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In the last years, the idea to dynamically interface biological neurons with artificial

ones has become more and more urgent. The reason is essentially due to the design

of innovative neuroprostheses where biological cell assemblies of the brain can be

substituted by artificial ones. For closed-loop experiments with biological neuronal

networks interfaced with in silico modeled networks, several technological challenges

need to be faced, from the low-level interfacing between the living tissue and the

computational model to the implementation of the latter in a suitable form for real-time

processing. Field programmable gate arrays (FPGAs) can improve flexibility when simple

neuronal models are required, obtaining good accuracy, real-time performance, and the

possibility to create a hybrid system without any custom hardware, just programming the

hardware to achieve the required functionality. In this paper, this possibility is explored

presenting a modular and efficient FPGA design of an in silico spiking neural network

exploiting the Izhikevich model. The proposed system, prototypically implemented on a

Xilinx Virtex 6 device, is able to simulate a fully connected network counting up to 1,440

neurons, in real-time, at a sampling rate of 10 kHz, which is reasonable for small to

medium scale extra-cellular closed-loop experiments.

Keywords: FPGA, fixed-point, neural simulator, closed-loop hardware accelerator, real-time

1. INTRODUCTION

In the past decades, spiking neuronal networks (SNN) progressively acquired relevance due
to possibility to exploit them in several application scenarios. Typical artificial intelligence
applications take advantage of the learning capabilities of SNN for classifiers and autonomous
controls. Nevertheless, SNN represent a powerful instrument in neuroscience, allowing to simulate
living neuronal assemblies trying to gather from the characteristics of a fitted artificial neuronal
network clues on the properties of the living tissue (Bonifazi et al., 2013). From this perspective,
it is interesting not only the accurate evaluation of the single neuron behavior but, primarily, the
study of the emergent properties of the neuronal assembly dynamics (van Pelt et al., 2004). This
can be studied through intracellular recordings (single cell models, by voltage clamp techniques)
or extracellular recordings (in vitro cultures of neurons or cortical implants, by Micro-Electrode
Arrays MEAs). In this case, the adoption of SNN software simulators (Brette et al., 2007) is widely
accepted and the use of such tools is cumbersome only when it is required to simulate very large
networks, because of the explosion of the computational cost and, in turn, of the processing time.
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This limitation fostered the research toward the development
of hardware accelerators able to carry out such simulations in
a shorter time (Cheung et al., 2016), possibly comparable to
the time scales of a real evolving neuronal network, in order
to enable complex simulations otherwise impossible. With the
advancements of the technology, it is possible to look at such
hardware simulators as enabling tools for new neuroscience
experiments. For instance, closed-loop electrophysiological
systems are characterized by the tight interaction between the
living neuronal tissue and a controlling electronic unit able to
interact with it through sensing and stimulation (LeMasson et al.,
2002). Compared to open-loop experiments, closed-loop ones
enable the study of both the input and output side of the neuronal
assembly at the same time (Rolston et al., 2010). The largest
part of systems for closed-loop experiments aim to study this
aspect by means of an integration between a sensing interface,
simple and abstracted computational models and a stimulation
interface. Examples of interfacing with muscles for real-time
control have been already presented in the literature (Zbrzeski
et al., 2016). One aspect, paving the way to the development of
neuroprostheses, would be the direct interface of a population
of living neurons to an artificial SNN in order to evaluate the
capability of the living system to interact with the simulated
one (Bonifazi et al., 2013). This poses severe constraints on the
hardware implementation of the SNN, particularly for everything
concerning the timing, which is nomore a matter of performance
improvement over a simple PC implementation, but an aspect
connected to the feasibility of the neuroprosthetic approach.
Examples of the integration of living neurons into artificial SNN
can be already found in the literature (Nawrot et al., 2003).

The goal of this paper is to describe and validate a scalable
and modular hardware architecture to simulate the dynamics
generated by biologically-plausible synthetic neuronal assemblies
in real-time. This architecture was completely manually coded
and optimized in Verilog Hardware Description Language
(HDL) for a single Field Programmable Gate Array (FPGA) chip,
thus it can be easily adopted in any lab for small-to-medium
SNN sizes. This, along with a fixed-point implementation of the
Izhikevich (IZ) neuronal model (Izhikevich, 2003), confers to the
architecture a considerable real-time performance up to 0.1 ms,
joined to a programmable delay that can be reduced down to such
bound. The architecture is parametric in the number of neurons
that can be simulated, with limitations imposed by the hardware
only in terms of the possibility of fitting the SNN in a commercial
FPGA. The long-term goal of the so developed architecture is to
bi-directionally interface the SNN with a biological one. Three
different experimental scenarios can be envisioned:

• Use the real-time SNN on FPGA as a stimulator. The signals
generated by the SNN can be used to trigger the spontaneous
dynamics of the biological networks. Different stimulation
protocols can be imagined, for example using the onset of the
network bursts, or the frequency of the bursts. The possibility
to generate a “natural” stimulation can be used to shift the
dynamical states of the biological network;

• Connect in a bi-directional way the real-time SNN on FPGA
and a biological neuronal assembly. Although closed-loop

stimulation experiments have been already performed
(Wagenaar et al., 2005; Wallach et al., 2011), such works have
the intrinsically drawback to use “artificial stimulation,” i.e.,
stereotyped stimuli delivered by a controlled stimulator. By
means of the proposed architecture, it becomes feasible to
deliver stimuli modulated by the intrinsic dynamics.

• In the long term, the real-time SNN could be used as a tool
to replace a damaged biological network. In fact, in the last
years, researchers started to develop a new family of prostheses
applied to the central nervous system (neuroprostheses). As
an example, Berger et al. developed a hippocampal prosthesis
improving memory function in behaving rats (Berger et al.,
2011, 2012).

2. MATERIALS AND METHODS

SNNs are more realistic than the conventional neural networks
for neuroscientific simulations, taking into consideration not
only the neuronal and the synaptic state, but also the concept of
time into their operating model. Artificial neurons’ firing activity
is determined by the evolution of their membrane potential,
which follows the model equations. Not only different models
produce different firing behaviors, but within the samemodel it is
often possible to tune the parameters so that the artificial neuron
is able to reproduce different firing patterns proper of specific
cells.

The architecture is currently based on the implementation of
the IZ neuronal model (Izhikevich, 2003), which is characterized
by an excellent trade-off between computational complexity and
biological accuracy, being able to reproduce several spiking
patterns by simply tuning its parameters. The proposed version of
the architecture implements the model in fixed-point arithmetic,
in order to primarily reduce the memory requirements (known
to be a limiting factor for hardware SNN) and the latency of the
mathematical computations. The architecture is conceived to be a
customizable framework, where the neuronal model can be easily
replaced while preserving the global structure, and the same
holds for the synapses. The main features pursued in the design
phase were the low latency, with a real-time timing constraint
of 0.1 ms and a programmable delay between firing activity and
its reflection on the network activity. In turn, this means that
the output sample rate is 10 ksample/s, which is adequate for
closed-loop experimental systems.

2.1. Izhikevich Spiking Model
The simple model of spiking neurons proposed by Izhikevich
(2003) is composed of a two-dimensional system of ordinary
differential equations.

dv

dt
= 0.04v2 + 5v+ 140− u− I (1)

du

dt
= a(bv− u) (2)
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v is the membrane potential of the neuron and it is modeled
according to Equation (1), whereas Equation (2) provides the
dynamic of u that is the membrane recovery variable. The term
I, in Equation (1), is meant to take into account the contribution
of the connected nodes to the considered neuron, by means of
the sum of the synaptic currents or injected dc-currents. When a
spike is fired, meaning v has reached its threshold, the following
resetting condition is applied:

v ≥ vth ⇒

{

v = c;

u = u+ d
(3)

Both the membrane potential and the membrane recovery value
are normally measured in mV. The IZ spiking model is capable
to reproduce several different firing patterns, 20 in the original
article (e.g., chattering, fast spiking, low-threshold spiking, etc.)
but others are being studied, representing the known types of
neo-cortical and thalamic neurons, by tuning the a, b, c, and d
dimensionless parameters:

• a represents the time scale of the recovery variable u. Smaller
values result in slower recovery;

• b represents the sensitivity of the recovery variable u to
possible sub-threshold fluctuations of the membrane potential
v. Larger values indicate v and u are strongly coupled,
resulting in possible sub-threshold oscillations and low-
threshold spiking dynamics;

• c is the after-spike reset value of v;
• d determines the after-spike reset value of u.

2.2. Hardware Spiking Neural Network
In this work, a SNN hardware emulation platform, based on the
IZ spiking neuron model, was developed and tested. Figure 1
depicts an overview of the system. The entire neural network is
subdivided in units, which are the building blocks of the SNN.
Each unit produces, according to the IZ spiking neuron model,
a sub-set of spikes whose occurrence is stored in the binary spike
register, which keeps trace of the whole network spiking activity.
It is composed of one bit per neuron under emulation. The bit
corresponding to a neuron is set high when the neuron has fired a
spike. The chosen simulation paradigm is synchronous (or clock-
driven), meaning that all neurons are updated at every simulation
step, regardless of the spiking activity (Brette et al., 2007). From a
macroscopic point of view, each simulation cycle is composed as
follows:

1. The units process their subset of neurons. They receive the
content of the spike register, accounting for the whole SNN
firing activity (the architectures assumes a fully-connected
structure) and, according to the IZ model, they determine
which neurons within their subset should fire;

2. The firing activities estimated by the units are grouped
together by a dedicated concatenation logic and sent back to
the spike register;

3. The spike register is updated and represents the updated status
of the overall SNN.

Additional details, regarding what happens within the units in
each simulation step, are provided hereafter in Section 2.2.2. It is
worth to notice now that the architecture gives the possibility to
set at design time a delay for the spike propagation, exploiting a
register chain strategy. The firing activity is propagated back to
the units with a delay of several (up to ten) emulation cycles, to
mimic a physiological delay of up to 1 ms between firing and its
reflection on the network status.

Figure 1 depicts an exemplary instance of the proposed
platform, parameterized in order to emulate a network of 256
neurons only for the sake of clarity. The platform instance
integrates four units, emulating 64 IZ neurons each. According to
the signal activity of all the 256 neurons, each unit generates up to
64 spikes per simulation cycle. The four different 64-bit signals,
representing each unit’s neuronal activity, are concatenated to
create a single 256-bit signal and fed back to the spike register.

2.2.1. Units: Architectural Overview
The units are responsible for the implementation of Equations
(1) and (2) and for estimating the firing activity of the subset of
neurons assigned to each of them. Equations (1) and (2) represent
two derivatives and they have been implemented in hardware
exploiting the finite-difference method, which is a numerical
method for solving differential equations by approximating them
with finite differences, as specified hereafter:

v(k+ 1)− v(k)

h
= 0.04v(k)2 + 5v(k)+ 140− u(k)− I (4)

u(k+ 1)− u(k)

h
= a(bv(k)− u(k)) (5)

The smaller is h (i.e., the time interval between k and k + 1) the
better Equations (4) and (5), respectively, approximate Equations
(1) and (2). In the current implementation, h is fixed to 0.1 ms,
which turned out to be an excellent compromise between the
approximation quality and the overall processing time required
to update the status of the entire SNN. Furthermore, such a
delta-cycle is compatible with hybrid closed-loop experiments.

Each unit, as depicted on the right hand side of Figure 1, is
composed of a Neuron Section and of a Synapses Section, which
are, respectively, responsible for computing the overall neuronal
activity of the considered unit and for determining, for each
neuron, the synaptic current (I) that has to be subtracted in
Equation (4).

Figure 2 presents an overview of the Neuron Section of each
single unit block. Equations (4) and (5) are physically computed
by the Izhikevich block, which receives v(k) and u(k) values
from the u-v RAM block, a, b, c, and d parameters from the
parameter RAM block, and finally I from the Synapses Section.
The interactions with the u-v RAM and parameter RAM blocks,
and the synchronization with the Synapses Section are controlled
by a dedicated Finite State Machine (FSM), the neuron FSM. The
neuron FSM also masters the execution of the different phases of
the Izhikevich block itself. In terms of library IPmodule, the latter
includes only a multicycle multiplier, which is re-used for all the
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FIGURE 1 | SNN block diagram (on the left) and unit block high-level architecture (on the right). The numbers reported in the scheme are referred to an

exemplary embodiment with a fully connected network of 256 neurons.

FIGURE 2 | Unit—Overview of the Neuron Section.

multiplications in Equations (4) and (5); all the other modules
are HDL-coded. In this way, it is possible to save as much
hardware resources as possible (by re-using the same processing
element rather than instantiating several of them in parallel)
and to maintain the operating frequency high (by pipelining the
operations and, in turn, breaking down the critical path). The
Izhikevich block processes one neuron at a time; its output is
written on the out_spike_reg module, which contains the spikes
of all the neurons within the given unit. The output of theNeuron
Section is the updated unit’s contribution to the firing activity of
the SNN, to be sent to the concatenation logic.

The Synapses Section is depicted in the block diagram in
Figure 3. The figure shows how the synaptic current is computed
on the basis of the overall firing activity (i.e., the content of the
spike register). It computes the weighted sum of the contribution
of the pre-synaptic neurons, connected to the processed one by
means of the synapses. Only the synaptic weights associated to
those neurons that fired (having a 1 in the corresponding bit
of the spike register) are eventually accumulated. The synaptic
weights are provided by the weight RAM block. The contribution
of each connected neuron is computed by a set of synapses
blocks, placed in parallel to speed-up the computation since all
the incoming neuronal activity has to be scanned to determine
the synaptic weights associated to the pre-synaptic neurons
that fired and, accordingly, retrieve and accumulate them. As
an example, the Synapse section of the platform instance in
Figure 1 integrates 2 synapse blocks per unit, which means that
each synapse block calculates the contribution given by 128

FIGURE 3 | Unit—Overview of the Synapses Section.

neurons. The outputs of the of synapses blocks are summed-
up by an adder-tree module to produce I. The interactions
with the weight RAM block and the synchronization with the
Neuron Section block is controlled by a dedicated FSM, the
synapses-FSM.

2.2.2. Units: Execution Flow
The execution flow of a unit within each simulation cycle can be
described as follows:

1. According to the currently processed neuron index, the
neuron_FSM drives the AddGen block, which generates the
address Ad(k), used to correctly fetch the current v(k) and
u(k) values from the u-v RAM block, and to retrieve the IZ
parameters from the parameter RAM blocks;

2. The Izhikevich block executes all the multiplications in
Equations (4) and (5), the Synapses Section determines I. The
neuron_FSM and the synapses_FSM exchange control signals
to synchronize these two operations, in order to make sure
that the proper value I is added in Equation (4);

3. As already said, I is a weighted sum, depending on the
firing neurons. The synapses_FSM drives the weight AddGen
to correctly access the weight RAM that stores the synaptic
weights of the excitatory and inhibitory neurons. Ad(weights)
represents the addresses of the memory locations storing the
weights associated to the excitatory and inhibitory neurons
connected to the currently processed one;
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4. As soon as Equations (4) and (5) are completely computed,
the neuron_FSM enables the possibility of writing back the
updated v(k+1) and u(k+1) values on the u-v RAM block. The
neuron_FSM drives the AddGen to access the correct location
of address Ad(k+ 1);

5. The final processing stage of each single neuron requires to
evaluate whether the spike has to be fired or not. The result
is written in the correct position (determined by the currently
processed neuron index) of the out_spike_reg module.

All these steps are iterated for all the neurons within the
unit to evaluate and update the status of the SNN. The
neuron_FSM is responsible of verifying whether all the neurons
have been processed or not and to notify that the content of the
out_spike_reg module is the complete updated unit contribution
to the neuronal activity that can be sent to the concatenation logic.
Depending on the initialization data stored within u-v RAM,
parameter RAM and weight RAM blocks, the platform is thus
capable to fully emulate an arbitrary IZ-based SNN.

A fixed-point arithmetic was adopted in order to pursue a
fast execution and a compact hardware implementation. A Q3.4
format for the weights (meaning that a Q format is adopted, with
the decimal point virtually placed in order to leave 4 bits for the
fractional portion over a 7-bit word) was chosen. Such a solution
limits the dynamic ranges of the weights with minor effects, since
the low values are usually swamped by the thalamic noise term
(Thomas and Luk, 2009). A more conservative approach based
on the worst-case design, which is unrealistic in this kind of

applications, would limit the SNN weights in the [−1,1) range.

Multiple iterations with NEST have been performed in order
to define a format for the weights able to reduce the memory
requirements while preserving an acceptable accuracy. In order
to avoid intermediate overflows, the synapse accumulators use

8 bits for the input and 32 bits for the outputs, and they are
connected to a 32-bit in 32-bit out adder tree. Both of them

are implemented using DSP48 macros for Xilinx FPGAs. In
order to be able to represent the IZ parameters with enough
flexibility to accommodate typical models and novel ones, a
Q10.22 was selected for them. The internal computations rely on

pre-computed constants, full-precision adders and multi-cycle
multipliers with 32-bit in and 32-bit out.

The communication between the emulation platform and

the external environment is required, at start-up, to allow the

pre-loading of neuron parameters and synaptic weights for the

target experiment inside the system memory blocks. Moreover,

emulation results must be sent to the external environment,
respecting real-time constraints, during the whole emulation

time. Communication interface can be implemented in different

ways, exploiting the connectivity in modern FPGA boards
and the support offered by design tools and programming

environment. Two different communication methods were

tested. Firstly, the exploitation of a host general-purpose
processor, implemented as a Microblaze soft-core on the FPGA,
was evaluated. The processor reads systemmemories as part of its
memory map and communicates with the external environment
using an Ethernet connection or a serial UART connection. This
solution is easy to implement and provides comfortable coupling

of the processor with the emulator, but presents the disadvantage
to occupy resources on the reconfigurable device, which may be
exploited to emulate more neurons. A second solution is available
using FPGA families that embed hard-wired processing cores,
such as the Xilinx Zynq family, which includes chips integrating
programmable logic and an ARM dual-core processor. In this
case, an interface between the emulator, implemented on the
programmable logic, and the ARM sub-system, serving as a host
processor and providing adequate connectivity with the external
environment, was developed. A master IP that loads ad stores
data on the DDR memory connected to the ARM when needed,
exploiting a set of 4 AXI-based interfaces natively available in the
system, was mapped on the FPGA. Each of the AXI interfaces
provides a bandwidth of 64 bits/cycle and can be clocked at more
than 100 MHz, thus is sufficient to sustain output of emulation
results in real time.

However, it must be noticed that the best interface
implementation depends on the target FPGA device and on the
target use-case of the emulation infrastructure.

2.3. Platform Validation Approach
2.3.1. Architectural Performance Evaluation Metrics
The main performance evaluation metrics for the FPGA-based
hardware implementation are timing and resource utilization. In
the proposed parametric architecture, both depend on the chosen
configuration of the architectural parameters, i.e., the number
of units, the number of synapse modules inside each unit and
the precision of the weights. The main limiting factors for the
proposed implementation are the DSP modules and the RAM
modules. In particular:

• DSP48E1 modules are computing modules used to implement
add andmultiply operations,

• RAMB36E1 modules are RAM memory macros that are used
to implement memories in the architecture. Each macro has a
capacity of 32 kbits.

Obviously, the amount of DSP48E1 and RAMB36E1 needed
to implement a given configuration is dependent on the
architectural parameters. Performance will be evaluated
considering the maximum number of neurons that can be
emulated in real-time by the platform. This metric is impacted
by several factors:

• real-time constraint,
• architectural parameters,
• implementation level variables (such as working clock

frequency and FPGA resource utilization).

In order to provide an overview of the involved dependencies,
a model, described in Section 3.1.1, was developed to enable a
prospective user to estimate the achievable performance level for
different architectural configurations implemented on different
FPGA devices.

2.3.2. Accuracy Evaluation Tests
To evaluate the accuracy of the simulations performed using
the hardware SNN, a sister-pool of simulations with NEST
(Gewaltig and Diesmann, 2007) was performed. In this way,
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it was possible to compare the so generated dynamics of
the in silico (implemented in NEST) and hardware SNN, by
means of well-known statistics commonly used to analyze the
electrophysiological activity of large-scale neuronal networks
coupled to Micro-Electrode Arrays (MEAs). For this purpose, an
heterogeneous 1,024-neuron SNN with 768 excitatory neurons
and 256 inhibitory ones was simulated. Compared to the
maximum number of synthesizable neurons, which is 1,440, this
number represents the highest power of two and was chosen
in order to simplify the scripting operations required, for the
time being, to load the parameters and analyze the results.
The DC input currents are 4 pA and 2 pA for excitatory
and inhibitory neurons respectively; neurons are randomly
connected, according to the generation model in Izhikevich
(2003); inhibitory neurons have stronger synaptic connections. In
order to achieve heterogeneity (i.e., to model all exctitatory and
inhibitory neurons), excitatory cells are generated by assigning
(ai, bi) = (0.02, 0.2) and (ci, di) = (−65, 8) + (15,−6)r2i , where
ri is a random variable uniformly distributed on the interval
[0,1] and i is the neuron index; similarly, each inhibitory cell
has (a1, bi) = (0.02, 0.25) + (0.08,−0.05)r2i and (ci, di) =

(−65, 2).
To characterize the spiking activity, the mean firing rate

(MFR) of the network and the inter spike interval distribution
(ISI) of the excitatory and inhibitory neurons were evaluated.
The bursting activity was characterized by means of the mean
bursting rate (MBR), burst duration (BD), and inter-burst
interval (IBI). Bursts have been detected by using the algorithm
devised in Chiappalone et al. (2005). Detected bursts are
sequences of spikes having an ISI smaller than a reference value
(set at 100ms in our simulations), and containing at least a
minimum number of consecutive spikes (set at 4 spikes in our
simulations). Briefly, MFR and MBR are the number of detected
spikes per second and bursts per minute falling in a temporal
window equal to the duration of the simulation. The ISI and
IBI distributions are the probability density functions of time
intervals between consecutive spikes and bursts, respectively
(Dayan and Abbott, 2001). Finally, BD is the duration of the
detected bursts.

In addition to the aforementioned statistics, the spike jitter
between in silico and hardware simulations was also computed.
Practically speaking, by considering as reference the spike
timing of the NEST simulations, the temporal distance of the
correspondent spikes generated by the hardware SNN was
computed.

The evolution of the membrane potential of a single neuron
in the two simulations were also compared. Five experiments
were performed, in order to analyze the dynamics of the u
and v potentials of a modeled neuron respectively belonging to
three classes of excitatory neurons (regular spiking, intrinsically
bursting and chattering), and two classes of inhibitory neurons
(fast spiking and low-threshold spiking). The a, b, c and d
parameters belonging to each of the emulated cortical cells are
reported in Table 1; the DC input current, for all considered
experiments, is 4 pA. The behavior of the emulated potentials
with the potential evolution obtained by means of a NEST
simulation were also compared.

TABLE 1 | Parameters of emulated cortical cells.

a b c d

RS 0.02 0.2 −65 8

IB 0.02 0.2 −55 4

CH 0.02 0.2 −50 2

FS 0.1 0.2 −65 2

LTS −65 2

3. RESULTS

In this section, the results have been organized in order to discuss
at first those related to the architectural performance evaluation
and then those related to the accuracy evaluation.

3.1. Architectural Performance Evaluation
Results
As previously mentioned, the assessment of the quality of
the proposed architecture has to consider two main factors:
resource utilization and emulation performance. In the following,
a description of the timing and utilization figures that can be
obtained changing the architectural parameters is presented.
At first, the timing characteristics of the architectures modules
and their dependence on the selected architectural parameters
have to be studied, within the real-time constraints imposed
by the emulation. Then, the optimal parameter values have to
be selected, in the range actually allowed by the target FPGA
device. All the presented results were verified after synthesis and
implementation.

3.1.1. Timing Characteristics of the Architecture

Modules
The real-time constraint to be considered defines how often
the SNN output has to be evaluated. Such a metric, in
emulation/simulation, is usually referred to as delta cycle. A
delta cycle of 0.1 ms was chosen, aiming to be aligned with
an acceptable sampling frequency in the scope of acquisition
of signals from neuronal cultures with MEAs. The same time
step was also used for the differential equations discretization,
hereafter called Tsample.

As mentioned, hardware structures are reused to emulate
more neurons, in the considered interval. Emulation of one
neuron occupies the set of hardware resources in a unit for
a determined number of cycles, that will be indicated in the
following as Temu. In order to relate Temu with the real-
time constraint, actual clock period, which will be indicated
as Tclock in the following, used as synchronization reference
within the architecture, shall be considered. In synchronous
digital systems, the minimum clock period that can be chosen
by the designer is related to the propagation delay of gates
implementing combinational paths through the design. In
the design of the proposed architecture, a pipeline strategy
that allows the minimum clock period to be independent
from the architectural configuration was adopted. After the
implementation on the FPGA device, the optimal value of Tclock
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can be evaluated to be 10 ns, corresponding to a maximum
working frequency of 100MHz. It was proven that this frequency
can be substained for all the configurations that may fit in mid-
to-high end FPGA devices, confirming the scalability of the
proposed architecture.

Thus, the number of cycles available for emulation in a
sampling interval is Tsample/Tclock = 10, 000 cycles. Then, each
unit can emulate Nneu neurons in one sampling interval, where

Nneu = 10, 000/Temu (6)

Temu is a function of the number of synapse modules Nsyn and
units Nunits in the system. The number of cycles needed to
emulate one neuron is the sum of two contributions:

Temu = log2(Nsyn)+
Nneu ∗ Nunits

2 ∗ Nsyn
(7)

Equation (7) was constructed on the basis of the architectural
details of the hardware modules and its validity was verified
in HDL-level simulation and after actual implementation. The
first contribution is an offset related to the pipeline stages
in the adder tree connecting the output of the synapse
modules. The second contribution is the actual time needed
to perform all the accumulation routine that calculates the
synaptic current. In the second term the numerator represents
the total number of neurons constituting the emulated network,
the denominator takes into account that the workload related
with the accumulation is divided between the synapse modules
in the unit, each one performing two add operations per
cycle.

Combining Equations (6) and (7), Nneu can be calculated
solving a quadratic equation, on the basis of the architectural
parameters Nsyn and units Nunits. Eventually, the total number of
neurons that can be emulated is Nunits × Nneu.

Figure 4 shows how such numbers changes varying Nunits for
two different Nsyn values. The selection of the values for such
parameters is obviously bounded by the amount of resources
available on the target FPGA device, as it will be described in
more detail in the next section.

Even though the proposed architecture was not conceived
as an hardware accelerator but, rather, a real-time simulation
platform enabling closed-loop neurophysiological experiments, a
rough performance comparison against NEST can be presented.
When running on a PC platform (Ubuntu 14.04 LTS, kernel
3.13.0-96-generic, CPU Intel(R) Core(TM) i7-2600 CPU @ 3.40
GHz, 16 GB RAM), the emulation of the SNNwith 1,440 neurons
requires 6.3 s per second of simulation, which is far from the
real-time achieved with the proposed architecture. Nevertheless,
caution should be used when considering such numbers for
a fair comparison. In fact, on one hand, the architecture is
clocked in order to provide the real-time performance at 10 kHz,
so the actual processing time is masked by the (higher) wall
time, which is 0.1 ms. The same does not hold for a PC-based
emulation, not constrained by such a wall time. On the other
end, different programming styles, programming language and

FIGURE 4 | Dependence of the maximum number of neurons under

emulation on Nunits. Results corresponding to two different numbers of

synapse modules (Nsyn) are presented.

processor architectures can lead to very different results, so the
performance of PC-based solutions could seem unfairly poor.

3.1.2. Hardware Resources Utilization
In order to select the correct architectural parameters, it is
mandatory to understand their impact on the utilization of
hardware resources in the target device.

When the architectural configuration is known, it is very
easy to estimate the number of required DSP48E1 macros. Each
unit uses 3 macros for each synapse module and 3 macros to
implement the hardware emulating the neuronal dynamic. The
amount of RAMmacros depends on the total number of neurons
to be emulated. The architecture should embed enough storage
to contain all the weights determining the contribution of each
pre-synaptic neuron to the post-synaptic ones. Such neurons are
prospectively disjointed, thus the utilization of resources roughly
has a quadratic dependence on the size of the emulated network.
Some memory resources are also needed to store neurons’
parameters and evolving values of u and v.

Considering the number of resources in commercial FPGA
devices, for typical network configurations, the limiting factor
is very often the availability of Block RAM (BRAM). This
can sometimes limit the maximum number of neurons under
emulation with respect to the possibilities offered by a given
parameterization of the unit hardware modules.

In order to provide an estimation of the architecture
configurations that may be implemented on mid-range
commercial devices, the hardware-related features of a
configuration featuring 8 units, each one embedding 16
synapse modules, realized on a XC6VLX240T Xilinx device, are
presented. Table 2 represents the device utilization summary.

This configuration occupies 94% of the BRAM resources and
53% of the DSP48 macros, and it is capable of emulating 1,440
neurons in real time.

Although power consumption analysis has been considered
as a secondary development objective in this work, it is worth
to provide some hints about the power-related features of the
proposed architecture. Obviously, the actual power dissipation
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TABLE 2 | Summary of the resource utilization.

Used Available Utilization

Registers 48,502 301,440 16%

LUTs 55,884 150,720 37%

RAMB36E1 392 416 94%

DSP48E1 408 768 53%

Target FPGA platform is a XC6VLX240T Xilinx device. The implemented architecture

features 8 units with 16 synapses, capable of emulating 1,440 neurons.

depends on the specific FPGA platform selected as target.
However, for every FPGA device considered in the developed
experiments, a significant part of the power consumption is
related to the usually called quiescent power, that is the power
dissipation of the idle FPGA, before its actual programming.
Moreover, recent all-programmable FPGA-based SoCs as Xilinx
Zynq devices, present an additional contribution to the power
consumption due to the host processing system implemented
on the chip. Finally, in general FPGA chips are mounted on
a development board including several peripherals, that add a
further contribution unrelated with the emulation. Thus, the
power consumption of the overall emulation platform is weakly
dependent on the number of emulated neurons. As an example,
in the presented experiments, a Xilinx ZC706 evaluation board
featuring a XC7Z045 FPGA chip dissipates 6.8 W in the idle state
and 8.5 W when executing emulation with a 100 MHz clock on
the FPGA.

3.2. Accuracy Evaluation Results
3.2.1. Single Neuron Membrane Potential Evolution
From the single neuron simulation, it is possible to find a
good adherence between the membrane potential evolution as
obtained with the proposed architecture and with NEST. This
is clearly visible in Figures 5, 6 respectively for low-threshold
spiking and fast spiking neurons.

3.2.2. Fully-Connected Network of N Neurons
By using the NEST simulations as reference, the
electrophysiological patterns of activity generated by the
hardware implementation of the network model were compared.
The raster plot of Figure 7A shows the spike timing of the 1024
neurons of the network. The first neurons (id: from 1 to 768)
are excitatory whereas the others inhibitory (id: from 769 to
1024). Blue circles and red crosses are representative for the two
simulation approaches (i.e., software, blue circles, and hardware
red crosses, respectively). The zoom of Figure 7A shows a good
overlap of the spike timing. In order to quantify such a jitter, the
histogram (bin width equal to 0.3 ms) of the occurrences relative
to the excitatory (Figure 7B) and inhibitory neurons (Figure 7C)
was plotted. Both the neuronal populations display significant
jitters less than 2.0 ms in 95% of the occurrences, indicating good
performances of the hardware implementation of the network
model.

In terms of number of spikes, both the software and hardware
models present the same number of spikes, as the plot of the
MFR displays (Figure 8). MFR values are 1.05 ± 0.48 spikes/s

FIGURE 5 | Low-threshold spiking neuron membrane potential

evolution: comparison between the proposed architecture and NEST.

FIGURE 6 | Fast spiking neuron membrane potential evolution:

comparison between the proposed architecture and NEST.

in the NEST implementation of the model and 1.05 ± 0.49
spikes/s in the hardware one. Finally, the ISI distributions
(Figure 8B, relative to the software, and Figure 8C, relative
to the hardware model) by splitting the contribution of the
excitatory (red line) and inhibitory (black line) populations, were
evaluated. This analysis shows a good agreement of the two
model implementations too. Qualitatively, the shape of the ISI
distributions is similar, as well as the temporal position of the
peaks of the curves (hardware: 2.54 ms vs. software: 2.50 ms).

The validation of the hardware networkmodel was carried out
by comparing the bursting dynamics (Figure 9). Figures 9A–C
compare the values of MBR, BD, and IBI of the software
and hardware network models, respectively. Although slight
differences can be appreciated, such differences are not
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FIGURE 7 | Network dynamics characterization: comparison between in silico and hardware simulations. (A) 2 s of electrophysiological activity. Blue circles

and red crosses are representative for software and hardware approaches, respectively. (B,C) histograms of the spike jitter between software and hardware

simulations evaluated for excitatory (B) and inhibitory (C) neurons of the network.

FIGURE 8 | Network dynamics characterization: comparison between in silico and hardware simulations. (A) MFR (evaluated over the whole neurons of the

network). No statistical difference can be evaluated between the two simulation approaches. (B,C) ISI distributions of the excitatory (red) and inhibitory (black)

neuronal populations evaluated in the in silico (B) and in hardware (C) simulations: the same trend can be appreciated.

statistically significant (p >0.05, Mann-Whitney, non-parametric
test). The Mann-Whitney U-test was chosen since the analysed
data do not follow a normal distribution, as revealed by
means of the Kolmogorov-Smirnov normality test applied to
them. The chosen p-value is assumed to be adequate for the
considered problem. Similar considerations can be done for the
IBI distributions (Figures 9B,C).

4. DISCUSSION

Several SNN hardware accelerators have been proposed so far
in the scientific literature (Maguire et al., 2007). They usually
try to overcome the performance limitations of purely software
simulators (Brette et al., 2007) such as NEURON (Carnevale
and Hines, 2006), NEST (Gewaltig and Diesmann, 2007), BRIAN
(Goodman and Brette, 2009), etc., widely accepted as research
tools in the community of computational neuroscience. However,

unless an explicitly parallel processing is pursued on large
multiprocessors high performance computing platforms, such
simulators suffer the intrinsic scalability limits of the underlying
object of the simulation, becoming soon too slow for large-
scale networks of biologically plausible neuronal models (Rast
et al., 2010). In this section, a discussion about some relevant
architectures for SNN simulations in hardware is presented,
along with a comparisonwith the proposed approach. Among the
different architectures cited hereafter, those aimed to simulate a
large number of neurons have been grouped in Table 3, reporting
the main relevant data gathered from the cited sources. Without

being exhaustive, this table enables a quick overview of the
present state of the art.

Despite the purely software solutions present the

aforementioned limitations, it is obvious that they usually
pursue simplicity (in the creation and simulation of the

model), precision (typically double) and flexibility (the
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FIGURE 9 | Comparison of the bursting features of the simulated network by using the software and hardware approaches: (A) MBR, BD, IBI (B,C) IBI

distributions.

TABLE 3 | Summary of some relevant state-of-the-art architectures for SNN hardware simulation.

Work Target ♯Neurons/core ♯Cores Model ♯Synapses/neuron Time res

Schoenauer et al., 1998 ASIC ≈ 30,000 4 LIF > 30 < 1ms

Wolff et al., 1999 Multi-processor (DSP) ≈ 1,900 64 Eckhorn > 30 > 1ms

Glackin et al., 2005 FPGA ≈ 1,000 4 I&F ≈ 500 k −

Upegui et al., 2005 FPGA 30 1 custom 30 ≈ 1ms

Pearson et al., 2007 FPGA 112 10 LIF ≈ 912/112 0.5 ms

Cassidy et al., 2007 FPGA 51 1 LIF 128 320 ns

Jin et al., 2008 Multi-processor (ARM) 1,000 1 IZ 100 1ms

Thomas and Luk, 2009 FPGA 1,024 1 IZ 1,024 10µs

Ambroise et al., 2013 FPGA 117 1 IZ 117 1ms

Cheung et al., 2016 FPGA > 98,000 6 IZ 1, 000− 10, 000 1ms

For some architectures flexible enough to implement several neuronal models, only one published result is reported.

possibility to change topology, parameters, synaptic model,
neuron model, etc.). For this reason, when moving toward
the hardware simulation systems, it is obvious the success
of architectures exploiting efficient signal processing cores,
such as ParSPIKE (Wolff et al., 1999), which is based on the
Analog Devices ADSP21060 Digital Signal Processor. In fact,
Digital Signal Processors revealed better performance than high-
end mainstream processors in several biomedical and signal
processing applications, with a power consumption that could
be even two orders of magnitude lower (Pani et al., 2013, 2014)
and they are currently being used for studies in neuroprosthetics
(Pani et al., 2011, 2016).

A very successful implementation of a hardware architecture
for SNN based on general purpose (embedded) processors
is SpiNNaker (Furber et al., 2014). It is a multilevel tiled
architecture, i.e., an architecture composed, at different levels,
of a regular mesh of computing elements called tiles, mixing
the flexibility of a software implementation of the neuronal
model with the performance of a custom architecture (at
macroscale). The smallest tile is a node, i.e., a custom chip
consisting of multiple (up to 18 in the latest versions) ARM968
processors clocked at 200MHz, without embedded floating-point
units and exploiting a network-on-chip infrastructure for

the communications. These nodes are assembled in boards
comprising 48 of them, and exploiting highly customized self-
timed connections. These boards communicate each other
through custom serial links implemented on FPGA. This
architecture is being used in the human brain project (www.
humanbrainproject.eu). Despite the impressive work behind this
platform, it is neither suited for a neuroengineering lab with
limited budget nor for closed-loop applications. Furthermore,
compared to our design, each core is able to model up to a few
hundred neurons (LIF or IZ) with about one thousand input
synapses each. The time resolution scales down to 1 ms only,
which is inadequate for interfacing with the living tissue. Recent
completely asynchronous extensions of the software framework
on the SpiNNaker platform allowed performing simulations
with networks implementing sub-millisecond tasks, such as
sound localization, (Lagorce et al., 2015). However, some specific
conditions apply, as the use of even-driven LIF neurons, the
adoption of a dendritic delay core for every particular delay value
(leveraging the large number of cores available), etc.

The same holds for the NeuroFlow architecture, which for
sure represents the state of the art in the field of FPGA
architectures for SNN (Cheung et al., 2016). Compared to it,
the proposed architecture targets a real-time performance of
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0.1 ms, which can be ever reduced by changing the size of
the network or speculating on the connectivity (assumed to
be full in our tests). In particular, the time step of 0.1 ms
is one order of magnitude less then that of the NeuroFlow
architecture. Furthermore, the impressive numbers of simulated
neurons provided by NeuroFlow (up to 600,000 units) can be
reached with 6 FPGAs, with a toroidal network configuration,
limiting the number of synapses to 1,000–10,000, when the
connection probability follows a Gaussian probability of the
synaptic distance with standard deviation ranging from 32 to
512. This unfortunately makes a point comparison hard and
potentially unfair. Overall, NeuroFlow targets larger networks
than the proposed architecture, with a different aim which is
closer to that of SpiNNaker. This is reflected by the choice of
a large off-chip Dynamic Random Access Memory (DRAM)
compared to the BRAM used in our and other designs, and by
the higher flexibility in the simulation setup.

On the other end of the flexibility axis, it is possible
to find neural architectures based on application-specific
integrated circuits (ASIC). They usually range from the analog
neuromorphic chips (Hofstoetter et al., 2005), which exploit the
possibility to make the transistors work on the current flow
as the ion channels do on the ions flow, to the custom VLSI
digital neurocomputers (Van Sickle andAbdel-Aty-Zohdy, 2009).
Typically, the former are more complex to design but achieve
better performance than the latter, both in terms of silicon area
and power consumption (Joubert et al., 2012). In order to take
the best in terms of performance while preserving the flexibility of
software solutions, programmable hardware progressively gained
interest in the computational neuroscience community. If field
programmable analog arrays are still not completely convincing
in terms of performance, even though some reconfigurable
analog VLSI neuromorphic chips exist (Yu et al., 2010), on the
digital side there is a growing interest toward the use of FPGA for
these purposes (Maguire et al., 2007). FPGAs, providing the user
the possibility to reconfigure the device by full or partial reload of
the configuration bitstream, present the advantages of a custom
architectures (as for the ASIC) and a flexibility approaching that
of software implementations. Furthermore, the presence of IP
cores enables the creation of multiprocessors systems on chip
even on FPGA (Glackin et al., 2005).

In the largest part of cases, the effort toward the development
of very fast architectures had a negative impact on the biological
plausibility of the adopted neuronal model. In fact, the neuronal
models that have been presented in the scientific literature
so far are characterized by different biological plausibility and
computational complexity (Paugam-Moisy and Bohte, 2012).
Despite even the most complex Hodgkin-Huxley model was
implemented in hardware (Graas et al., 2004), not all of
them are suited for medium to large scale SNNs on digital
hardware, because they should be computationally simple and
at the same time capable of representing the wide variety of
firing patterns exhibited by the different biological neurons. For
this reason, some of the architectures use simplified custom
neuronal models (Upegui et al., 2003, 2005), much more use
integrate-and-fire (I&F) (Glackin et al., 2005) or leaky-integrate-
and-fire (LIF) (Cassidy et al., 2007; Pearson et al., 2007). A

recent interesting investigation on the limits of computer based
approaches, FPGAs and Graphics Processing Units (GPUs)
on highly complex biologically-plausible models of neurons
belonging to the cerebellar cortex was reported in Florimbi et al.
(2016). This work, in the main framework of the Human Brain
Project, remarks how such complex neuronal models require
huge hardware resources so that single-chip FPGAs cannot be an
effective platform for cell networks, even though ASICs could,
whereas GPUs can provide speedups that are still far from the
real-time bound.

The proposed architecture exploits the very efficient IZ
model (Izhikevich, 2003). Other works at the state of the
art implemented the same neuronal model. Usually, for
computational complexity reasons, the fixed-point processing is
preferred. Despite this approach obviously limits the precision
of the operations, compared to a floating-point solution, it has
been shown to be adequate for several practical applications. First
thing to notice is that several papers in the past described the
implementation of the IZ model on FPGA without embedding
it into a SNN. For instance, in Cassidy and Andreou (2008)
a hardware implementation on the neuronal model alone is
described (the model equations were changed in order to exploit
power-of-two arithmetic, leading to less precision). The absence
of the synapses is a remarkable limitation because of the quadratic
dependence from the number of neurons of the synaptic weights,
which is the main issue for scalability.

Other works, such as Rice et al. (2009), even though
introducing the synapses, present topologies such that synapses
connectivity is a minor issue. In that case, for instance, the
number of neurons in very high (about 96 × 96, as much as the
pixels of the input images) but the synapses are not as much
as the square of such a value but rather only 48 times it. In
that case, a Q4.12 format was used for the parameters, with the
weights represented in Q4.12 format. The format depends on a
trial and error procedure. SpiNNaker, for instance, uses different
scaling factors for different parameters and values, showing that
the best results can be achieved with a Q8.8 format for u, v,
c, and d, whereas the Q0.16 format was chosen for parameter
a and ab (since b alone is not used in that implementation),
limiting such parameters to be <1 (Jin et al., 2008). With such
an approach, the architecture is able to simulate up to 1000 IZ
neurons on a single fascicle in a network with a low connectivity
level (10%). Nevertheless, such a low connectivity is unrealistic:
in Thomas and Luk (2009) a connectivity with 1,000 synapses per
neuron, claimed to be a common-sense choice, is simulated. In
this case, the fixed point representation used for the weight and
the arithmetic of the adder tree is used, due to the limits imposed
by the memory limits of the chosen platform, and weights are
limited to 9 bits. Our architecture, with its 7 bits for the weights
with a Q3.4 format, follows a similar approach, considering that
on a physical platform it is acceptable to fix limits to the range of
such parameters (Thomas and Luk, 2009). Spikes accumulation is
performed at 32 bits to preserve asmuch as possible the precision.
In Ambroise et al. (2013), the authors present a similar approach,
that is capable of emulating up to 167 neurons (it is worth to
notice that these results have been achieved on a smaller device:
no data is provided on large FPGAs). Compared to the proposed
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one, such a work uses a higher number of resources due to higher
data precision and to a fairly more complex processing of the
synaptic current. It also considers a reduced sampling frequency
(1 kHz) with respect to our work. In Glackin et al. (2005), the
I&F model is implemented in fixed point with a Q8.10 precision
for the membrane voltage and 12-bit precision for the synaptic
conductance (no further details on the data size), using powers
of 2 for the scaling parameters in the model, to avoid multipliers
and dividers, with some precision loss.

In the proposed work, precision of the computation is
demonstrated by the achieved results. The architecture is capable
to obtain the same firing patterns of NEST, with a real-time
performance that reaches 0.1 ms. The slight differences cannot
be considered a limiting factor for the exploitation of the
architecture in real-time closed-loop experiments, since the
global firing patterns are respected. Even though the proposed
architecture is not highly optimized, because of the need to
ensure flexibility at this development stage, it is possible to pursue
energy/performance efficiency by means of fine application-
driven customization of the hardware architecture, that requires
adequate support by advanced design tools (Jozwiak et al., 2012,
2013). The proposed approach can evolve in such a direction for
closed-loop implantable implementations.

In perspective, the possibility to have a valid and efficient
hardware tool to simulate and generate in real-time realistic
spiking dynamics could pave the way to the design of new
devices to interface synthetic neuronal assemblies to biological
excitable tissues. Indeed, the so developed architecture could
be used to generate realistic signals (in terms of time and
spatial constants) to stimulate biological networks (open-loop
application) as well as to realize closed-loop systems in which,
in a bi-directional way, biological and hardware networks are
mutually stimulated. In such scenarios, similar to state-of-the-art

closed-loop experiments (Wagenaar et al., 2005; Wallach et al.,
2011), the availability of an embedded system implementing in
hardware (e.g., FPGA) a biologically plausible SNN would be the
only enabling technology. In fact, purely software simulations
could not be used to interface in silico neuronal models with
living beings.

In the meanwhile, the real-time performance of an FPGA
platform as the one proposed in this work, overcoming the
limitations of the software simulators, can be exploited to study
the fundamentals of the interaction between living neuronal
assemblies and synthetic ones, in closed-loop, opening to hitherto
unexplored neurophysiological experiments.
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