due to data asynchrony. Prior approaches for object tracking using

neuromorphic sensors perform well while the sensor is static or a known model of the

object to be followed is available. To address these limitations, in this paper we develop

a technique for generalized motion segmentation based on spatial statistics across time

frames. First, we create micromotion on the platform to facilitate the separation of static

and dynamic elements of a scene, inspired by human saccadic eye movements. Second,

we introduce the concept of spike-groups as a methodology to partition spatio-temporal

event groups, which facilitates computation of scene statistics and characterize objects

in it. Experimental results show that our algorithm is able to classify dynamic objects with

a moving camera with maximum accuracy of 92%.

Keywords: motion segmentation, dynamic vision sensors, asynchronous signal processing, temporal information,

tracking and following, robotics

1. INTRODUCTION

Motion segmentation is an important task for applications that involve a moving camera or
neuromorphic sensor, particularly in the field of robotics. However, most of the literature has
addressed the identification of moving objects in a scene against a static background, which is
an easier task. When standard frame-rate cameras are employed, the difference between image
frames is the simplest method to detect static or dynamic events (Sobral and Vacavant, 2014).
Another technique is to calculate optical flow vectors from consecutive frames to estimate regions
of coherent motion (Narayana et al., 2013). Graphical models are also effective since they provide
a simple yet efficient segmentation method (Badrinarayanan et al., 2013). Standard cameras
have intrinsic limitations associated with uneven illumination, computations on each pixel in
a frame, blurring of moving objects and limited frame-rate. Weinland et al. (2011) provide
a comprehensive survey of strategies used for motion segmentation of dynamic objects using
traditional image sensors.
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Event based sensors (i.e., neuromorphic sensors) such as the
dynamic vision sensor (DVS) (Lichtsteiner et al., 2008) and
asynchronous time-based image sensors (ATIS) (Posch et al.,
2011) represent a scene using spatiotemporal data in the form
of spikes or motion events at a temporal resolution on the order
of microseconds. These spikes are created as a result of objects
moving in the scene, camera ego motion or both. Due to the high
dynamic range and asynchronous data capture of this class of
sensors, problems of illumination and frame-rate are inherently
solved before data processing.

Several methods have been proposed to address tracking of
moving objects using neuromorphic vision sensors. Litzenberger
et al. (2006) used a mean shift approach to identify and
update clusters or blobs of events generated by moving vehicles.
Piatkowska et al. (2012) used a Gaussian mixture model (GMM)
to locate and update clusters of people moving in a scene.
Ni et al. (2012) presented an interesting application where
motion was segmented to generate haptic feedback for a micro-
gripper setup. Their method used a nearest point matching
strategy to update the position of a predefined template for a
gripper and circle object to be tracked. A DVS based particle
tracking algorithm was demonstrated by Drazen et al. (2011)
using a spatiotemporal window. Valeiras et al. (2015) showed
real-time face tracking using neuromorphic imagers. Their
method used spring-like interactions between Gaussian trackers
to maintain uniformity between various feature points being
tracked. However, the algorithm requires a predefined model
of the object. Lagorce et al. (2015) used a multi-kernel based
approach to perform invariant real-time multi object tracking.
A combination of kernels were defined and used to describe
object parts (e.g., edges) to be tracked. The motion segmentation
problem has also been formulated as one of determining salient
regions in spatiotemporal data. Rea et al. (2013) implemented
a selective saliency model on the iCub platform (Metta et al.,
2008), using multiple bottom-up feature maps responsible for
contrast, orientation and motion. Serrano-Gotarredona et al.
(2009) illustrated a parallel very large scale integrated (VLSI)
system using the address-event representation (AER) framework,
called convolution AER vision architecture for real-time systems
(CAVIAR), for object recognition and tracking. Such event
based clustering and spiking neural network (SNN) approaches
solve the problem efficiently. However, in these segmentation
and tracking applications the sensor was fixed with respect to
the moving foreground objects, making segmentation tractable
for a small class of implementations. Reverter Valeiras et al.
(2015) describe a neuromorphic 3D pose estimation algorithm
applicable to tracking moving objects. Although this algorithm
is robust in the presence of sensor ego-motion, it needs a pre-
defined object model and an estimate of its initial pose. Giulioni
et al. (2016) developed a SNN approach utilizing precise spike
times to estimate motion. Their method uses an analog chip
to estimate optical flow for computation of motion amplitude
and direction in real-time. However, the system also assumes no
camera motion and, therefore, it is not suitable for applications
where camera motion is involved.

The motion segmentation methodology proposed in this
paper utilizes small controlled movements of a sensor to enable

synchronization of spike events, which permits discrimination
of spatiotemporal motion events as static background or
dynamic foreground. The human somatosensory system was the
inspiration for this approach, where micro-movements precede
and prepare acquisition of signals through sensory organs such
as the eyes or ears. Saccades are characterized by small rapid
eye movements to focus on the object of interest. It is well-
known that mammals use saccades for vision and insects use
ear motion for source localization (Miles et al., 1995). Saccades
are an important part of visual processing, however, it is
unclear if they facilitate motion segmentation (Ahissar and
Arieli, 2001; Martinez-Conde et al., 2004; Rolfs, 2009). Miles
et al. (1995) found experimentally how mechanical vibrations
of interaural tympana induce a temporal difference in closely
spaced sound waves to facilitate source localization with high
precision. The application of micro-motor movements for visual
sensory perception has been described in the literature as the
resonant retina (RR) (Hongler et al., 2003) and dynamic retina
(DR) (Prokopowicz and Cooper, 1993). Hongler et al. (2003)
demonstrated that micro-saccades are useful for edge detection
and object segmentation tasks, which is biologically similar to the
phenomenon of stochastic resonance. Prokopowicz and Cooper
(1993) proposed DR as a technique that employs perturbations of
mobile robots to enhance spatial data processing. Image sensors
perturbed by vibrations or noise have been used for spatial
enhancement through edge, luminance and contrast detection
(Landolt et al., 2001; Greschner et al., 2002; Hennig et al., 2002;
Donner and Hemilä, 2007; Rucci et al., 2007; Yi et al., 2011).

We contribute to this body of work by developing a
novel methodology to enable motion segmentation using a
neuromorphic vision sensor. In typical applications, a moving
sensor will induce events or spikes from an entire scene, making
segmentation a challenging problem. These spikes are an artifact
of self-motion. When a sensor is placed on a moving platform,
both moving (dynamic) foreground and (static) background
objects generate spikes. In this paper, we address the problem
of classifying spikes or motion events into foreground and
background events by taking advantage of an induced sensor
micromotion. To compute reliable temporal statistics that are
a consequence of micromotions, we introduce the concept of
spike-groups. They are clusters of spikes that appear in predefined
space-time voxels. These elements help capture relevant scene
statistics as a result of micromotions and are central to our
classification strategy. We show that a micromotion sensor
strategy removes spatial uncertainty by taking advantage of the
high temporal resolution of neuromorphic imagers.

The contributions of this paper are as follows. (1) Utilization
of inducedmicromotionmovements to facilitate efficient sensory
visual perception. (2) Development of a novel asynchronous
signal processing technique that exploits temporal statistics. To
the best of our knowledge, this is the first work that presents
an active learning framework for motion segmentation that
addresses foreground-background separation using an event
based sensor. Specifically, the algorithm uses motion events
as inputs and assigns a binary label indicating its category
(background or foreground) as the output. Our method for
motion segmentation was implemented on a wheeled robot and
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the results demonstrate that it is capable of real-time segregation
of objects from background under arbitrary camera motion.

The organization of this paper is as follows. Details of our
saccade based approach to classify dynamic spatiotemporal data
and the concept of spike-groups are described in Section 2.
In Section 3 we give details about the controlled experiments
performed to quantify our algorithm’s performance and provide
a discussion about our findings. Section 4 provides a deliberation
about the implications of the concepts introduced in this study
and their future applications.

2. MATERIALS AND METHODS

In this section, we provide a block diagram of the overall system
and mathematical foundation for spike-groups and assignment
functions. In addition, the utility of motion segmentation to
classify elementary components of micromotion employing
temporal statistics is discussed. Figure 1 depicts a vision sensor
mounted on a wheeled platform while performing segmentation.
A novel feature of our system is that the speed of the robot is
jittered by periodic square velocity pulses (or micromotions).
This velocity profile has two levels or phases; a normal and low
velocity phase. During a micromotion cycle, the robot remains
in low velocity phase for time interval Ta µs, and normal
velocity phase for Tb µs. Data analysis is performed after each
micromotion cycle or at specific time intervals to construct
spike-groups as discussed below.

2.1. Event Based Vision Sensors
Event based vision sensors such as the DVS and ATIS emulate
biological principles on a silicon chip. The DVS is an array of
128× 128 pixels with a maximum response time of 1µ s. Each
pixel responds dynamically and independently to log intensity
changes in a scene. This provides asynchronous spatiotemporal
data of motion events denoted as

Mi = (x, y,φ, t)i for i = 1, 2, . . . , n, (1)

where x, y are the “spiking” pixel location and φ denotes an
intensity change at time t. The data obtained from a sensor is

represented as

D = (M1,M2, . . . Mi), (2)

whereD is the spatiotemporal data represented as a set of motion
events with increasing timestamp values. Due to the precise
temporal and asynchronous nature of neuromorphic vision
sensors, it is necessary to develop a mathematical framework to
analyze such data without loss of information.

2.2. Spike-Groups: Definition and
Properties
Our motion segmentation technique exploits small controlled
square pulses perturbing the robot’s motion to differentiate
static and dynamic information. The premise of micromotion
is based on the observation that when a camera is in motion,
events due to the static background are correlated with self-
motion. However, motion events associated with moving objects
are not consistent with a camera’s movement profile. This is
because dynamic objects have relative velocities with respect to
the camera, but un-correlated to the camera’s motion profile.
This feature, coupled with the temporal accuracy and precision
of neuromorphic sensors, enables the estimation of temporal
correlations to separate such movements types. For statistics
estimated using spatiotemporal data to be useful in practical
applications, they must be updated in near real-time when new
motion events arrive from a sensor. For this reason, we develop
the concept of spike-groups, which are a factorization of the
spatiotemporal data, D, into meaningful motion components.
Figure 2 illustrates that spike-groups are close spatio-temporal
clusters of constant cardinality motion events delivered by the
sensor. The intrinsic aggregation rule underlying this definition
is computed using an assignment function based on statistics
of successive temporal spike differences at neighboring pixel
locations. Spike-groups are represented as

S = (δt1, δt2, . . . , δtq), (3)

where S ∈ Z
q denotes the vector containing temporal differences,

δt, of motion events. For computational purposes, spike-groups
are stored at pixel location where the latest motion event

FIGURE 1 | Motion segmentation procedure using a saccadic motion profile with a neuromorphic imager. (A) A camera is mounted on the platform to

follow a velocity profile (square pulse). (B) The motion generates spikes at pixels locations of the vision sensor. Spikes that are spatiotemporally close typically belong

to the edge of a single object. Spike-groups are formed from such neighboring pixels. (C) Spike-groups are annotated to belong to a background or moving object

category. (D) Labeling spike-groups in space-time allows for their classification as 2D representations.
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FIGURE 2 | Spike-groups based spatiotemporal data clustering. Spike-groups are redundant clusters formed from motion events as they occur. The particular

spike group assignment criteria results in a diverging tree like structure (more than one pixels can share nearby statistics). Arrows represent increasing time.

occurred. As a consequence of this definition of spike-groups,
the temporal differences in Equation (3) do not necessarily
belong to only one pixel location, instead they span various
neighborhoods in space-time, which we denote as space-time
voxels. The spatiotemporal motion event data, D, can also be
written as

D =
⋃

j

Sj or D = (S1, S2, . . . , Sk) where j = 1, 2, 3, . . . , k (4)

and k is the number of spike-groups in the data. The advantage
of spike-groups is that the incoming sensor data is divided into
locally meaningful groups, which is important to identify objects
in the scene. Due to the high temporal resolution of these sensors,
spikes that are spatiotemporally close may represent the same
shape and likely the object edges. Hence, every object can be
described by a combination of spike-groups, simplifying the task
of motion segmentation. This also simplifies object segregation to
one of spike-group formation frommotion events by formulating
appropriate discriminant local statistics. These statistics allow
for characterization of a spike-group as belonging to one of two
classes (moving object or background) in our application butmay
be generalizable to higher orders.

Some of the important characteristics of spike-groups are
summarized below.

1. Spike-groups are fixed length vectors composed of time
differences of motion events.

2. A motion event belongs to at most one spike-group but the
converse is not true, i.e., a spike-group can be assigned tomore
than one motion event, if the assignment criteria is satisfied.
Hence, spike-groups are non-disjoint sets, where a spike can
contribute to the statistics of more than one spike-group.

3. For each motion event, the optimal (or best suited at the time)
spike-group is assigned to it. The spike-group is then copied
to the new motion event’s pixel location. This is followed by
shifting spike-group components to account for new temporal
difference elements.

2.3. Spike-Groups: Assignment
When a new motion event, Mi+ 1, occurs its profile is compared
with spike-groups at all pixel locations in its spatiotemporal
neighborhood, N . This neighborhood is defined as a n× n
square matrix. The motion event is assigned to an existing spike-
group Sj in the neighborhood if (1) the temporal difference is
the same as the last two motion events and (2) it is smaller
than a threshold ρ. This assignment is formalized as a inclusion
test, T(·), that is, the motion event Mi+ 1 is assigned to the jth
spike-group Sj if

T(Mi+ 1 ∈ Sj) =
∣

∣

∣
(ti+ 1 − t

j

last
)− δt

j
q

∣

∣

∣
if ti+ 1 − t

j

last
≤ ρ, (5)

where | · | is the absolute difference operation, ti+ 1 is the current

motion event’s occurrence time, t
j

last
is the occurrence time of last

event of the spike-group, δt
j
q is the last element of spike-group

Sj and ρ is the temporal size of the neighborhood N . Figure 3
illustrates that for each motion event, the assignment function
T(·) (i.e., Equation 5) is evaluated at each pixel in its spatial
neighborhood. The event belongs to spike-group Sj if

j = arg min
∀Sj∈N

T(Mi+ 1 ∈ Sj) (6)

where j ∈ [1, n2] is the index of neighborhood pixel location
to which the new event is assigned. If none of the hypotheses
in the neighborhood are found to be true, a new spike-group
is started at the pixel location of spike Mi+ 1, with that motion
event being its first element. The temporal difference operation
(see Equation 5) is simple to estimate in real time and facilitates
proper class characterization, however, is not robust to noise.
From experimental observations, a better hypothesis for spike-
group assignment is

T(Mi+ 1 ∈ Sj) =

∣

∣

∣

∣

∣

log
(ti+ 1 − t

j

last
)+ λ

δt
j
q + λ

∣

∣

∣

∣

∣

if ti+ 1 − t
j

last
≤ ρ,

(7)
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FIGURE 3 | Formation of spike-groups using hypothesis based

spatio-temporal clustering. For every new motion event Mi+ 1, each

spike-group (solid green lines) in its neighborhood generate a hypothesis Ti
about its inclusion (dotted black lines), if they lie within the temporal window of

the event parameter ρ. The hypothesis pertains to the difference or log ratio

between the temporal difference of the last element with the current motion

event (ti+ 1 − tlast ) and last two motion events comprising the spike-group

(δtq). The hypothesis with a minimum value is selected for inclusion in this

motion event.

where λ is a regularization parameter. Spike-groups are classified
only when q events have occurred to reflect statistics from both
velocity phases of the saccadicmotion profile. A resulting effect of
spike-group formation is that spatiotemporal data are arranged
into maximally correlated components with respect to their
velocity profile, which is a critical step for classification of labeled
groups. Assignment of motion event Mi+ 1 to a spike-group
involves copying the spike-group at the minimum hypothesis
position, j (see Equation 6), to this new motion event’s position
(xi+ 1, yi+ 1). An alternative interpretation of this strategy, useful
for the next step, is to assume that all spike-groups are hypothesis
sets that compete for assignment of the most recent spike event
(Figure 3).

2.4. Spike-Groups: Classification
Strategies
After motion events are assigned to spike-groups, the goal
is to assign class labels as background or moving object.
Due to internal program setting (discrimination between two
classes), an expeditiousmethodology is to build a non-parametric
classification metric F(Sj) for the spike-groups and apply
traditional pattern classifiers by modeling the distribution of
F(·) as a mixture with two components. Spike-groups belonging
to a moving object class have temporal differences that are
influenced primarily by its own motion, with some contribution
from the micromotion profile. However, spike-groups belonging
to the static background class have temporal differences that are
completely caused by the robot’s motion profile. Therefore we
anticipate that there is a bimodal distribution over the space of
spike-group measurements.

In this paper, we describe two methods to discriminate
between background and moving objects using either a
parametric or non-parametric approach applied to spike-groups.
Both methods use non-labeled data to perform clustering in
an unsupervised manner. The only information imposed in the
solution is the existence of two classes (background and moving
objects), which implies modeling the measurements as a mixture
of two clusters, with each cluster being updated in time interval
batches of 1 s. For a proof-of-concept, we select data that have
only one moving object in the scene leading to the assumption
of a bimodal distribution over F(·). We select two different
approaches to define the metric F(·) for discrimination of the
measurements; (1) standard deviation and (2) Renyi’s entropy.
Therefore, for each new spike-group vector the assignment
is reduced to a single scalar decision, either minimization of
standard deviation or entropy.

2.4.1. Discrimination Using Standard-Deviation
The standard deviation of a spike-group is defined as

F(Sj) =

√

∑

∀i (Sj(i)− µj)2

q− 1
, (8)

where Sj(i) is the ith element in the spike-group vector, µj is the
mean of time differences within a spike-group Sj (µj = E[Sj])
and E[·] is the expected value operator. Using standard deviation
to characterize spike-groups implies that we are modeling each
spike-group measurement as a Gaussian function and their
distribution as a Gaussian mixture.

A sample distribution of the standard deviation over a real
set of measurements is shown in Figure 4, which illustrates the
bimodality of spike-groups formed. The data corresponding to
this plot was collected from an oscillating object in an office
background with the robot moving toward it. Standard deviation
of spike-groups for 1 s non-overlapping intervals was plotted
followed by calculation of the mean curve and standard deviation
around it.

Since Figure 4 shows that each class has an asymmetric
distribution, the Gaussian mixture assumption can be improved.
Therefore, the standard deviation of all spike-groups is modeled
as the combination of two Maxwell Boltzmann probability
distributions as

P(F(Sj) = x) = βg(x; θ1)+ (1− β)g(x, θ2), (9)

where g represents a Maxwell-Boltzmann distribution function

g(x; θ) =
√

2

π

x2e−x2/(2θ2)

θ3
, (10)

parametrized by θ1 or θ2 for the classes foreground and
background, respectively, and β ∈ [0, 1] is the class prior. For
this choice of mixture distribution, the log likelihood function is
written as

logL =
N
∑

i= 1

2
∑

j= 1

z
j
iP(wj)

(

2 log xi −
x2i
2θ2j

− 3 log θj + C

)

, (11)
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FIGURE 4 | Distribution of standard deviation of spike-groups. Empirical

distribution of standard deviation is shown as the solid black line and the

shaded region is one standard deviation about it. The probability density

functions (pdfs) of data across time intervals was captured, followed by

calculation of mean at each point on the x-axis and one standard deviation

around it.

where C is a constant, N is the number of datapoints

(spike-groups), β = P(w1), 1− β = P(w2), and z
j
i is a binary

latent parameter defined as

z
j= 1
i =

g(x; θ1)
g(x; θ1)+ g(x; θ2)

. (12)

By differentiating the log-likelihood function described in
Equation (11), the parameters for each class are found as

P(w1) = β =
∑

∀i z
j= 1
i

∑

∀i z
j= 1
i +

∑

∀i z
j= 2
i

, (13)

θj =

√

√

√

√

∑

∀i x
2
i z

j
i

3
∑

∀i z
j
i

. (14)

We now describe the algorithm used to incrementally update
the parameters as a procedure that is applicable to any robotic
setup. For algorithm initialization, data is collected for at least
a 4 s duration with a scene comprising of one moving object.
This data is used to compute spike-groups followed by an initial
classification threshold Cinit estimate as

Cinit =
∑

∀j F(Sj)

N
, (15)

where N is the number of spike-groups formed from initial data
and F(·) is calculated from Equation (8). With this threshold,

initial estimates of latent variable z
j
i for each of the two classes

is formulated as

z
j= 1
i,init =

{

1 if xi ≤ Cinit ,

0 if xi > Cinit .
(16)

Similarly, initial estimate z
j= 2
i,init for the second class is the inverse

of Equation (16). Through this definition of the latent variable,
initial class parameters as described in Equations (13) and (14)
are evaluated. Finally, an update of the parameters is performed
through iterative application of Equations (12–14).

Following parameter estimation of the mixture distribution,
classification is performed by assigning the new spike-group to
the cluster with maximum posterior. This method for parameter
estimation and update is based on spatial and velocity constraints
assuming that (1) the moving objects cannot disappear suddenly
from the scene and (2) the navigation algorithm of the robot
implements small gradual velocity changes. In the next section,
we describe a method utilizing Renyi’s second order entropy to
classify spike-groups.

2.4.2. Discrimination Using Non-parametric Renyi’s

Entropy
Instead of assigning a priori distribution to each one of the class
measurements, we use a non-parametric approach. This allows
us to use the data samples to estimate the empirical distribution
and extract a meaningful feature for discrimination, such as
minimization of entropy of the overall measurements. Minimum
entropy means that the distribution is a delta function, i.e.,
all samples clustered at the same point. In our case we assign
samples to one of the modes of the mixture distribution such
that the entropy of the mixture is minimized. We follow the
ideas expressed in Gokcay and Principe (2002) and adapt the
algorithm for the simple case of a bimodal distribution, which is
simple to implement. Renyi’s second order entropy is used as the
classification metric for spike-groups in this section. The Renyi’s
entropy measure for discrete variables is given as

Hα(PS ) =
1

1− α
log2

(∫

pα(x)dx

)

, (17)

where p(x) denotes the probability mass function of the temporal
difference values of the spike-group S and Hα(·) denotes Renyi’s
entropy of order α. Here, we use α = 2 to simplify the estimation
(Principe et al., 2000). To estimate p(x), we apply the kernel
density estimator (KDE) with a Gaussian kernel as

p(x) =
1

q

q
∑

k= 1

1

σ
√
2π

e
− (x− xk)

2

2σ2 . (18)

In Equation (18), the kernel is chosen as a Gaussian parametrized
by standard deviation, σ . With this formalization of the kernel,
the second order Renyi’s entropy, H2(PS ), is written as

H2(PS ) = − log

(

1

q2

q
∑

i= 1

q
∑

k= 1

1

σ
√
2π

e
− (xi − xk)

2

2σ2

)

. (19)
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The distribution of H2(PS ) for spike-groups across a sample
data (sets of entropy over 1 s non-overlapping intervals) is
shown in Figure 5 and sample histograms are illustrated in
Figure 6. A moving object class shows higher entropy values
than a background class.The kernel standard deviation σ is
an important parameter, which affects the resulting density
and entropy calculation. Small values result in an irregular
density estimate (over-fitting) while large values do not capture
information content properly and result in under-fitting. Initially,
data is collected for at least a 4 s duration with the moving
object. Spike-groups are calculated and Renyi’s entropy evaluated
with the kernel parameter setting through the estimator given by

FIGURE 5 | Distribution of second order Renyi’s entropy of

spike-groups with a Gaussian kernel. Shaded region denotes one

standard deviation from the mean.

Silverman (1986) as

σ =
1.06 min(σδt , IQR/1.34) η−1/5

√
2

, (20)

where σδt is the standard deviation of the data (δt of all
spike-groups), η is the number of data points and IQR is the
interquartile range of data (Wilcox, 2012). To decide the clusters,
a simple test of incremental entropies is sufficient to provide the
cluster assignment. With the new spike-group, we compute the
change in entropy of each cluster with it. The cluster that displays
the least change in entropy is the one that should receive the new
spike group because it is the one closer to the mode of the cluster.
This cluster entropy is also updated and the process repeats with
the new measurement.

3. RESULTS

In this section, we present some characteristic results to show the
importance of our algorithm and its accuracy for classification.

3.1. Datasets Created
The following datasets were created and ground truth frames
labeled to quantify algorithm performance and find optimal
parameter values. The first dataset was used to understand
the dependency of the algorithm on the robot’s velocity while
the second dataset was used to evaluate the importance of
micromotion control parameters.

1. Dataset-1: Data from an oscillating pendulum object
was recorded at varying velocity transition levels of 60–
80, 60–90, 60–100, 70–80, 70–90, and 70–100 rotations
per minute (rpm). The wheel diameter of the robotic
platform was 5 cm. The data were collected at r = 0.5
and f = 10 Hz (see Equation 23). This dataset was
recorded with both high and low background clutter

FIGURE 6 | Sample histograms of Renyi’s entropy and standard deviation on spike-groups. The data comprised an oscillating foreground object in a densely

cluttered background. (A) The histogram of Renyi’s second order entropy is shown. Spike-groups pertaining to foreground class have greater entropy. (B) Histogram

of standard deviation also shows a clear bimodality. Spike-groups pertaining to the foreground class exhibit lesser standard deviations as indicated by the first peak.
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(see Figure 7). Using an oscillating object in the dataset
allowed for a wide variety of object velocities, from 0 to a
maximum pendulum velocity of 1.28 m/s. The pendulum
length was 1.4 m and the initial release angle was π/9
radians.

2. Dataset-2: To quantify the effect of micromotion parameters
on classification accuracy, we collected data in a controlled
environment. The background was made up of black stripes
(10 cm each) on a white board, with a horizontal and vertical
separation of 15 and 10.5 cm, respectively. The foreground
object was a ball with a 5 cm diameter rotating on a 6 cm
rod. During experiments the frequency of micromotions was
decreased with various rotational speeds of the foreground
object, from 10 to 30 cm/s in increments of 5 cm/s.

To evaluate our classification technique’s performance using
standard computer vision methods, the datasets were binned at

30 fps and the ground truth labeled as rectangular regions about
the moving object in the scene.

3.2. Accuracy of Segmentation
Sample segmentation results using our motion segmentation
algorithm on various types of recorded data are shown in
Figure 7 and Supplementary Video. For each experiment, the
corresponding ground truth label is denoted by a red bounding
box. Figure 7A shows sample segmentation results on an object
moving straight across the sensor’s field of view (FoV) at a speed
of 5 cm/s. Figures 7B,C show sample segmentation results on
experiments from dataset-1 and dataset-2, respectively. Below
we summarize the salient points of this methodology by visually
analyzing the segmentation produced.

1. Frame 1 in Figures 7A,B denote the initialization phase of our
algorithm. During initialization all motion events are labeled

FIGURE 7 | Labeled frames after segmentation for experiments performed with varying backgrounds. Red bounding boxes represent the ground truth. (A)

A sliding box was used as the moving object for the minimal background clutter case. The black pixels are labeled as moving object category. (B) Sample frames from

dataset-1 post classification. The white regions are spike-groups with a class label as moving object and black regions have a class label as static background. (C)

Sample frames from dataset-2 post classification. White represents moving object category labels.
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as background category. When motion events are detected
spike-groups are formed, leading to rapid class distinction.

2. Our technique performs dense labeling of the exact object
shape instead of calculating a bounding box. In computer
vision the process of finding probable object regions is termed
as region proposal and is a computationally expensive process
(Girshick et al., 2014; Girshick, 2015; Ren et al., 2015).
Our proposed motion segmentation methods can enable
neuromorphic systems to perform complex tasks such as
object segmentation and recognition in near real-time.

3. In Figure 7B frames 2 and 7 show that when the oscillating
object reached 0, velocity segmentation accuracy decreased.

4. Since Figure 7A, frame 5 and Figure 7B, frame 4 have no
moving objects within the sensor’s FoV, the number of false
positives is low.

Figure 8 provides a precision plot (Babenko et al., 2011; Wu
et al., 2013) that illustrates deviations by our algorithm from
the ground truth center of mass (using the standard deviation
method). The Euclidean norm is used as the metric to assess
the algorithm’s robustness against misclassification errors.
These results demonstrate that the calculated center of mass
is always within 8 pixels after the initial error spike (post
algorithm initialization), with a mean of 5 pixels and standard
deviation of 1.8.

3.3. Experiments in a Controlled
Environment
For each trial in dataset-2 the robot’s movement was dictated
by the parameters given in Figure 9. For each parameter setting
of the moving object (10–30 cm/s in increments of 5 cm/s), it
permits identification of the best solutions across the dataset.
The classification process for this dataset was performed using

FIGURE 8 | Deviation of segmentation center of mass from true object

center. The classified center of mass was within a 8 pixel distance at all times

across the dataset-1 (except algorithm initialization).

standard deviation and Renyi’s entropy methods. For each trial,
its performance was evaluated with respect to the labeled ground-
truth (fraction of frames for which predicted number of true
positives is greater than or equal to 0.8 times the ground
truth true positives number). The performance calculation for
dataset-2 was followed by interpolation to yield the image in
Figure 9. Each point of the image represents an experiment of
the dataset with corresponding motor action parameters and
moving object velocity. The vertical axis represents parameters
f and r, that correspond to the frequency of micromotions
and the time interval between velocity transitions of the robot,
respectively. The horizontal axis represents rotational velocity
of foreground objects from 10 to 30 cm/s. Along the vertical
axis the values of parameters r and f decrease gradually from
r = 0.5 and f = 10 to r = 0 and f = 5, which
illustrates that moving up the vertical axis the micromotion
profile of the robot decreases in each trial. In addition,
this plot serves as the ground truth and highlights several
important features about the algorithm, which are enumerated as
follows.

1. Lower foreground object velocity results in reduced
classification accuracy. However, when the foreground
object velocity increases, classification accuracy improves.
This is because the foreground and background distributions
overlap less.

2. Motor control parameters (vertical axis) with higher values
(f = 10 and r = 0.5) yield the best performance for
all velocities of foreground object. This illustrates the
importance of micromotions for classification. For higher
foreground object velocities, the performance deteriorates
along the vertical axis. This is because it is necessary for
the robot to spend proportional amount of time in high
and low velocity phases to accumulate sufficient characteristic
temporal differences for spike-groups for each class. For
higher object velocities the time required to accumulate
discriminative information is lower. See the Supplementary
Video for results of object classification at various points on
the performance map.

3. Classification with Renyi’s entropy metric gives more
consistent performance across the foreground object’s velocity
and extends the range of velocities where performance is good
(below 15 cm/s).

Table 1 shows the detection rates for the two methods over
recordings in dataset-1. For each recording, data is binned at 30
fps post classification. A frame is counted as positive detection if
the number of reported true positives is greater than or equal to
0.8 times the ground truth true positives number. From the table,
it is observed that the entropy method performed slightly better
than the standard deviation method. This might be a result of
the non-parametric density function used in clustering the spike-
groups (Gokcay and Principe, 2002) that avoids errors in fitting
of the mixture distribution.

3.4. Evaluation of Saccadic Motion
The saccadic motion profile (jitter) employed is an important
prerequisite for the spike-groups to be discriminative. The
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FIGURE 9 | Performance map for experiments in a controlled environment (dataset-2). The vertical axis represents decreasing parameter values for r and f .

The horizontal axis represents rotating objects moving with increasing velocity. The color at any point represents classification performance for a given parameter set

using (A) second order Renyi’s entropy metric and (B) standard deviation metric.

TABLE 1 | Detection rates.

Robot Velocity Renyi’s entropy Standard deviation

Levels (rpm) method (%) method (%)

60–80 86.05 85.01

60–90 87.07 85.05

60–100 90.50 87.40

70–80 86.20 84.40

70–90 91.20 89.80

70–100 92.50 92.00

discriminative power of spike-groups is achieved primarily
during velocity transitions of the robot. As the sensor changes
velocity levels, the elements of spike-groups associated with
background objects will reflect this change in their temporal
differences. Since moving objects have a velocity of their
own, the spike-groups exhibit a smaller change. This behavior
manifests itself as the bimodality observed in the data. To
emphasize the importance of micromotions we performed
the following experiment. We analyzed a scene having only
background and no moving object. In the first case, the
data was captured while performing micromotions on the
robot. In the second, data was captured without performing
micromotions on the robot. We expected in the second case
there would be large misclassification errors at all times,
since the spike-groups formed would not be informative
(discriminative). The results of applying a spike-group based
classification approach using Renyi’s entropy classificationmetric
is shown in Figure 10. The cumulative number of false positives
remained constant when using saccades (initial misclassifications
at algorithm initialization) but increases exponentially without
saccades.

FIGURE 10 | Importance of micromotions for sensory perception using

spike-groups. Gray line: Cumulative false positives without micromotions.

Blue line: Cumulative false positives classified using micromotions.

3.5. Free Parameters
To achieve robust classification, many free parameters need
to be determined before an experiment. In this section, we
provide details of each parameter and its effect on the algorithm.
Guidelines are given to select optimal parameter values to
enhance performance. These values are shown in Table 2 and
determined using information from neighboring pixels and
estimates from observed data.

3.5.1. Spike-Group Length
The number of elements in a spike-group is critical for robust
classification since it determines the amount of discriminative
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TABLE 2 | Optimal algorithm parameter values.

Parameter Reference Optimal

value

Short description

q Equation (3) 27 Maximum number of elements in

each spike-group.

ρ Equation (5),

Equation (7)

5× 104µs Temporal window size.

N (n× n) Equation (6) n = 3 Spatial window size.

λ Equation (7) 0.1 Regularization factor in log

hypothesis.

α Equation (17) 2 Order of Renyi’s entropy used.

Tb Equation (23) 5.0× 104

µs = 0.050s

Normal velocity phase saccade

time duration.

Ta Equation (23) 2.5× 104

µs = 0.025s

Low velocity phase saccade time

duration.

r Equation (23) 0.5 Ratio of low and normal velocity

phase durations.

f Equation (23) 10 Hz Number of saccades

(micromotions) per second.

information as a result of velocity transitions. To estimate the
optimal spike-group length a receiver operating characteristic
(ROC) (Metz, 1978) curve was computed for dataset-1
(Figure 11A). The corresponding positive likelihood ratio curve
is shown in Figure 11B. The positive likelihood ratio (LR) (Choi,
1998) metric is defined as

LR =
TPR

FPR
, (21)

where TPR and FPR are the true positive rate and the false
positive rate, respectively. The operating point was chosen as
the maxima of the LR curve around q = 27 (solid vertical bar
in Figure 11B). The corresponding operating point in the ROC
curve is indicated by the arrow in Figure 11A. An example of
spike-groups formed from a trial in dataset-1 is shown in the
Supplementary Video.

A diverging tree like structure of spike-groups is a result
of their particular assignment algorithm, allowing neighboring
pixels to share spatio-temporal statistics. Since foreground
objects have connected structures (edges) moving coherently,
spike-groups sustain for a longer time compared to background
objects. In cases of a highly structured background scene such as
dataset-2, spike-groups are differentiable through their temporal
statistics induced by robot micromotion.

3.5.2. Spatiotemporal Parameters
Spatiotemporal parameters play an important role in the
assignment of spike-groups. Parameter n specifies the spatial
length of a window that is square, symmetric (N = n × n)
around the current motion event location (Figure 3). Increasing
the window size allows for spike-groups from greater spatial
distances to be assigned to the current event’s location. This is
often not desirable since spike-groups represent parts of edges
from a foreground or background object. A larger window
size allows spatial discontinuities in spike-groups resulting in

classification errors.We have used an optimal spatial window size
that was 3× 3 around an event location.

Parameter ρ controls the temporal component of the
spatiotemporal window, which can be shown as

max∀i(Si) ≤ ρ, (22)

where Si represents the ith element of spike-group S . This
parameter represents the upper limit a spike-group can have.
Hence, during hypothesis formation (Equations 5, 7), if none of
the hypotheses evaluate to a definite value, the motion event is
categorized as noise. In our experiments, we found the optimal
temporal window size to be 5× 104µs, which allowed the non-
moving object category spike-groups to be rejected as noise and
others classified as background. Due to the filtering effect of this
parameter, it was not necessary to use a background activity filter.

3.5.3. Kernel Parameter and Renyi’s Entropy
A second order Renyi’s entropy with a Gaussian kernel was
used for the non-parametric classification approach described
in Section 2.4.1. Choosing entropy as the classification metric
is equivalent to classification using information content of a
random variable (Baraniuk et al., 2001). Classifying spike-groups
by quantifying their information content is also equivalent to
characterizing the degree of information change by micromotion
profiles. Spike-groups that belong to a background category
have a strong correlation to the motion profile used and, hence,
exhibit less entropy (see Section 2.2). In addition, we chose a
second order Renyi’s entropy with a Gaussian kernel to reduce
computational complexity (Principe et al., 2000; Principe, 2010).
The kernel bandwidth (h =

√
2σ , see Equation 20) controls the

classification accuracy of the method because it constrains the
probability density function (pdf) estimation and subsequently
the entropy estimation. Through our experiments, we found the
kernel metric as described in Silverman (1986) andWilcox (2012)
to provide good results. Figure 12 shows approximated mixture
density functions on sample data with standard deviation and
Renyi’s entropy discrimination metrics. Such an estimation is
helpful in deciding the class posteriors, especially when more
than two classes are present (more than one moving object).

3.5.4. Motor Control Parameters
Motor control parameters affect the motion of sensor and,
therefore, are important for spike-group assignments. The
velocity transition levels are determined by the user and is
dependent on the required average velocity of a robot’s motion.
From our experiments, we found velocity levels of 60–100 and
70–100 rpm with 5 cm diameter wheels to be suitable.

The parameter r, is defined as

2Ta + Tb =
106

f
,

r =
Ta

Tb

(23)

which is the ratio of low velocity phase (Ta) and normal
velocity phase (Tb) duration. This controls the shape of a
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FIGURE 11 | Likelihood ratio and ROC curve for parameter q. (A) ROC curve for parameter q (arrow indicates q = 27). (B) Equivalent likelihood ratio curve for

parameter q has a distinct maxima near 27.

FIGURE 12 | Estimated fit mixture densities. (A) Approximated density functions for standard deviation classification metric of spike-groups. (B) Approximated

density functions for Renyi’s second order entropy metric of spike-groups.

square pulse used to perform micromotions. The discriminative
power of the algorithm is a result of the enhanced statistics
computed from the micromotion profiles. Since a pulse is
smoothed by the spike train group definitions, (see Figure 13),
the value of r must be long enough for the robot to be at

each state for a sufficient duration. If the value of r increases,
the robot (and mounted sensor) is at high velocity phase for
less time, which results in a loss of unique distinguishing
statistics. The results illustrated in Figure 9 demonstrate that
a value of r = 0.5 coupled with saccade frequency of
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FIGURE 13 | Analysis of instantaneous frequency during a saccadic

motion. The data consists of one moving foreground object in a cluttered

background scene. The solid black is the mean value of 1, 200 saccadic

profiles and the gray area is one standard deviation about the mean.

f = 10 Hz provided the best performance accuracies across
dataset-2.

3.5.5. Real-Time Implementation
The algorithm can be modified to perform in (near) real-
time by replacing the q length spike-group array manipulations
(Equations 8, 19) at each pixel to an online iterative update
rule (Xu et al., 2003). Further optimization such as removing
conditional executions and modulo operations are performed to
obtain the fastest computational time. Moreover, the background
activity filter (BAF) was turned on; hence, removing the need for
parameter ρ (temporal window size). A pseudo algorithm has
been provided in Supplementary Data Sheet 1.

In Figure 14 the shaded area illustrates that the algorithm is
real-time for 98% of Gaussian distributed event rates (blue). Data
were obtained in batches of 0.33 s (1/30 s) in a scene containing
an oscillating pendulum with a cluttered background. The
distribution of the number of events across these data batches
is estimated as a Gaussian distribution. Finally, for consecutively
increasing event numbers, computation times were recorded
utilizing the optimized algorithm as depicted by a straight line in
the plot. The shaded area shows the zone for real-time operation
of our algorithm, which is 30 fps. This plot also shows that the
time complexity of this real-time implementation is O(n).

4. DISCUSSION

This paper presented the concept of utilizing a controlled
sensor platform’s vibrations to perform motion segmentation.
The use of an event-based visual sensor was instrumental to
significantly increase processing speed and accuracy. Since such
sensors are analog chips, the overall power consumption is

FIGURE 14 | Analysis of real-time performance. The optimized algorithm

was implemented on a 3.4GHz. i7 CPU machine. The plot shows that the

algorithm performs in real-time zone (≥ 30 fps) for 98% of data.

significantly reduced. We described methods for classification
that used a metric F(·) for discriminating a spike-group based
on its timestamp differences. The bimodality exhibited by these
statistics demonstrates that moving objects impose their own
statistics. These statistics are magnified and observable due to the
velocity profile of the robot. The motor sensory loop described in
this paper are disjoint, implying that the strategy for application
of micromotions is unaffected by the scene parameters. This
could be transformed to a feedback based closed motor-sensory
loop where the frequency of micromotions can be altered as
desired for robust classification in dynamic environments. The
optimal parameters described in Table 2 will work for most
scene types and robot’s velocity. With more clutter in a scene,
the micro-motion parameters can be increased to achieve better
discrimination capability and vice versa.

If the velocity of a moving object is low, the statistical
information contained in spike-groups is not able to differentiate
it from a background class. The distance and projected velocity
of the object also affects performance accuracy. As the distance
of the moving object and robot increases the effective projected
angular velocity decreases, lowering the probability of the spike-
group being classified as a moving object. In Figure 7A, the
algorithm performed well when the background was not very
densely cluttered. However, the performance remained accurate
even for the case where the background was densely cluttered.
In Figure 7B, the object distance was gradually decreased with
respect to the robot. This resulted in a more dense labeling of the
moving object for frames closer to the sensor. In addition, if the
object’s projected velocity on the sensor’s plane is low, accurate
classification is challenging. A possible solution to these cases is
to increase the micromotions frequency of the robot in order to
produce more discriminative statistics.

Since spike-groups represent edges of objects, it allows our
algorithm to track the exact object boundary instead of tracking
an area around the object. This is important for subsequent
processing of the segmented image for object recognition.
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Alternatively, it may be possible to use optical flow to estimate
optimal spike-groups and apply the metrics in this work. A
spike-group implementation approximates the continuity of
events caused and estimates similarly caused events through
spatial and temporal modeling. Another filtering layer on top
of the motion segmentation framework can be used to provide
accurate tracking results. In this paper, we have used standard
deviation and Renyi’s entropy as discrimination metrics for
classifying spike-groups. In the case of Renyi’s entropy, it is
also possible to use a Gaussian mixture for clustering instead of
entropy based clustering to assign clusters to spike-groups (see
Figure 12).

5. FUTURE WORK

A generalized mathematical framework for asynchronous data
processing using spike-groups will be presented in a future study.
This structure will be used to develop an autonomous robot
tracking-following application using two robots. In addition, to
aid with the tracking-following task with multiple agents, we
will develop an object recognition methodology that is able to
take advantage of the segmentation performed by our algorithm.
Motion segmentation support will be integrated with the robot
operating system (ROS) drivers for DVS and DAVIS. We are also
actively developing a SNN implementation of our technique for
fast parallel computations. Embodied cognition or action based
perception strategies using the neuromorphic imagers for other
tasks will also be explored. Lastly, we are currently performing
a comparative study to test our algorithm’s performance with
existing neuromorphic benchmarks for tracking (Hu et al., 2016)
and developing our own dataset with varying scenes and micro-
motion parameters, which will be the subject of a separate study.
This will be used to evaluate the applicability of the current
algorithm with inherent vibratory noise in most mobile robotic
systems as compared to implementing controlledmicro-motions.

6. CONCLUSIONS

In this paper, we have presented a novel signal processing
framework for asynchronous data provided by neuromorphic
imagers such as the DVS. The algorithm was successfully used for

motion segmentation, allowing distinction of moving objects in a
scene from static background information. Motion segmentation
is an important pre-processing step for many neuromorphic
applications such as tracking-following and dynamic object
recognition. The concept of partitioning data into redundant
spike-groups stored at pixel locations allows inference of
spatiotemporal features for each motion event. The process
of forming spike-groups is equivalent to online clustering of
spatiotemporal data into similar event classes such as dynamic
objects or static background. Our algorithm introduces the
concept of motion induced sensory visual perception using
neuromorphic imagers, which is a common technique used in
biology. This technique allows motion induced information to
be captured asynchronously by the temporal data captured by
a neuromorphic visual sensor. We have extended the concept
of dynamic retina to show how temporal variations through
behavioral strategies can contribute to spatiotemporal signal
processing. Another significant contribution of our methodology
is that it enables model free segmentation of moving objects.
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