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The use of interface-based resistive switching devices for neuromorphic computing is

investigated. In a combined experimental and numerical study, the important device

parameters and their impact on a neuromorphic pattern recognition system are studied.

The memristive cells consist of a layer sequence Al/Al2O3/NbxOy/Au and are fabricated

on a 4-inch wafer. The key functional ingredients of the devices are a 1.3 nm thick Al2O3

tunnel barrier and a 2.5 mm thick NbxOy memristive layer. Voltage pulse measurements

are used to study the electrical conditions for the emulation of synaptic functionality of

single cells for later use in a recognition system. The results are evaluated and modeled

in the framework of the plasticity model of Ziegler et al. Based on this model, which

is matched to experimental data from 84 individual devices, the network performance

with regard to yield, reliability, and variability is investigated numerically. As the network

model, a computing scheme for pattern recognition and unsupervised learning based on

the work of Querlioz et al. (2011), Sheridan et al. (2014), Zahari et al. (2015) is employed.

This is a two-layer feedforward network with a crossbar array of memristive devices, leaky

integrate-and-fire output neurons including a winner-takes-all strategy, and a stochastic

coding scheme for the input pattern. As input pattern, the full data set of digits from the

MNIST database is used. The numerical investigation indicates that the experimentally

obtained yield, reliability, and variability of the memristive cells are suitable for such a

network. Furthermore, evidence is presented that their strong I–V non-linearity might

avoid the need for selector devices in crossbar array structures.

Keywords: memristive devices, synaptic plasticity, spiking neuron, neural network, neuromorphic systems,

unsupervised learning

INTRODUCTION

The brains of humans, mammals, and even simple living species like invertebrates are well-adapted
to permanently changing environments. Their nervous systems exhibit remarkable interactions
with their surroundings—a result of millions of years of evolution and explicable by Darwinism
(Shanahan, 2004). As a result, biological systems are presently unmatched in the efficient way
in which they are able to perform cognitive tasks, such as pattern recognition, with extremely
low power consumption. It is therefore no surprise that attempts have been made to develop
bio-inspired computing systems, so-called neuromorphic systems, with the goal of reaching the
performance and power efficiency of biological systems (Liu et al., 2002; Chicca et al., 2014).
Machine learning dates back to the early days of serial, binary computation based on the von
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Neumann architecture, but today’s artificial neural systems are
still only partially able to mimic biological systems. The huge
power dissipation, the long computational time, and the need for
large datasets are among the major problems faced in attempting
to realize artificial neural networks (ANNs).

In this context, analog very large-scale integration (VLSI)
based on silicon complementary metal-oxide-semiconductor
(CMOS) technology (Liu et al., 2002; Chicca et al., 2014) might
provide advantages to software-dominated neuroinformatics
(Amit, 1989; Würtz, 2008). This field has gained new
momentum with the advent of the concept of memristive
devices (memristors) (Strukov et al., 2008; Jo et al., 2010; Jeong
et al., 2013). The memristor is a device whose resistance depends
on its history of applied potentials. It was predicted in 1971
by Chua (1971). In the memristor model, the resistance (or
memristance) M(x, V, t) of the device can be expressed by an
internal state variable x(t), which depends on the applied voltage
V(t) and on itself:

dx

dt
= f (x (t) ,V (t)) . (1)

Here, f describes the dynamics of the updating process of x(t).
In many memristive devices, f describes the process of ion
migration due to an externally applied voltage.

Recently, Hebbian learning as an important biological
concept has been realized with single memristive devices by
emulating spike-timing-dependent plasticity (STDP; Jo et al.,
2010; Zamarreño-Ramos et al., 2011), long-term potentiation,
and long-term depression (Ohno et al., 2011). These properties
are important cellular mechanisms of memory and learning in
neural networks (Ziegler et al., 2015).

Although the structure of memristive devices is rather simple
(consisting of a capacitor-like metal-insulator-metal sequence
in the simplest case), the underlying physical mechanism is
often unclear. The function of many memristive devices is based
on the presence of conductive filaments, which results in poor
switching reproducibility and high inter-device variability and
often requires an initial and individual electrical forming step
(Szot et al., 2006; Waser et al., 2009; Ha and Ramanathan,
2011; Yang et al., 2013; Dirkmann et al., 2015). Furthermore,
memristive devices have mainly been considered for application
in future resistive random-access memories (RRAMs; Itoh et al.,
2006), whose system architecture and functionality are similar
to those of digital memories. Here, switching times in the
nanosecond range, long data retention times (10 years), low
device variability, and good fatigue performance are essential
requirements. Memristive devices for use in neuromorphic
systems are subject to different requirements, and other resistive
switching concepts can be of interest (Ziegler et al., 2015), such as
interface-based memristive devices.

In interface-based devices, uniform interface effects lead
to homogeneous rather than abrupt changes in resistance.
Furthermore, such devices do not suffer from the randomness
generated by electroforming or filament growth (Kohlstedt et al.,
1993; Baikalov et al., 2003; Meyer et al., 2008; Park et al., 2008;
Sawa, 2008; Baik and Lim, 2010; Hu et al., 2011; Jeong et al.,

2011; Aoki et al., 2014; Mikheev et al., 2014). In some designs
for these devices, the resistive switching results from changes
at a Schottky-like contact (Baikalov et al., 2003; Mikheev et al.,
2014). In another approach, the electron tunneling probability
is varied when a memristive layer is in contact with a tunnel
barrier (Kohlstedt et al., 1993; Meyer et al., 2008; Baik and
Lim, 2010; Jeong et al., 2011). Recently, we have been able to
combine both concepts into a single device by sandwiching
an ultra-thin memristive layer between a tunnel barrier and a
Schottky-like contact (Hansen et al., 2015). This offers several
benefits: the tunnel barrier defines the lower resistance boundary
and limits the current through the device. Further, both the
tunnel and the Schottky barrier define chemical barriers to ion
migration, leading to improved data retention compared with
single-barrier concepts. However, the possible benefits for bio-
inspired neuromorphic circuits are not that obvious and hence
have to be explored.

The purpose of this work is to provide a thorough analysis
of interface-based memristive devices and their potential use
in bio-inspired neuromorphic systems. With this aim in
mind, double-barrier memristive devices with a layer sequence
Al/Al2O3/NbxOy/Au have been fabricated. The thickness of the
Al2O3 tunnel barrier is ∼1.3 nm and that of the memristive
NbxOy layer is 2.5 nm. The use of an ultra-thin memristive
layer allows the required electrical field strength for oxygen ion
migration to be achieved, reducing the resistance variation due
to interfacial processes, and also allows interference between
electron tunneling and the Schottky barrier (Hansen et al., 2015).
To determine the important device characteristics and necessary
electrical conditions for use in neuromorphic systems, automated
measurements are undertaken, providing valid statistical data
from 84 single devices. The resistive switching properties are
investigated using voltage pulses with different lengths and
amplitudes. The yield, reliability, and device variability are
determined. To obtain a realistic mathematical description of
the device behavior from the obtained experimental data for
network-level applications, the memristive plasticity model of
Ziegler et al. (2015) is used. This model allows us to explore
functional consequences of the use of individual memristive
devices for the emulation of Hebbian plasticity. As guidelines for
network simulation, previously reported neural-network-based
paradigms are adopted (Querlioz et al., 2011, 2013; Sheridan
et al., 2014; Zahari et al., 2015). In particular, a neural network
for pattern recognition is simulated consisting of inhibitorily
linked output neurons within a winner-takes-it-all architecture
and a homeostasis-like rule for the spiking-neurons thresholds.
The network is trained on the MNIST database. On the basis
of this pattern recognition network, essential requirements for
the development of neuromorphic circuits with interface-based
memristive devices are discussed.

The paper is organized as follows: Section Materials and
Methods describes the experimental techniques used and the
fabrication and electrical characterization of the memristive
devices. It also presents the phenomenological synaptic learning
model that we use to model the experimental data. The section
closes with a brief description of the network architecture used
for the pattern recognition simulation. Section Results contains
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the results of our investigation, namely, plasticity measurements,
and network performance. The behavior of the fabricated devices
is discussed with respect to their reliability and variability in
Section Discussion.

MATERIALS AND METHODS

Electrical Measurements
All measurements were performed using an Agilent E5260
source measurement unit. Current–voltage measurements (I–
V curves) were obtained by sweeping the applied voltage and
measuring the current simultaneously. For synaptic plasticity
measurements on single devices, rectangular voltage pulses with
different amplitudes, polarities, and pulse durations were applied
to the devices. Positive voltage is defined as positive voltage on
the top electrode and ground on the bottom electrode.

Device Fabrication and Characterization
The memristive devices were fabricated on 4-inch Si wafers
with 400 nm SiO2 (thermally oxidized) using a standard optical
lithography process (a schematic of the material stack is shown
in Figure 1A). The junctions were arranged in 1 × 1 mm
cells across the wafer, each containing six different contact sizes
ranging from 70 to 2300 µm2. The devices were fabricated
using the following procedure: First, the multilayer (including
top and bottom electrodes) was deposited using DC magnetron
sputtering, without breaking the vacuum. The Al2O3 tunnel
barrier was fabricated by depositing Al, which was afterwards
partially oxidized in situ. The NbxOy layer was deposited by
reactive sputtering in an O2/Ar atmosphere. Following the
subsequent lift-off, the junction area was defined by wet chemical
etching of the Au top electrode using a potassium iodide solution.
The etched parts were then covered with thermally evaporated
SiO to insulate the bottom electrode from the subsequently
deposited Nb wiring to contact the top electrode.

Figure 1B shows a typical recorded I–V curve of a double-
barrier memristive device, exhibiting the typical pinched bipolar
hysteresis of a memristive device (to reveal the I–V non-
linearity more clearly, in the lower panel, the curve is plotted
with a logarithmic scale on the vertical axis). The applied
voltage was varied between −2 and 2.8 V, while the current
was measured simultaneously. The voltage was ramped from
0 to 2.8 V to switch the device from its initial high-
resistance state (HRS) to the low-resistance state (LRS). To
reset the device, the voltage was decreased to −2 V. The
asymmetry between positive and negative current can be
attributed to the Schottky-like NbxOy/Au contact, while the
gradual resistance change indicates a non-filamentary resistance
switchingmechanism. This results from homogeneously changed
interface properties (Hansen et al., 2015; Dirkmann et al.,
2016). Neither an initial forming procedure nor current
compliance was used. This is important for the integration
of such devices into crossbar architectures, as we will discuss
below.

The underlying physical mechanism of the resistive switching
process has recently been studied in a combined experimental
and theoretical investigation (Dirkmann et al., 2016). This
investigation identified the transport of oxygen ions within the
NbxOy as the key mechanism for the resistive switching process.
During the set process, oxygen ions (within the NbxOy) move
under positive voltage toward the Au interface and affect essential
interfacial parameters (e.g., the density of states, the local barrier
height, and the barrier thickness) at the Al2O3/NbxOy and
NbxOy/Au (Schottky) interfaces simultaneously. By applying a
negative bias voltage, the original ion distribution is restored. As
a consequence, the electron transport is altered in accordance
with the local ion distribution. This leads to the observed
memristive I–V curve. For further information about the device
performance and technology, the reader is referred to Hansen
et al. (2015).

FIGURE 1 | Double-barrier memristive device: (A) Schematic cross-section of the Al/Al2O3/NbxOy/Au double-barrier memristive device. (B) Current density J as

function of the applied bias voltage. In the upper graph in a linear scale for J was used, while in the lower panel the absolute value and a logarithmic scale was used to

better visualize the obtained change in resistance.
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Simulation Model
To investigate device performance at the network level, we used
a computing scheme for pattern recognition similar to Querlioz
et al. (2011, 2013), Sheridan et al. (2014), Zahari et al. (2015). As a
numerical model of the resistive switching under voltage pulsing,
we used the plasticity model of Ziegler et al. (2015). This model
is compatible with advanced biophysical plasticity models that
account for experimental data on STDP. Furthermore, the model
is suitable for describing plasticity emulation using memristive
devices. We should mention here that the plasticity model
provides a behavioral description of thememristive device, rather
than an explanation of the underlying physical mechanisms. In
the following, the plasticity model and network structure for
pattern recognition are presented.

Plasticity Model

The resistive switching of double-barrier memristive devices
in neural circuits are described in the framework of the
phenomenological learning model of Ziegler et al. (2015). This
model links the change in conductance in a memristive device
and the applied voltage pulse. The limited weight growth and the
weight-dependent (memristive) learning rate make this model
appropriate for memristive device and synapse emulations. In the
plasticity model, the updating process for the synaptic weights ω

is given by

dω

dt
= β(ω)ω(t)

(

1− 1
ωmax

ω(t)
)

, (2)

where β is the weight-dependent learning rate and ωmax is the
maximum synaptic weight. The resistive switching dynamic of
the memristive device is manifested in β , which depends on the
current device conductance and electrical stimuli. In particular,
β depends on the switching mechanism of the memristive device
and can lead to very different learning behaviors (Querlioz et al.,
2015; Ziegler et al., 2015). In determining β for the double-barrier
memristive device, two particularly important points should be
noted: First, it is necessary to use distinct learning rates for
potentiation (βp) and depression (βd) owing to the asymmetry
between positive and negative voltages in the memristive device
(cf. Figure 1B). Second, the synaptic weight ω is associated with
the conductance G of a memristive device, which depends on
height 1V, length 1t, and number n of applied electrical pulses.
Hence, we assume that βp and βd depend on 1V, 1t, and n, so
that

βp(G, n,1t,1V) = kp α(1V) λ(1t)
(

1− γG(n− 1)
)

βd(G, n,1t,1V) = −kd α(1V) λ(1t) G(n− 1). (3)

Here kp, kd, and γ are positive constants, while α and λ

depend on the height 1V and length 1t of the applied voltage
stimulus. The functions α and λ account for the nonlinearity
of the switching dynamics of the memristive device and have
to be determined for the particular memristive device under
consideration (see Section Results).

Network Architecture for Pattern Recognition

The network structure is a two-layer feedforward network and
is shown schematically in Figure 2. The memristive devices are

arranged in a crossbar array to which input (blue circles) and
output (red circles) neurons are connected. The individual pixels
of the input pattern are coded by voltage pulses within the input
layer. Leaky integrate-and-fire neurons are used in the output
layer. These neurons are laterally coupled within an inhibitory
winner-takes-it-all network including adaptive thresholds for the
spiking, as proposed in Querlioz et al. (2011). The network can be
briefly described as follows: The output neuron’s spiking depends
on the applied input pattern and the particular resistance of the
memristive devices. The conductances of the memristive devices
are changed by associative learning, and the voltage across each
device depends on the input pattern and the activity of the
particular output neuron. This enables unsupervised learning,
because every output neuron creates its own specific receptive
field during learning. Afterwards, in the recognition phase,
each of the output neurons will spike in accordance with the
previously learned pattern for a varying input.

The input patterns were taken from the MNIST database,
which consists of 60,000 handwritten digits from 250 different
writers. Each digit is stored in a 256-level grayscale image with 28
× 28 pixels (LeCun et al., 1998). In the network implemented
here, the images are rearranged into a 784-row input vector
applied to the input neurons (one neuron per image pixel).
The value of each pixel is applied as a voltage pulse, which, in
combination with the output neuron’s pulse, causes a change in
the conductance of a particular memristive cell in the cross-bar
array. The device conductance is most strongly affected when
the input and output pulses match, as sketched in Figure 2.
In particular, the overlap of a negative input pulse with an
output neuron’s pulse leads to a decrease in the particular device
conductance, while the combination of a positive input pulse
with an output pulse increases the conductance of the memristive
devices connected to the specific neurons. Memristive devices
in input rows and output columns where there is no overlap of
voltage pulses remain unaffected.

It is important for the operation of the network that the input
data is stochastically coded (Querlioz et al., 2011, 2013; Sheridan
et al., 2014; Zahari et al., 2015), and this has been achieved by the
following steps: The image pixels are normalized to the interval
−1 to 1. Following Sheridan et al. (2014), the grayscale value pi of
each pixel i is best normalized by

pnormi =
pi − pmean

max0≤j≤784

(

pj − pmean

) , (4)

where pmean is the mean grayscale value of all pixels for an
individual image. The absolute value of pnormi denotes the
probability of an input spike generation. Therefore, a random
number r for each pixel is generated at each iteration step. If the
condition r ≤

∣

∣pnormi

∣

∣ is satisfied, an input pulse is generated.
The sign of pnormi corresponds to the polarity of the input voltage
(see Figure 2).

Leaky integrate-and-fire neurons are used as output neurons
and are arranged in a laterally coupled inhibitory network (see
Figure 2). To guarantee that individual input patterns are learned
by different output neurons, the winner-takes-it-all approach is
used, in which the first spiking neuron resets the integration of
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FIGURE 2 | Schematic of the simulated neural network: Positive and negative voltage pulses are applied to the input of the network, representing the

intensity of the individual values of the 28 × 28 pixel MNIST image. Stochastic coding of the input data has been implemented by Poisson-spiking input

neurons (blue circles) with firing rates proportional to the intensity of the corresponding pixel of the input pattern. Red circles are leaky integrate-and-fire output

neurons (LIF), which are laterally coupled in an inhibitory winner-takes-it-all network (WTA). The individual memristive devices are arranged in a crossbar structure. A

local STDP-based learning rule has been implemented using the defined I–V nonlinearity of the memristive devices: Only the overlap (association) of pre- pulses and

post-pulses leads to an increase (potentiation) or decrease (depression) of the device conductance.

all other neurons. This allows unsupervised learning with the
network structure that is used. Crucial for unsupervised learning
is an adjustable neuron firing threshold, which guarantees that
all output neurons participate equivalently in the learning phase.
This can be motivated by considering the process of homeostasis
in biological systems (Querlioz et al., 2011). Therefore, the
threshold of a neuron to fire is increased whenever the spike
number (activity) of a neuron is above the desired activity, and
vice versa. Following Querlioz et al. (2011), this can be achieved
by using

dVth

dt
= γth(Aavg − Atar) (5)

for the threshold voltage adaptation. Here, γ th, Aavg, and Atar are
respectively the gain factor, the mean activity of an individual
neuron, and the target activity (γ th =7.5× 10−3 and Atar = 10).

RESULTS

Synaptic Plasticity Measurements
The basis for the emulation of synaptic functionalities with
memristive devices is the fact that the synaptic weight ω between
individual neurons can be related to the state variable x of
a memristive device according to Equation (1). Zamarreño-
Ramos et al. showed that the conductance of a memristive
device is proportional to ω in the ideal voltage-driven memristor

model (see Equation 1) (Zamarreño-Ramos et al., 2011). Hence,
biological plasticity mechanisms can be emulated by changes
in the device conductance under suitable voltage pulses. To
study the capability of synaptic plasticity emulations using
the Al/Al2O3/NbxOy/Au double-barrier memristive device of
Figure 1, voltage pulses with different pulse widths 1t and
amplitudes 1V were applied to 86 individual devices.

Figure 3A shows a typical plasticity measurement
(conductance vs. pulse number). We found that the double-
barrier memristive device exhibits a gradually changing
conductance under voltage pulsing, as is desired for plasticity
emulation. To study the pulse dependence, 1000 equivalent
positive voltage pulses (potentiation pulses) followed by 1000
equivalent negative voltage pulses (depression pulses) were
used, as shown schematically in the inset of Figure 3A. For
the emulation of potentiation, voltage pulses of 1V = 3.9 V
and 1t = 1 ms in length were chosen, while for depression
the voltage pulse height was reduced to 1V = −2.5 V. To
measure the device conductance, voltage sweeps below the
threshold voltage of the device up to 0.48 V were applied and the
current was measured after every 100 potentiation/depression
pulses. For better illustration, the obtained conductances G(n)
were normalized by the average maximum conductance Gmax

(100 nS).
In order to study in greater detail the variations of the device

conductance as the amplitude and length of the applied voltage
pulses are changed, potentiation pulses with amplitudes ranging
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FIGURE 3 | Synaptic plasticity emulation: (A) Typical plasticity measurement for 1000 potentiation pulses of +3.9 V and 1000 depression pulses of −2.5 V with

pulse lengths of 1 ms. Each point represents the conductance after 100 pulses. In (B–D), the change in device conductance after 1000 set (reset) voltage pulses with

varying pulse amplitudes (B,C) and lengths 1t (D) is shown. Black dots reflect experimental data measured at 0.48 V. Red lines correspond to the data obtained using

the plasticity model (model parameters are summarized in Table 1). The error bars reflect the device variability obtained from 86 individual devices. Gmax is the

averaged conductance of 86 devices after 1000 voltage pulses of 3.9 V in amplitude and 1 ms in length.

from 2.4 to 3.7 V and pulse lengths ranging from 1 to 30 ms were
applied. The results are shown in Figures 3B,C. For the variation
with amplitude, the pulse length was fixed at 1 ms, while for the
variation with pulse length, the amplitude was fixed at 3.9 V.
The data points reflect the device conductance after 1000 voltage
pulses. For an amplitude of 2.4 V, the conductance only increases
by 0.1–0.5% from the initial value G0. However, if amplitude is
set to 3.7 V, there is a 10-fold increase (see Figure 3B). Of further
interest is that the increase in conductance saturates for pulses
above 10 ms (see Figure 3C). This is in accordance with the
diffusion times of oxygen ions within the memristive layer, which
are at the heart of the resistance switching process (Dirkmann
et al., 2016).

The recorded data for synaptic depression are shown in
Figure 3D. A voltage train of 1000 single voltage pulses of
30 ms length with amplitudes ranging from −1.4 to −2.6 V
were applied to memristive cells that had previously been set
to the high-conductance (low-resistance) state. The unchanged
conductance for voltages above −1.4 V shows the threshold
behavior for the reset process. In contrast, pulses with amplitudes
of −2.6 V nearly reset the device conductance completely (see
Figure 3D).

To adapt the experimental findings for the plasticity model

described above, the functions α(1V) and λ(1t) from Equation

(3) have to be determined. The functions α(1V) and λ(1t)

account for the nonlinear dependencies of the learning rates

βp and βd on the pulse amplitude and length. Good agreement

TABLE 1 | Parameters for the plasticity model.

Parameter Value

kp,d 5

α1 0.528 V−1

α2 1.75 V−1

α3 3.15 V

λ1 1 s

λ2 0.6 ms

λ3 1 s

γ 0.45

with the experimental data (the black points in Figure 3) could
be achieved using the following expressions (the red lines in
Figure 3):

α(1 V) =

{

α1 1V for 1V > 0,
exp [α2 (1V − α3)] for 1V < 0,

(6)

λ (1t) = λ1
1

1t
+ λ2 (1t − λ3) . (7)

Here α1,2,3 and λ1.2.3 are positive constants, which are listed
in Table 1 together with the other parameters of the fitting
procedure. Owing to the differences between potentiation and
depression, two different definitions for α(1V) are necessary: for
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potentiation, a linear dependence on 1V is in good agreement
with experiment, while an exponential function of 1V is
necessary to reproduce the experimentally recorded data for the
emulation of synaptic depression. A linear function is best at
reproducing the pulse length dependence (see Equation 7).

Pattern Recognition
The network performance of the double-barrier memristive
device was investigated by training the pattern recognition
network with the complete MNIST dataset of 60,000 handwritten
digits. To improve the learning performance of the network, the
complete training set was applied three times to the network.
After training, the network was tested by using the MNIST
test dataset, which contains 10,000 digits that are not included
in the training set. The performance of the network can be
evaluated by counting the number of correctly identified digits.
The recognition rate thereby obtained increases with the number
of output neurons used. For 10, 20, 50, and 100 output neurons,
recognition rates of 65, 70, 77, and 82%, respectively, were
obtained. These rates are in good agreement with previously
published investigations (Querlioz et al., 2011, 2013; Sheridan
et al., 2014; Zahari et al., 2015). For visualization, each 784-value
vector, above the particular output neuron, is rearranged into a 28
× 28 pixel image representing the receptive fields. A typical set of
receptive fields for a simulation with 50 output neurons is shown
in Figure 4. We found that the implemented network structure is
able to learn all of the 10 input digits and the different details of
each digit. We shouldmention here that the obtained recognition
rates are much lower than those from other spiking network
architectures (for an overview of different network architectures,
the reader is referred to Diehl and Cook, 2015). However, the

aim of our investigation was to study network requirements for
the use of memristive devices in neural networks rather than to
improve pattern recognition computing schemes.

Appropriately chosen voltage pulses with lengths 1t and
amplitudes 1V are important for the performance of the neural
network, to precisely adjust the conductance of the double barrier
memristive devices. In the case of matching input (Vpre) and
output (Vpost) pulses, the device conductance must be always
affected. The voltage pulses used here are depicted in Figure 5.
Based on the experimental data of Figure 3, suitable amplitudes
and lengths of the voltage pulses were chosen for the simulations.
For the input neuron, the pulse height Vpre was set to either
+0.6 or −0.6 V (see the top row of Figure 5). The voltage pulses
Vpost generated by the leaky integrate-and-fire output neurons
contain a positive part of 2.9 V followed by a negative part of
−2.3 V (see the middle row of Figure 5). The combination of
Vpost with a negative input pulse (Vsum = −2.9 V) decreases
the conductance, while the overlap of Vpost with a positive
input pulse (Vsum = +3.5 V) increases the conductance of the
device connected to the specific neurons (see the bottom row in
Figure 5). An important aspect of the double-barrier memristive
device is its strong I–V nonlinearity (see Figure 1B). According
to Figure 3, an increase in pulse height from 3 to 3.8 V leads to
an increase in device conductance by a factor of 10, while below
1 V the device conductance remains unaffected. This provides a
threshold voltage for the change in conductance, which is a very
important requirement for the learning behavior of this crossbar-
based computing scheme. Without this threshold voltage, the
voltage drop across neighboring devices during the set or reset
could be sufficient to change also the conductance of these
neighboring devices. This problem is commonplace with devices

FIGURE 4 | Receptive fields: Obtained receptive fields after unsupervised learning in the case of 50 output neurons. The white pixels correspond to the

maximum conductance (strong synaptic weight), while the black pixels represent minimum conductance values (weak synaptic weight) of the memristive devices.
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FIGURE 5 | Pulse forms used for the simulations: For the coding of the grayscale input images, positive and negative voltage pulses (Vpre) with ±0.6 V

in amplitude and 6 ms in width have been used. The voltage pulses of the output neurons (Vpost ) were set to a combination of a +2.9 V and a –2.3 V voltage

pulses with a total duration of 6 ms. The combination of both voltage pulses (i.e., Vpre and Vpost ) leads either to a potentiation (Vpot ) or depression (Vdep) of the

memristive device.

that have a symmetrical I–V curve, requiring selector devices that
access individual devices. Owing to the strong asymmetry and
nonlinearity in the current of double-barrier memristive devices,
there is no need for selector devices (Kügeler et al., 2009).

DISCUSSION

Three different scenarios have been investigated to determine
the reliability, variability, and yield of the fabricated double-
barrier memristive devices in the framework of the implemented
networkmodel: In the first scenario, a device-to-device variability
was modeled. In this approach, the learning rates of all devices
were initially changed once to represent a Gaussian distribution,
but were kept constant during the simulation. The second
scenario reflects the variability of individual memristive devices.
In this case, the local learning rate of all memristive devices was
varied in each iteration step. We also investigated a combination
of the first and second scenarios, since this is the most likely case
in reality. In all cases, the local learning rates βp and βd of the

memristive devices (see Equation 3) were varied according to a
Gaussian distribution.

ϕ (x) =
1

√

(

2πσ 2
)

exp

(

−
x2

2σ 2

)

, (8)

where x = βx
p(d)

− β0
p(d)

(here βx is the variable and β0 is the

undisturbed learning rate defined in Equation 3) and σ denotes
the standard deviation (see the inset of Figure 6A). The standard
deviation of the device-to-device variability (first case) is denoted
by σ device, while σ iteration denotes the variability for each iteration
step (second case). The simulation results are shown in Figure 6.
The full set of 60,000 MNIST training images was applied three
times to a network with 10 output neurons for the simulation.
The presented data were averaged over three total simulation
runs.

The recognition rates for the first scenario (increased device-
to-device variability) are shown in Figure 6A. We found that,
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FIGURE 6 | Device variation: To test the reliability of the network model under device variation, the local learning rates of the memristive devices were

changed to represent a Gaussian distribution ϕ(x). Each curve shows the obtained recognition rates for a full set of simulations for different standard deviations σ

of the distribution function (see also inset in A). The presented data is averaged over three total simulation runs. In (A), the local learning rate of every device was

initially changed once, but kept constant over the simulation (σdevice is the standard deviation of the initial resistance state of the devices in the crossbar array). The

learning rates for the simulation in (B) varied additionally in each iteration step for each device (σiteration is the standard deviation of the device resistance in each

iteration step). In (C), experimentally recorded data on the variation of the device resistance after every 100th potentiation pulse with amplitudes of 3.9 V and 1 ms

length are compared with variations in the plasticity model for different σdevice. The red, blue and gray lines indicate upper and lower boundaries, i.e., conductance

evolution for the lowest and highest learning rate, for 40, 80, and 100% variability in conductance from device to device.

up to 50%, the recognition rate is not affected by the device-
to-device variability and decreases only slightly with a further
increase in device variability. The outcome of the second scenario
is presented in Figure 6B. We found that the network is more
robust under variations within individual devices (see the black
line in Figure 6B). Even if we combine both, a device-to-device
and individual device variability (see the red and blue curves in
Figure 6B), a relatively robust network performance is obtained.
Even if we combine both, a device-to-device and individual
device variability (see the red and blue curves in Figure 6B), a
relatively robust network performance is obtained. Therefore,
a device-to-device variability up to 100% might be acceptable
for a suitable network performance. Hence, our numerical
investigation provides evidence that the most striking problems
are introduced by a constant device-to-device variability. This
can be explained by the fact that a variation in each iteration step
is averaged over the total number of iteration steps. However,
a constant variation of the local learning rate between the
memristive devices, i.e., a device-to-device variability, leads to an
ever-increasing variation with every iteration.

To estimate the performance of double-barrier devices within
the network model considered here, it is necessary to analyze
the experimentally obtained device variations in greater detail.
Considering the error bars in Figure 3, the variation seems
to be too high to fulfill the obtained network requirement
of device-to-device variation of <100%. However, these error
bars were determined from the final conductance after 1000
potentiation/depression pulses. A better representation of the
device performance could be obtained by measuring the
conductance variations after every 100th potentiation pulse.
The obtained results are shown in Figure 6C. For a suitable

comparison between simulated andmeasured data, the measured
data were normalized by the highest recorded conductance
Gmax total (see Figure 6C). Furthermore, the solid lines in
Figure 6C indicate the variation range of learning rates with,
respectively, 40, 80, and 100% device-to-device variability.
In particular, the experimentally recorded device-to-device
variability is in the required variation interval. This suggests
that the device variability can be assumed to be sufficient for
the network learning process. Nevertheless, the device-to-device
variability is one of the most challenging parameters for the
realization of the pattern recognition computing scheme depicted
in Figure 2.

Another possible negative impact on network performance
can be introduced by defective devices. Two scenarios can be
distinguished here: devices with a low resistance (e.g., devices
that are shorted) and devices with a high resistance (e.g., those
that are not properly connected during the final metallization
step). In either case, during the simulation, the resistance
was assumed to be constant. The most problematic situation
arises from devices that are initially in the low-resistance state
and are not able to perform resistive switching under voltage
pulsing. Owing to the increased conductivity of the device and
the subsequent greater weight during the training phase, the
receptive field for a given column of devices will be distorted.
To study the influence of such devices on overall network
performance, the dependence of the recognition rates on the
number of defective devices was calculated. The results for a
network with 10 output neurons are shown in Figure 7A, where
the blue curve represents the situation where only one of the 10
receptive fields contains defective devices, while the red curve was
obtained from a simulation where all 10 receptive fields contain
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FIGURE 7 | Impact on the recognition rate of defective devices: Recognition rate as function of the number of defective devices with low and high

resistance per receptive field. The blue curve represents the situation where only one of the 10 receptive fields contains defective devices, while the red curve was

obtained from a simulation where all 10 receptive fields contain defective devices. The full set of 60,000 MNIST training images was applied three times to a network

with 10 output neurons for the simulation. The presented data were averaged over three total simulation runs. (A) Low resistance. (B) High resistance.

defective devices. If only one receptive field contains defective
devices, the overall recognition rate of the circuit is nearly
constant up to 784 defective devices. However, if all 10 receptive
fields above the output neurons contain defective devices, the
recognition rate is drastically decreased. For defective devices
with an unchangeable high resistance, the recognition rate shows
significantly different behavior (Figure 7B). In comparison
with defective low-resistance devices, defects in high-resistance
devices do not drastically change the formation of the receptive
fields. However, the observed influence of defective devices on
network performance can be assumed to play a minor role owing
to the high quality of the fabrication process. Figure 8 shows a
map of a typical recorded resistance distribution across a wafer.
We should mention here that only the center of the 4-inch wafer
is depicted, because the 4-inch sputter targets limit the usable
area on these wafers. Each square represents the resistance of one
memristive device (although the actual density of devices is larger
because only one in six devices was measured). In this wafer map,
a total of 966 devices weremeasured. Besides the working devices,
14 devices (black squares) are defective in terms of an initial low
resistance (i.e., are shorted), while five devices (yellow squares)
have an unexpected high resistance (e.g., as a result of problems
with the final metallization step). Yellow squares at borders (e.g.,
the lower right corner) are devices with a significantly larger
resistance, which can be attributed to side effects of the sputtering
process. In the interesting center region, the yield is thus about
98%, which is typical for our wafers. Comparing the number of
defective devices with Figure 7, it is obvious that the recognition
rates will remain nearly unaffected.

In conclusion, we have provided evidence that double-barrier
devices are interesting candidates for use as artificial synapses
in neuromorphic circuits. In particular, the gradual change
in their resistance under voltage pulsing and the resulting
reliability, variability, and yield of such devices might fulfill the

FIGURE 8 | Resistance distribution and yield: Wafermap showing the

resistance of the memristive devices in the center of the wafer. Each

square represents one device with the color-coded resistance. Black squares

are shorted devices; individual yellow squares are problems during the final

metallization and gray squares contain no memristive devices (space used for

testing structures). Yellow squares in the corners stem from different sputtering

conditions at the border of the wafer. Considering the defective devices, the

yield in the center of the wafer is ∼98%.

requirements of neural networks. An experimental realization of
the use of these components seems possible andmay pave the way
to a real-time implementation of a pattern recognition system.
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