
ORIGINAL RESEARCH
published: 14 March 2017

doi: 10.3389/fnins.2017.00101

Frontiers in Neuroscience | www.frontiersin.org 1 March 2017 | Volume 11 | Article 101

Edited by:

Wenwei Yu,

Chiba University, Japan

Reviewed by:

Giancarlo Ferrigno,

Polytechnic University of Milan, Italy

Waldemar Karwowski,

University of Central Florida, USA

*Correspondence:

Christopher Jarrett

cjar160@aucklanduni.ac.nz

Specialty section:

This article was submitted to

Neural Technology,

a section of the journal

Frontiers in Neuroscience

Received: 22 November 2016

Accepted: 15 February 2017

Published: 14 March 2017

Citation:

Jarrett C and McDaid A (2017) Virtual

Normalization of Physical Impairment:

A Pilot Study to Evaluate Motor

Learning in Presence of Physical

Impairment. Front. Neurosci. 11:101.

doi: 10.3389/fnins.2017.00101

Virtual Normalization of Physical
Impairment: A Pilot Study to Evaluate
Motor Learning in Presence of
Physical Impairment
Christopher Jarrett * and Andrew McDaid

Department of Mechanical Engineering, Faculty of Engineering, University of Auckland, Auckland, New Zealand

Motor learning is a critical component of the rehabilitation process; however, it can be

difficult to separate the fundamental causes of a learning deficit when physical impairment

is a confounding factor. In this paper, a new technique is proposed to augment the

residual ability of physically impaired patients with a robotic rehabilitation exoskeleton,

such that motor learning can be studied independently of physical impairment. The

proposed technique augments the velocity of an on-screen cursor relative to the

restricted physical motion. Radial Basis Functions (RBFs) are used to both model

velocity and derive a function to scale velocity as a function of workspace position.

Two variations of the algorithm are presented for comparison. In a cross-over pilot

study, healthy participants were recruited and subjected to a simulated impairment

to constrain their motion, imposed by the cable-driven wrist exoskeleton. Participants

then completed a sinusoidal tracking task, in which the algorithms were statistically

shown to augment the cursor velocity in the constrained state such that it matched

position-dependent velocities recorded in the healthy state. A kinematic task was

then designed as a motor-learning case study where the algorithms were statistically

shown to allow participants to achieve the same performance when their motion was

constrained as when unconstrained. The results of the pilot study provide motivation

for further research into the use of this technique, thus providing a tool with which

motor-learning can be studied in neurologically impaired populations. This could be used

to give physiotherapists greater insight into underlying causes of motor learning deficits,

consequently facilitating and enhancing subject-specific therapy regimes.

Keywords: virtual normalization, biomechatronics, robotic assessment, motor learning, rehabilitation robotics

INTRODUCTION

A major neuroscience and clinical question is how best to invoke motor learning, a critical
component of the rehabilitation process (Krakauer, 2006). It is difficult to completely understand
why neurologically impaired patients cannot learn to perform certain tasks, as there are many
underlying factors that contribute to motor learning deficits. Often the presence of physical
impairment, such as issues with strength or range of motion (ROM), can confound results. This
can make it unclear whether the inability to perform aspects of a task is physical, a neurological
motor learning deficit or a combination of both.
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This is illustrated in multiple domains. One example is the
administration of botulinum toxin type A (BoNT-A), commonly
used to reduce spasticity in children with cerebral palsy (Boyd
and Graham, 1999; Wissel et al., 1999; Wallen et al., 2004; Fattal-
Valevski et al., 2008, 2010; Molenaers et al., 2009, 2010; Tedroff
et al., 2009). BoNT-A addresses issues due to neural spasticity
and in cases where patients exhibit motion impairment after
injections, it can be unclear whether this is a result of dosage,
issues with the structural properties of muscle, or a fundamental
incapacity for neural plasticity and motor learning. Similarly
confounding issues have been reported in other studies, alluding
to the uncertainty of drawing conclusions when motor learning
appears poor in children with CP (van Abswoude et al., 2015).
Self-exploration and problem solving are critical to the motor
learning process, but these can be impacted by motor difficulties,
preventing optimal learning (Valvano and Rapport, 2006).

The emergence of bio-mechatronics systems, specifically
rehabilitation robotics, has provided researchers with a new suite
of tools for interacting with humans and hence the ability to
investigate the fundamental mechanisms of rehabilitation and
motor learning (Boudreau et al., 2010; Turner et al., 2013).
Robots have served as a useful research platform, igniting debate
about the most efficient way to stimulate motor learning. Some
authors promote the well-developed “assist-as-needed” (AAN)
paradigm (Jezernik et al., 2004) while others suggest that error-
augmentation (EA) is more effective (Patton et al., 2006). The
most recent evidence suggests that the answer depends on a range
of factors, from frequency of feedback to initial skill level (Wulf
et al., 2010; Burtner et al., 2014; Marchal-Crespo et al., 2015; Fujii
et al., 2016). In other words, the potential for motor learning is
largely subject-dependent. Moreover, recent reviews indicate that
a gap exists between current technology and true clinical needs
(Cordella et al., 2016).

In order to optimize rehabilitation a therapist must better
comprehend the fundamental subject-specific causes of motion
deficit (Lipp and Tomassini, 2015). Recent studies have
investigated the separation of neural components of torque such
as spasticity, from non-neural components such as muscular
stiffness (Bar-On et al., 2014, 2015; Lin et al., 2016). While
this provides a valuable analysis of motion, and enables the
effectiveness of various treatments to be analyzed, in these studies
the cognitive ability to motor learn was not considered as a
component of observed motion. Given the importance of motor
learning in rehabilitation and to provide further insight into the
causes of motion issues, it would be useful to evaluate motor
learning independently of confounding physical impairment.

Melendez-Calderon et al. (2015) conducted a study which
demonstrated motor learning could be achieved without physical
motion. This built on studies focused on adaptation to
environments after virtual training with visual feedback (Sarlegna
et al., 2010; Melendez-Calderon et al., 2011; Rotella et al., 2014).
In the case of physical impairment force production might
be limited, which could affect both virtual exploration and
conclusions regardingmotor learning. Participants’ motion could
also be scaled in a purely kinematic sense and with no regard to
dynamic models, as was previously used to investigate transfer
of knowledge between scaling conditions (Ojakangas and Ebner,

1991; Smiley-Oyen et al., 2003; Paz et al., 2005). To the best
of our knowledge no conclusive method has been developed
to specifically study motor learning independently of physical
impairment.

In this study, we ask whether it is possible to use a robotic
exoskeleton as a tool to evaluate the motor learning capacity of
an impaired individual by normalizing their physical abilities in
a virtual environment and investigating their ability to learn a
task in this environment. The robotic exoskeleton rehabilitation
device is used to simulate a physical impairment on healthy
participants and visually augment the residual motion on a
display; thus “normalizing” the “impairment”. The “impairment”
is manifested as a set of constraints on motion. A case study is
presented, where we hypothesize that the virtual normalization
of participants’ abilities can be used to evaluate the cognitive
ability to motor learn irrespective of physical impairment. The
exoskeleton will therefore be used as a tool to diagnose sources
of motion deficit and evaluate the motor learning capacity of
impaired individuals, serving as a valuable aid for clinicians to
create optimized, subject-specific therapy routines. This also has
potential to lead to enhanced and harmonized human-robotic
interaction for people with impairment. Moreover, it provides a
platform for further research into motor learning in the presence
of impairment.

MATERIALS AND METHODS

System Architecture and Model of Learning
The architecture of the entire human-exoskeleton system
proposed in this paper is described in Figure 1, with the human
represented by the blocks encompassed by the dashed lines.

A movement is planned, resulting a motor command
which is translated into a desired Cartesian coordinate, xd
which is converted via inverse kinematics to a desired joint
angle(s), θd. The Neuromuscular System block encompasses the
neuromuscular dynamics of the human, the output of which is
a wrist torque, τw. This human torque along with the external
torque exerted on the wrist by the robotic exoskeleton, τ ex,
determine the wrist kinematics. The human and robot torques
are fed back internally to inform the human’s motor planning.
The exoskeleton torque is comprised of the resistive torque due to
the constraints imposed by the simulated impairment, while the
Neuromuscular System block encompasses any real impairment,
which then affects the generated wrist torque.

As the wrist is coupled to the exoskeleton, the angle of
the exoskeleton is equal to the angle of the wrist, θw. This
kinematic output, θw, is converted into Cartesian coordinates,
xw, then passed through the normalization (which is unity
in the healthy state) to be presented visually on screen as
feedback (in the form of the cursor) to the participant, xc. The
behavior of the dynamic target, xt , is related to the normalized
wrist kinematics by a simulated model, in this case a viscous
damper. The target and cursor locations are viewed by the
human to inform motor planning for the subsequent motion.
This has been intentionally modeled as a black-box because,
while it is understood the relationship between wrist movement
and corresponding target movement can be learnt, literature
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FIGURE 1 | Human-robot system architecture.

documents multiple mechanisms by which learning occurs
(Haith and Krakauer, 2013) and this is not of direct relevance to
this work.

Participants
A convenience sample of 10 participants, 8 male and 2 female,
with no cognitive or physical impairments were recruited
for the study. The study was approved under the guidelines
of the University of Auckland Human Participants Ethics
Committee (UAHPEC), reference number #013729 and written
and informed consent was obtained from all participants in
accordance with these guidelines. Study size was considered
sufficient, given the similarity of the results in the healthy
population and exploratory nature of the study, where the aim
was to technically and experimentally prove the concept of virtual
normalization. All participants were coincidentally dominant in
the right hand.

Exoskeleton Device
The 3 degree-of-freedom (DOF) AW-TEX robotic wrist
exoskeleton was used in this study (McDaid, 2015).
Flexion/extension (FE) and radial/ulnar deviation (RU) are
actively controlled. The third DOF is passive, designed to
accommodate forearms of differing lengths. The exoskeleton is
shown in Figure 2.

Series Elastic Actuators (SEAs) are used at the active joints
and are driven by remotely located motors with Bowden cables.
An inner controller based on sliding mode control regulates the
relative displacement of the SEA components, thus controlling
the torque in an impedance-based architecture (Jarrett and Mc
Daid, 2017).

Implementation of Simulated Impairment
The present study is performed with healthy participants with a
simulated CP-like impairment so that we can use each person as
their own control in a cross-over study. CP describes a group of

disorders with a variety of phenotypic manifestations and studies
have varied in their attempts to describe the “average” kinematics
of people with cerebral palsy (Barroso et al., 2011; Klingels
et al., 2012). In this study, the impairment is modeled with
two components: (i) a simulated contraction, implemented by a
linear torque spring restricting motion in the extension direction
from 5◦; (ii) a velocity-dependent torque, simulating restricted
torque production and applied throughout the workspace. The
simulated impairment is manifested as a set of “constraints,” and
is mathematically described in Equations (1) and (2).

τfe =

{

−sgn
(

θ̇fe
) [

Kp

(

θfe − 5
)

+ Kdθ̇fe + Kvθ̇fe
]

, θfe > 5o

−sgn
(

θ̇fe
) [

Kvθ̇fe
]

, θfe < 5o
(1)

τru = −sgn
(

θ̇ru
) [

Kvθ̇ru
]

, ∀ θru (2)

where τfe and τru are the torques applied to the wrist in the
flexion/extension and radial/ulnar deviation axes, θfe and θ ru are
the flexion/extension and radial/ulnar deviation angles of the
wrist, θ̇ fe and θ̇ ru are the angular velocities of the wrist in the
flexion/extension and radial/ulnar deviation axes, Kp and Kd are
the stiffness and damping of the wall that restricts the ROM; set to
2Nmdeg−1 and 0.1Nmsdeg−1 respectively, Kv is the gain applied
to implement the velocity-based resistance; set to 0.02Nmsdeg−1

and sgn is the sign function. Operation of the exoskeleton in this
mode is hereafter referred to as the “constrained” state.

Impairment Assessment
A calibration routine was developed to evaluate the task-
independent physical ability of patients in the healthy
(exoskeleton in backdriven mode) and constrained states.
This extracted three subject-specific measurements:

(1) Self-selected neutral position. These coordinates were used
as the participants’ origins for the remainder of the
experiments.

(2) ROM, obtained by asking participants to move their wrist as
far as possible in each direction.
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FIGURE 2 | AW-TEX Wrist Exoskeleton.

(3) Position-dependent velocity, this was recorded by asking
participants to perform eight blocks of five linear
movements, alternating between the flexion/extension
and radial/ulnar deviation axes, (a total of four blocks per
axis). Figure 3 illustrates the visual representation of the
workspace shown to participants, displayed as nodes placed
at 10◦ intervals in the workspace measured by the preceding
test. They were the locations at which average velocities
were measured. One minute rest periods were enforced after
four blocks of movement to eliminate effects of fatigue. The
routine was completed twice: first in the healthy state, then
with the constraints applied and separated by a 2min break.

Kinematic Normalization
To normalize the ability of the participants in their constrained
states, two steps were required. The first is to shift the position
of the cursor such that the constrained ROM centers on (0,
0). The second step is to apply a position-dependent scaling
factor to the velocity of the cursor such that it matches the
position-dependent velocity recorded in the healthy state. This
was achieved with the aid of Gaussian Radial Basis Functions
(GRBFs). GRBFs are advantageous due to their ability to describe
any continuous function; and have been used in other robotic
rehabilitation research to model patient torque as a function of
workspace position (Wolbrecht et al., 2008; Oboe and Pilastro,
2014; Pehlivan et al., 2015). The nodes at which velocities were
recorded during the calibration phase served as the locations of
the RBFs.

The first step was to compress and shift the node coordinates
in the healthy workspace into the constrained workspace,
illustrated by the green plot in Figure 4. The compressed healthy
RBF was then evaluated at the nodes describing the constrained
workspace. This allows the calculation of the ratio of healthy to
constrained velocity at each of the constrained velocity nodes, as
described by Equation (3).

SFn =
vhn

vin
(3)

where SFn is the scaling factor at the nth constrained node, vhn
is the estimated healthy velocity at the nth constrained node

FIGURE 3 | Presentation of nodes in FE workspace during velocity

calibration.

FIGURE 4 | Compression of an RBF describing healthy velocity into the

constrained workspace.

and vin is the constrained velocity at the nth constrained node.
This creates a discrete set of scaling factors which are used to
create a second RBF that normalizes velocity in the constrained
workspace. The RBF allows the algorithm to capture velocity
characteristics that vary with wrist position.

Equation (4) describes the RBF that was used to derive the
scaling factor:

SFj
(

θj
)

= Ya+ w (4)

where SFj(θj) is the scaling factor as a function of motion at
joint j, θj, Y is the regressor matrix, composed of Gaussian basis
functions as illustrated in Equation (5), a is a set of weightings
applied to each basis function and w is a linear bias term applied
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to the output layer, calculated by multiplying an additional
weighting coefficient by the current position.

Y =

[

g1 0
0 gn

]

(5)

where n is equivalent to the number of nodes that were obtained
in the ROM test and gn refers to the Gaussian radial basis
function, defined in Equation (6).

gn = e
−

d2n
2σ2 (6)

where e is the exponential function, dn is the distance of the
cursor from the nth node and σ is the width of each basis
function; defined as the average distance between nodes.

Equation (4) contains a linear bias term, the purpose of
which is to reproduce global behavior of the RBF function (Li
and Verma, 2015). In previous work in rehabilitation robotics
involving RBFs, the linear bias term was omitted (Wolbrecht
et al., 2008; Oboe and Pilastro, 2014; Pehlivan et al., 2015). In
this research, we set the value of w to 0 in the RU axis, to mirror
the previous studies and investigate if the linear bias term can
significantly improve the normalization algorithm.

An example of the resulting scaling factor is illustrated in
Figure 5 for both axes.

Validation of Normalization Algorithms
To validate the normalization, participants were subjected to the
constraints with their cursor velocity normalized by the subject-
specific scaling factor RBF. They were asked to try to track the
moving target, which was a recording of their movement during
the healthy calibration. The velocity of the cursor was recorded
for comparison with the velocity of the healthy movement. Four
movement blocks were performed, in the same structure as the
calibration routine.

Case Study: Motor Learning Dynamic
Cursor Model
To evaluate the use of the algorithm in conducting kinematic
motor learning experiments a task where the target has a mass-
damper relationship with the cursor is implemented. The aimwas
to prove that when their constrained velocity was normalized,
participants could perform the task to the same standard with
the same amount of learning as they did in the healthy state.
Eight participants, six males, and two females, continued onto
this phase of the study.

Study Design
The participants were randomly separated into two groups,
to conduct a cross-over study. Each group was tested for
performance in the task across two sessions; each conducted in
one of the healthy and constrained states. Each session consisted
of a familiarization phase, followed by three blocks of movement
in an acquisition phase, details below. Group A conducted the
first session in the healthy state, followed by the constrained
state 1 week later and vice versa for Group B. The design is
illustrated in Figure 6. In the constrained state, participants’

residual motion was augmented to allow them to reach the same
velocity in task space as they could under “healthy” states. The
1 week break between experimental states served as a washout
period, similar to comparable motor learning crossover studies
(Abdollahi et al., 2014).

Task Description
Participants were seated in front of a computer screen, upon
which their wrist position was represented by a blue cursor
and a target was illustrated in green, Figure 7. During task
execution, the yellow origin was always visible. The goal of the
task was to reach the target, with “success” occurring when
participants had been within a 2◦ radius for 750 ms. Only one
target appeared at a time. Targets were initially placed at a
distance equal to 20% of the smallest ROM measurement across
both axes. One participant’s targets were placed at 25% of this
distance, due to a small ROM (≈10◦ in the radial direction)
which would have placed the initial location of the targets
within the 2◦ threshold for target achievement. To make the
task non-trivial and require some level of adaptation, the targets
were programmed to be virtually connected to the participants’
movement as a function of wrist velocity, according to
Equation (5):

ẍt =
ct (ẋc−ẋt)

mt
(7)

where ẍt is the acceleration of the virtual target, mt is the virtual
mass of the target, ct is the damping coefficient, ẋc is the velocity
of the cursor and ẋt is the velocity of the target. The movement
of the target is thus related to the kinematics of the participants’
wrists and the difficulty can be varied. Based on pilot trials the
mass and damping were set to 5 kg and 18 kgms−1 respectively,
to ensure the task was non-trivial and requires some learning
and adaptation. No external torque field was applied (except the
constraints) and consequently, the task requires pure kinematic
adaptation.

Participants were instructed to: “Try and catch each target
by moving toward it. The target will disappear if you have
been successful and turn red if you fail to achieve it.” They
were further informed that a successful reach required that they
were over the target for approximately 1 s and they had 10 s to
reach each target. Targets were considered failed if their position
exceeded the outer boundary (illustrated as the red circle in
Figure 7) or if the participant had not achieved it within 10 s of it
appearing.

Experimental Procedure

Familiarization phase
Prior to conducting the task, participants underwent a
familiarization phase, consisting of reaching 16 randomly
ordered, stationary targets in both the positive and negative
directions for each axis. Targets were placed at the same distance
as for the main task.

Acquisition phase
Following familiarization, participants performed three blocks of
the main task, separated by a 1–3 min break. Both targets were
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FIGURE 5 | Scaling factor function to normalize velocity in the constrained workspace. Left: FE (A), Right: RU (B).

FIGURE 6 | Design of cross-over study.

visited 15 times each, in a randomized order, after which the RU
target was made to reappear as a stationary target, serving as a
catch trial to test for after-effects. Ideally, there would have been
a subsequent catch trial in the FE axis as well; however, this would
have been predictable, affected by a prior catch trial in the RU axis
and generally confounded results (Focke et al., 2013; Stockinger
et al., 2014).

RESULTS

Validation of Normalization Algorithm from
Calibration
A representative response from the validation of the
normalization algorithms is presented in Figure 8. Three
metrics from the healthy and constrained velocity profiles are
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FIGURE 7 | Illustration of motor learning task.

extracted and presented in Figure 9. In Tables 1, 2, the median
values for all participants’ metrics across the four trials from
the validation are presented, in addition to the RMS error
normalized as a percentage of the healthy velocity. All statistical
analyses used an α level of 0.05.

The dominant frequency was measured by a Fast Fourier
Transform (FFT). When the dominant frequency data was tested
with a Wilcoxon signed rank test, there was no evidence of a
difference between the healthy and constrained velocity profiles
for either the RU (p = 0.50) or FE (p = 0.75) axes. Also
reported are the power components measured at the dominant
frequencies, a measure of the amplitude of the signal at that
frequency. A Wilcoxon signed rank test on this data revealed
no evidence of a statistical difference in the FE axis (p =

0.19) and strong evidence of a difference in the RU axis (p =

0.0098).
The absolute peak velocities of the constrained and healthy-

target states were extracted and the median of these was used
as an indicator of the peak velocity in each state. A Wilcoxon
signed rank test revealed no evidence of a difference in the peak
velocities for the FE axis (p = 0.32) but strong evidence of a
difference in the RU axis velocities (p= 0.027), with the medians
reported in Tables 1, 2. This suggests the specific normalization
algorithm may have had an effect. The median RMS errors
are also reported as a percentage of the maximum healthy-
target velocity and were 21.0 and 22.1%for the RU and FE axes
respectively.

Motor Learning Task
Participant 6’s adaptation to achieving the RU Target is shown in
Figure 10, comparing performance between the first RU Target
in Block 1 (a), the last RU target in Block 3 (b) and the catch trial
(c). In (a), the participant has failed to achieve the target before it

FIGURE 8 | Comparison of normalized and healthy velocities for the FE

axis.

reached the boundary. In (b), the target was successfully achieved,
and (c) illustrates a clear after-effect as the participant overshot
before settling on the stationary target.

Two metrics were used to measure task performance; (i)
number of successful targets achieved; (ii) sum-of-squared-error
(SSE) measured from the time of target appearance to success (to
reflect aspects of both settling time and overshoot); in addition to
magnitude of after-effects observed on the catch trial (to quantify
the amount of learning).

Qualitatively observing participants indicated that they used
one of two methods to complete the task. Either they would
immediately move toward the target, or initially move away
from the target, giving themselves more “run-up” to reach
the target. Therefore, for a given participant, the after-effect is
either the maximum overshoot of the target (when participants
immediately moved toward the target) or the maximum initial
error (when participants chose to move away from the target
initially). For each participant, the metric was calculated as the
median value across the three blocks.

Figure 11 illustrates one participant’s task metrics across the
three blocks of trials for the RU Target in the constrained state.
An increase in the number of targets achieved is accompanied by
a decrease in SSE, representing an improvement in performance.

Both inter-session and inter-state analyses are presented.
Inter-session analysis is performed using a Wilcoxon signed rank
test, where statistical differences between sessions would imply
that 1 week was insufficient time to washout learning. These
results are summarized in Figure 12 and Table 3. There was no
evidence of a difference between Sessions 1 and 2 for either target
(FE, RU) for the number of targets achieved (p = 0.89, p = 0.94)
or the SSE (p = 0.15, p = 0.20). There was also no evidence of a
difference for the magnitude of after-effect on the catch trial (p=
0.74). The results conclude that 1 week was indeed sufficient to
washout learning.

Healthy and constrained states are also compared and the
results summarized in Figure 13 and Table 4. Wilcoxon signed
rank tests were performed and for the SSE, there was no evidence
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FIGURE 9 | Results of calibration validation for all participants (n = l0). Left: RU axis (A,C,E); Right: FE axis (B,D,E). Top: Dominant Frequency (A,B); Middle:

Spectral Power Component at Dominant Frequency (C,D). Bottom: Median Peak Velocity (E,F).

TABLE 1 | Summary statistics for algorithm validation in RU axis.

Dominant Frequency (Hz) Power Component (degs −1) Peak Velocity (degs −1) Normalized RMS Error (%)

Healthy Constrained

(Normalized)

Healthy Constrained

(Normalized)

Healthy Constrained

(Normalized)

Healthy − Constrained × 100%

Healthy

Median (n = 10) 0.24 0.24 37.6 34.5 51.2 47.3 21.0

of a difference for either the FE or RU target (p = 0.55, p =

0.15). For the number of targets achieved, there was no evidence
of a difference for the RU target (p = 0.16) but there was
evidence to suggest a difference in the metric for the FE target
(p = 0.016). For the magnitude of the after-effect on the catch
trial, there was no evidence of a difference between the states
(p= 0.74).

DISCUSSION

Validation of Normalization Algorithm in
Calibration
Overall, the results from the calibration phase show that the
algorithms were able to adequately normalize the velocity of the
participants’ cursor, despite their motion being constrained. For
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TABLE 2 | Summary statistics for algorithm validation in FE axis.

Dominant Frequency (Hz) Power Component (degs −1) Peak Velocity (degs −1) Normalized RMS Error (%)

Healthy Constrained

(Normalized)

Healthy Constrained

(Normalized)

Healthy Constrained

(Normalized)

Healthy − Constrained × 100%

Healthy

Median (n = 10) 0.21 0.22 69.6 66.6 95.0 91.8 22.1

FIGURE 10 | Adaptation to achieving the RU Target. (A) First attempt,

Block l. (B) Final attempt, Block 3. (C) Catch Trial.

FIGURE 11 | Improvement in metrics, RU Target, Constrained.

the majority of participants, the dominant frequency of motion
of the normalized cursor matched that of the healthy-target
motion. Where there is a difference, it is on the scale of 0.05
Hz and can be considered negligible. This is reinforced by a
Wilcoxon signed rank test, suggesting no evidence of a difference
in dominant frequency in either the RU or FE axes. When the
power components of the dominant frequencies are considered,
there is strong evidence of a difference for the RU axis, (p =

0.0098) and no evidence to suggest that the power components
are different for the FE axis (p= 0.19).

The discrepancy in power components for the RU axis is
not surprising, given the additional cognitive load associated
with target tracking in comparison to free motion; participants
constantly adjust to try and stay on the target and thus
perfect tracking cannot be expected. This is reflected in
the high frequency components of the graph shown in
Figure 8. Moreover, the median values were similar for the
constrained and healthy velocities in the RU axis (37.6 degs−1

and 34.5 degs−1), indicating that despite being unable to
conclude they are statistically similar, the values are reasonably
close.

Some further insight can be gained by examining the peak
velocities attained in the healthy and normalized states. A
Wilcoxon signed rank test on these values revealed no statistically
significant differences for the FE axis, but strong evidence of
a difference for the RU axis. However, the median values of
healthy and constrained velocity in the RU axis are 51.2 degs−1

and 47.3 degs−1 respectively, which is a relatively small error of
7.62%. Furthermore, the boxplots in Figure 9 visually appear very
similar. This suggests that the constrained velocity peaks in the
RU axis were comparably close to the healthy velocity peaks.

As with the power content of the dominant frequency, some
differences between peak velocities are to be expected, due to the
difficulties associated with target tracking. While these metrics
provide some insight into the performance of the algorithm, they
are also strongly linked to individuals’ cognitive abilities in target
tracking. Considering the frequency components of motion, as
opposed to peak velocities, offers an analysis more closely focused
on the non-cognitive aspect of the motion.

The normalized RMS error was quite large, albeit similar
in both the RU and FE axes, at 21.0 and 22.1% respectively.
Less weight should be attached to the RMS values, however,
since they are not representative indicators of the algorithms’
performance due to phase lag and high-frequency motion
components induced by the cognitive load of target tracking. The
healthy-target was intended as a guide; thus we are not interested
in matching its time-dependent position exactly. The values
of the RMS error should therefore be regarded as a measure
of comparing the two algorithms to each other, rather than
explicitly evaluating their performance individually. From the
RMSmetric, it is obvious that the two algorithms have performed
comparably.

Overall, we can conclude that the velocity in the constrained
state was restored reasonably closely to the original healthy-target
velocity by both algorithms. This justifies further exploration of
this method as a tool to normalize patient physical ability in tasks
requiring motor learning.

Motor Learning Task
In general, the weight of evidence from this experiment
suggests that both algorithms were able to normalize constrained
velocities such that learning of the task was not hindered. In
terms of task metrics, the only case in which there was evidence
of a statistical difference was the number of times the FE target
was achieved (p = 0.016). Further information can be gleaned
by examining the median number of times the FE target was
achieved in the healthy and constrained states: 12.5 and 10
respectively; implying that it was easier to reach in the healthy
state.
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FIGURE 12 | Inter-session Results. Left: FE Target (A,B); Middle: RU Target (C,D); Right: After-Effects (E).

TABLE 3 | Inter-session summary statistics.

Metric FE target RU target After effect magnitude

Targets achieved SSE Targets achieved SSE Distance (deg)

Session 1 2 1 2 1 2 1 2 1 2

Median (n = 8) 11 11 746.6 694.4 9.5 10.5 813.9 697.9 −4.65 −4.31

One reason may be due to the differing algorithms used.
The normalization algorithm in the FE axis was supplemented
with a linear bias. Simultaneously, most participants qualitatively
noted that motion with the exoskeleton felt less restrained in
the FE axis. This led to greater sensitivity in the FE axis,
which could have led to less consistent performance, potentially
explaining the non-significant result for the FE target. Additional
human biomechanical and/or exoskeleton dynamics may have
contributed to differences in each axis.

One of the primary aims of this research was to create a
tool with which motor learning can be studied; thus we must
attempt to quantify the amount of learning that took place. The
fact that task performance was similar when the algorithm was
applied is promising. However, this alone does not reflect the
amount of learning that occurred. Haith and Krakauer (2013)
distinguish between model-based learning, requiring an internal
model, and model-free learning, operating on a trial-and-error
basis with no internal model formed. From a technical viewpoint,
it does not matter whether the learning that occurred was
model-based or model free, since both fall under the accepted
definition of “motor learning,” and thus it suffices to show that
the normalization allows equivalent learning across states.

Catch trials are often included in motor learning studies to
test for after-effects (Abdollahi et al., 2014; Melendez-Calderon

et al., 2015); and are commonly cited as evidence that an internal
model was formed, since they are predictive errors (Shadmehr
and Brashers-Krug, 1997; Krakauer, 2006; Haith and Krakauer,
2013). In the present study’s catch trials, participants displayed
substantial after-effects and no evidence of a difference was found
between the healthy and constrained states for the magnitude of
after-effects (p = 0.74). This provides evidence that the learning
was the same despite the physical limitations imposed by the
constraints. A limitation of the study is that the catch trial was
only conducted in the RU axis and thus conclusions cannot
be drawn with regards to the FE axis. This was done so as to
avoid subsequent catch trials affecting each other (Focke et al.,
2013; Stockinger et al., 2014). A further limitation of the catch
trial analysis in this study is that two participants used different
strategies to reach the target, initially pulling away from it.
Therefore, the absolute values of their metrics are larger than
the rest of the participants’ data. While this affects the spread
of the data presented, the statistical analyses remain valid, as
after-effects were consistent for a given participant and paired
Wilcoxon tests were used.

Haith and Krakauer (2013) also cite adaptation time as an
indicator of the mechanism of motor learning. In the present
study, participants required minimal adaptation time, suggesting
model-based learning occurred; however, adaptation time is also
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FIGURE 13 | Inter-state Results. Left: FE Target (A,B); Middle: RU Target (C,D); Right: After-Effects (E).

TABLE 4 | Inter-state summary statistics (Healthy – Constrained).

Metric FE target RU target After effect magnitude

Targets achieved SSE Targets achieved SSE Distance (deg)

State Healthy Constrained Healthy Constrained Healthy Constrained Healthy Constrained Healthy Constrained

Median (n = 8) 12.5 10 734.6 706.4 11 9 879.9 697.9 −4.50 −4.31

influenced by task difficulty. Nevertheless, the presence of after-
effects provides quantifiable evidence that learning did occur,
regardless of the mechanism by which it transpired.

One limitation of the study is the simulation of physical
impairment; this adds dynamics that participants must
compensate for. The familiarization phases in both the
impairment assessment and in the motor learning case study
were designed to ensure that participants had “learnt” the
constraints as much as possible before the tasks were conducted.
However, in previous studies, it was found that learning of
dynamic and kinematic transformations occur independently
of, and in parallel to, each other (Krakauer et al., 1999).
Consequently, in this study it may be that “learning” of the
constraints did not interfere with learning the kinematics
required to complete the task. The lack of a systematic difference
inmetrics between the healthy and constrained states strengthens
this conclusion. However, there may be some interference in
learning the transformation between physical and normalized
motion with the learning of the task kinematics.

The majority of metrics used to evaluate motor learning and
task performance displayed no significant differences between
the states. Thus the weight of evidence concludes that the
normalization allowed participants to learn and complete the
task to the same standard in the constrained state as in the
healthy state. This significant because it lends justification to the
potential use of the normalization algorithms to conduct studies
on patients with physical impairment. Physical impairment has
often been cited as a confounding factor in motor learning

studies, as researchers are unable to determine whether poor
results are due to an inability to motor learn or because of
physical barriers (Valvano and Rapport, 2006; Burtner et al., 2014;
van Abswoude et al., 2015). Using normalization, therapists may
be able to evaluate the cognitive ability of a patient independently
of their physical impairment, alleviating the compounding
factors surrounding motor learning.

It is acknowledged that the task presented here is quite
specific and that it may not be considered as useful for restoring
function. However, we argue that it is the concept that is
important, rather than the specific task, and the concept is easily
generalized to more complex tasks. Furthermore, the purpose
of the normalization is not to provide restoration of physical
function, but as a tool with which therapists can fairly compare
individuals’ (with and without impairment) inherent ability to
motor learn and provide subject-specific, optimized therapy
programs informed by this knowledge. This study is intended as
an exploratory investigation of the concept of the normalization
and future work will examine the use of this technique in patients
with cerebral palsy, which will lead to further understanding of
motor learning in impaired participants.

Comparison of Algorithms
The final matter to address is the comparison of each algorithm.
Both algorithms were able to individually restore velocity
capabilities to a decent standard. When the validation of the
calibration is considered, it was the algorithm used in the FE axis
that provided better results. However, it is important to consider
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that the only metrics where it significantly outperformed the RU
algorithmwere themeasurement of peak velocities and the power
component of the dominant frequency, which are affected by
cognitive difficulties and are not considered the optimal measures
of performance. Furthermore, for both algorithms, the summary
statistics for all metrics were comparably close between the
healthy and constrained velocity profiles.

The algorithm used in the RU axis overall provided better
performance in the motor learning task, where no evidence of a
difference between healthy and constrained states was found for
any metric. This contrasts with the FE axis, where significantly
more targets were achieved in the healthy state.

It is therefore difficult to say conclusively which algorithm
was superior. The linear bias added to the algorithm in the FE
axis gave no clear advantage over the standard algorithm in this
application. In contrast, the algorithm in the RU axis performed
sufficiently, despite the lack of a supplementing bias factor, and
matches the structure of RBF used in the research that originally
inspired our use of RBFs (Wolbrecht et al., 2008; Oboe and
Pilastro, 2014; Pehlivan et al., 2015). Consequently, this shall be
used in future development of this normalization tool.

Limitations
The primary limitation of this study is the method of simulating
physical impairment. The torques exerted by patients in the
healthy and constrained cases are quite different. While this
does simulate the fact that patients with impairment tend to tire
more quickly than their healthy counterparts, it is possible that
fatigue may be a compounding factor on the results. The focus of
this preliminary study, however, was to investigate whether the
kinematics of the constrained participants could be normalized
and thus kinetics were not considered. In future, EMG could
be used to measure torque, and further studies will focus on
incorporating kinetic data into the algorithm to give a fairer
normalization of the abilities of impaired individuals.

There is also difficulty associated with accurately replicating
a physical impairment. In reality, these are not modeled simply.
However, the purpose of this study was to show that the
kinematics can be normalized in the presence of a torque
field that restricts motion. In this respect, the impairment
can be treated as a black box, with the only important
phenomenon being that it has an impact on kinematics. The use
of biomechanical models could be considered formore accurately

representing actual impairments; however, this was considered to
be out of scope for a preliminary study.

The pilot sample size reduces the strength of the statistical
outcomes. However, as a preliminary investigation into the
feasibility of the algorithm, a small sample size was considered
sufficient and has gleaned significant relevant information to
provide interesting results andmotivate further investigation into
this work.

CONCLUSIONS

A new technique for investigating motor learning in physically
impaired individuals has been proposed in an investigative pilot
study focussing on wrist motion. Measurements of velocity as
a function of position are used to derive subject-specific scaling
factors that normalize the velocity of individuals to a “healthy”
benchmark. Healthy participants were subjected to an artificial
impairment that restricted both range of motion and velocity
in the RU and FE axes of the wrist. The algorithms were
statistically proven to restore velocity accurately. In a crossover
study participants were able to complete the task with the same
performance when the algorithmwas applied to their constrained
state as they did in the healthy state, with some evidence that
motor learning had occurred. Overall, the results show promise
for the further investigation of this technique in exploring motor
learning in impaired individuals.
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