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This paper presents an improvement of classification performance for

electroencephalography (EEG)-based driver fatigue classification between fatigue

and alert states with the data collected from 43 participants. The system employs

autoregressive (AR) modeling as the features extraction algorithm, and sparse-deep

belief networks (sparse-DBN) as the classification algorithm. Compared to other

classifiers, sparse-DBN is a semi supervised learning method which combines

unsupervised learning for modeling features in the pre-training layer and supervised

learning for classification in the following layer. The sparsity in sparse-DBN is achieved

with a regularization term that penalizes a deviation of the expected activation of hidden

units from a fixed low-level prevents the network from overfitting and is able to learn

low-level structures as well as high-level structures. For comparison, the artificial neural

networks (ANN), Bayesian neural networks (BNN), and original deep belief networks

(DBN) classifiers are used. The classification results show that using AR feature extractor

and DBN classifiers, the classification performance achieves an improved classification

performance with a of sensitivity of 90.8%, a specificity of 90.4%, an accuracy of

90.6%, and an area under the receiver operating curve (AUROC) of 0.94 compared to

ANN (sensitivity at 80.8%, specificity at 77.8%, accuracy at 79.3% with AUC-ROC of

0.83) and BNN classifiers (sensitivity at 84.3%, specificity at 83%, accuracy at 83.6%

with AUROC of 0.87). Using the sparse-DBN classifier, the classification performance

improved further with sensitivity of 93.9%, a specificity of 92.3%, and an accuracy of

93.1% with AUROC of 0.96. Overall, the sparse-DBN classifier improved accuracy by

13.8, 9.5, and 2.5% over ANN, BNN, and DBN classifiers, respectively.

Keywords: electroencephalography, driver fatigue, autoregressive model, deep belief networks, sparse-deep

belief networks

INTRODUCTION

Fatigue during driving is a major cause of road accidents in transportation, and therefore poses
a significant risk of injury and fatality, not only to the drivers themselves but also to other road
users such as passengers, motorbike users, other drivers, and pedestrians (Matthews et al., 2012).
Driver fatigue reduces the ability to perform essential driving skills such as vehicle steering control,
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tracking vehicle speed, visual awareness, and sufficient selective
attention during a monotonous driving condition for a long
period of time (Lal and Craig, 2001; Wijesuriya et al., 2007; Craig
et al., 2012; Jurecki and Stańczyk, 2014). As a result an automated
countermeasure for a driver fatigue system with reliable and
improved fatigue classification/detection accuracy is needed to
overcome the risk of driver fatigue in transportation (Lal et al.,
2003; Vanlaar et al., 2008; Touryan et al., 2013, 2014; Chai et al.,
2016).

In the digital age, machine learning can be used to provide
automated prediction of driver fatigue. Two approaches can
be used in machine learning, which are the regression and
classification methods. The goal of regression algorithms is the
prediction of continuous values to estimate driving performance
(Lin et al., 2005; Touryan et al., 2013, 2014). The outcome of
classification algorithms is to predict the target class, such as the
classification between fatigue and non-fatigue/alert states (Lin
et al., 2010; Zhang et al., 2014; Chai et al., 2016; Xiong et al., 2016).
The aim of this study is to improve the accuracy of the prediction
of fatigue and non-fatigue states. As a result, this study focuses
on using an advanced classification method for enhancing the
accuracy of a fatigue classification system previously studied
(Chai et al., 2016).

As described in a previous paper (Chai et al., 2016),
possible driver fatigue assessment includes psychological and
physiological measurements (Lal and Craig, 2001; Borghini
et al., 2014). For instance, psychological measurement of driver
fatigue involves the need for frequent self-report of fatigue
status via brief psychometric questionnaires (Lai et al., 2011).
Such an approach would be difficult to implement and may
well be biased given its subjective nature (Craig et al., 2006).
Physiological measurement of the driver fatigue includes video
measurement of the face (Lee and Chung, 2012), brain signal
measurement using electroencephalography (EEG; Lal et al.,
2003; Lin et al., 2005; Craig et al., 2012; Chai et al., 2016), eye
movement tracking system using camera and electrooculography
(EOG; Hsieh and Tai, 2013), and heart rate measurement using
electrocardiography (ECG; Tran et al., 2009; Jung et al., 2014).

Physiological assessment of facial or eye changes using video
recording of the driver’s face may lead to privacy issues.
Physiological measurement strategies like monitoring eye blink
rates using EOG and heart rate variability (HRV) using ECG
have been shown to reliably detect fatigue (Tran et al., 2009;
Hsieh and Tai, 2013). EEG has also been shown to be a
reliable method of detecting fatigue, as it directly measures
neurophysiological signals that are correlated with mental fatigue
(Wijesuriya et al., 2007; Craig et al., 2012; Zhang et al., 2014;
Chuang et al., 2015; He et al., 2015; Xiong et al., 2016). Recently,
we have shown a classification of EEG-based driver fatigue
with the inclusion of new ICA based pre-processing with a
promising classification result (Chai et al., 2016), however, it was
concluded the classification accuracy needs to be improved. As
a result, this paper will extend the work on a potential EEG-
based countermeasure driver fatigue system with an improved
classification of fatigue vs. alert states.

An EEG-based classification countermeasure system requires
several components including EEG signal measurement, signal

pre-processing, feature extraction, and classification modules.
For feature extraction in EEG analysis, frequency domain data
has been widely explored (Lal and Craig, 2001; Craig et al.,
2012). Power spectral density (PSD) methods are popular for
converting the time domain of EEG signal into the frequency
domain (Demandt et al., 2012; Lin et al., 2014). Alternatively,
an autoregressive (AR) modeling parametric approach can
also be used for feature extraction in an EEG classification
system (McFarland and Wolpaw, 2008; Chai et al., 2016; Wang
et al., 2016). The advantage of AR modeling is its inherent
capacity to model the peak spectra that are characteristic of
the EEG signals and it is an all-pole model making it efficient
for resolving sharp changes in the spectra. In our previous
finding, an AR modeling feature extractor provided superior
classification results compared to PSD for EEG-based driver
fatigue classification (Chai et al., 2016). Therefore, in this paper,
we present the results of applying AR for modeling feature
extraction in order to improve the accuracy the classification
algorithm. The PSD method is also included for comparison.
For the classification, non-linear methods, such as artificial
neural networks (ANN), have been used widely in a variety
of applications involving EEG (Nguyen, 2008; Casson, 2014).
Bayesian neural networks (BNN) have also been used in EEG-
based driver fatigue classification (Chai et al., 2016). The Bayesian
regularization framework is able to enhance the generalization of
neural networks training regardless of finite and/or noisy data.

Recent attention has been focused on improvement of an
ANN approach called deep belief networks (DBN; Hinton
and Salakhutdinov, 2006; Hinton et al., 2006; Bengio, 2009;
LeCun et al., 2015), which involves a fast, unsupervised learning
algorithm for the deep generative model, and supervised learning
for a discriminative model. The key advantage of this algorithm
is the layer-by-layer training for learning a deep hierarchical
probabilistic model efficiently as well as a discriminative fine
tuning algorithm to optimize performance on the classification
problems (Bengio, 2009; LeCun et al., 2015). A DBN classifier
is a promising strategy for improving classification of problems
including hand-writing character classification (Hinton et al.,
2006), speech recognition (Mohamed et al., 2010; Hinton et al.,
2012), visual object recognition (Krizhevsky et al., 2012), and
other biomedical applications (O’Connor et al., 2013; Stromatias
et al., 2015). The training of the DBN is based on the restricted
Boltzmann machine (RBM) with layers-wise training of the
network per layer at a time from the bottom up (Hinton et al.,
2006). Furthermore, the original RBM approach tended to learn
a distributed non-sparse representation. A modified version of
the RBM using sparse-RBM to form a sparse-deep belief network
(sparse-DBN) has shown promising results for modeling low-
order features as well as higher-order features for the application
of image classification with improved accuracy (Lee et al.,
2008; Ji et al., 2014). As a result of this promising advance in
classification of complex features, this paper further investigates
the classification of EEG signals associated with driver fatigue
using the sparse-DBN. For comparison purposes, the results
from several different classifiers are included to determine
which algorithms are superior with the highest classification
performance.
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The main contribution of this paper is the combination of the
AR modeling feature extractor and sparse-DBN classifier which
have not been explored previously for EEG-based driver fatigue
classification, with the objective of enhancing the classification
performance over past attempts (Chai et al., 2016). The
motivation to utilize the sparse-DBN classifier was to investigate
its potential superiority for classifying fatigue, in comparison
to other classifiers. Sparse-DBN is a semi supervised learning
method that combines unsupervised learning for modeling the
feature in the pre-training layer and supervised learning for
discriminating the feature in the following layer. Incorporating
the sparsity in sparse-DBN, achieved with a regularization
term that penalizes a deviation of the expected activation of
hidden units from a fixed low-level, prevents the network from
overfitting, and is able to learn low-level structures as well as
high-level structures (Ji et al., 2014).

BACKGROUND AND METHODOLOGY

General Structure
The general structure for the EEG-based driver fatigue
classification used in this paper is shown in Figure 1 which is
divided into four components: (i) the first component involves
EEG data collection in a simulated driver fatigue environment;
(ii) the second component involves data pre-processing for
removing EEG artifact and the moving window segmentation;
(iii) the third component involves the features extraction
module that converts the signals into useful features; (iv)
the fourth component involves the classification module to
process the feature and which translates into output via training
and classification procedures. The output of the classification
comprises two states: fatigue state and alert (non-fatigue)
state.

EEG Data Collection
The EEG data collection has been described in a previous paper
(Chai et al., 2016). The study was approved by the Human
Research Ethics Committee of the University of Technology
Sydney (UTS) obtained from previous experiments of driver
fatigue study (Craig et al., 2006, 2012; Wijesuriya et al.,

FIGURE 1 | General structure EEG-based driver fatigue classification in

this study.

2007). The dataset contains electrophysiological data from
43 healthy participants aged between 18 and 55 years who
had a current driver’s license. The study involved continuous
measurement taken during a monotonous simulated driving
task followed by post-EEG measures and post-subjective self-
report of fatigue. For the simulated driving task, the divided
attention steering simulator (DASS) from Stowood scientific
instruments was used (Craig et al., 2012). Participants were
asked to keep driving at the center of the road in the
simulation task. The participants were also required to respond
to a target number that appeared in any of the four
corners of the computer screen in front of the participants
when they were driving in the experiment, so as to record
reaction time.

The simulation driving task was terminated if the participant
drove off the simulated road for >15 s, or if they showed
consistent facial signs of fatigue such as head nodding
and extended eyes closure, both determined by analysis of
participants’ faces that occurred throughout the experiment.
Three methods were used to validate fatigue occurrence: (i) using
video monitoring for consistent physiological signs of fatigue
such as tired eyes, head nodding and extended eye closure,
verified further by EOG analysis of blink rate and eye closure; (ii)
using performance decrements such as deviation off the road, and
(iii) using validated psychometrics such as the Chalder Fatigue
Scale and the Stanford Sleepiness Scale. Two participants who
did not meet the criterion of becoming fatigued were excluded
from the dataset. The validation of fatigue vs. non-fatigue in
these participants has been reported in prior studies (Craig et al.,
2006, 2012). The EEG signals were recorded using a 32-channel
EEG system, the Active-Two system (Biosemi) with electrode
positions at: FP1, AF3, F7, F3, FC1, FC5, T7, C3, CP1, CP5, P7,
P3, PZ, PO3, O1, OZ, O2, PO4, P4, P8, CP6, CP2, C4, T8, FC6,
FC2, F4, F8, AF4, FP2, FZ, and CZ. The recorded EEG data was
down sampled from 2,048 to 256Hz.

Data Pre-processing and Segmentation
For the alert status, the first 5 min of EEG data was selected when
the driving simulation task began. For the fatigue status, the data
was selected from the last 5 min of EEG data before the task
was terminated, after consistent signs of fatigue were identified
and verified. Then in each group of data (alert and fatigue), 20 s
segments were taken with the segment that was chosen being the
first 20 s where EEG signals were preserved. For the sample this
was all within the first 1min of the 5min selected. Further, artifact
removal using an ICA-based method was used to remove blinks,
heart, and muscle artifact. As a result, 20 s of the alert state and
20 s of the fatigue state data were available from each participant.

In the pre-processing module before feature extraction,
the second-order blind identification (SOBI) and canonical
correlation analysis (CCA) were utilized to remove artifacts of
the eyes, muscle, and heart signals. The pre-processed data were
segmented by applying a moving window of 2 s with overlapping
1.75 s to the 20 s EEG data which provided 73 overlapping
segments for each state (fatigue and alert states) as shown in
Figure 2. The pre-processing segments were used in the feature
extraction module as described in next section.

Frontiers in Neuroscience | www.frontiersin.org 3 March 2017 | Volume 11 | Article 103

http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Neuroscience/archive


Chai et al. Improving EEG-Based Driver Fatigue Classification

FIGURE 2 | Moving window segmentation for driver fatigue study.

Feature Extraction
For comparison purposes and validity of previous work, a feature
extractor using the power spectral density (PSD), a widely used
spectral analysis of feature extractor in fatigue studies, is provided
in this paper.

An autoregressive (AR) model was also applied as a features
extraction algorithm in this study. AR modeling has been used
in EEG studies as an alternative to Fourier-based methods, and
has been reported to have improved classification accuracy in
previous studies compared to spectral analysis of the feature
extractor (Brunner et al., 2011; Chai et al., 2016). The advantage
of AR modeling is its inherent capacity to model the peak
spectra that are characteristic of the EEG signals and it is an
all-pole model making it efficient for resolving sharp changes
in the spectra. The fast Fourier transform (FFT) is a widely
used non-parametric approach that can provide accurate and
efficient results, but it does not have acceptable spectral resolution
for short data segments (Anderson et al., 2009). AR modeling
requires the selection of the model order number. The best
AR order number requires consideration of both the signal
complexity and the sampling rate. If the AR model order is too
low, the whole signal cannot be captured in the model. On the
other hand, if the model order is too high, then more noise
is captured. In a previous study, the AR order number of five
provided the best classification accuracy (Chai et al., 2016). The
calculation of the AR modeling was as follows:

x̂(t) =
P
∑

k = 1

a(k)x̂(t − k)+ e(t) (1)

where x̂(t) denotes EEG data at time (t), P denotes the AR order
number, e(t) denotes the white noise with zero means error and
finite variance, and a(k) denotes the AR coefficients.

Classification Algorithm
The key feature of DBN is the greedy layer-by-layer training
to learn a deep, hierarchical model (Hinton et al., 2006). The
main structure of the DBN learning is the restricted Boltzmann

machine (RBM). A RBM is a type of Markov random field (MRF)
which is a graphical model that has a two-layer architecture
in which the observed data variables as visible neurons are
connected to hidden neurons. A RBM is as shown in which m
visible neuron [v = (v1, v2, v3,...,vm)] and n hidden neurons [h
= (h1, h2,..., hn)] are fully connected via symmetric undirected
weights and there is no intra-layer connections within either the
visible or the hidden layer.

The connections weights and the biases define a probability
over the joint states of visible and hidden neurons through energy
function E(v,h), defined as follows:

E
(

v, h; θ
)

= −

m
∑

i = 1

n
∑

j = 1

wijvihj −

m
∑

i = 1

aivi −

n
∑

j = 1

bjhi (2)

where wij denotes the weight between vi and hj for all i Î {1,...,m}
and j Î {1,..., n}; ai and bj are the bias term associated with the
ith and jth visible and hidden neurons; θ = {W,b,a} is the model
parameter with symmetric weight parametersWnm.

For RBM training, the gradient of log probability of a visible
vector (v) over the weight wij with the updated rule calculated by
constructive divergence (CD) method is as follows:

1wij = η
(

〈vihj〉data − 〈vihj〉recon
)

(3)

where η is a learning rate, 〈vihj〉recon is the reconstruction of
original visible units which is calculated by setting the visible unit
to a random training vector. The updating of the hidden and
visible states is considered as follows:

p
(

hj = 1 | v
)

= σ

(

bj +
∑

i

viwij

)

(4)

p
(

vi = 1 | h
)

= σ

(

ai +
∑

i

hjwij

)

(5)

where σ is the logistic sigmoid function.
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The original RBM tended to learn a distributed, non-sparse
representation of the data, however sparse-RBM is able to play
an important role in learning algorithms. In an information-
theoretic sense, sparse representations are more efficient than the
non-sparse ones, allowing for varying of the effective number
of bits per example and able to learn useful low- and high-level
feature representations for unlabeled data (i.e., unsupervised
learning; Lee et al., 2008; Ji et al., 2014).

This paper uses the sparse-RBM to form the sparse-DBN for
EEG-based driver fatigue classification. The sparsity in sparse-
DBN is achieved with a regularization term that penalizes a
deviation of the expected activation of hidden units from a fixed
low-level, which prevents the network from overfitting, as well
as allowing it to learn low-level structures as well as high-level
structures (Ji et al., 2014). The sparse-RBM is obtained by adding
a regularization term to the full data negative log likelihood with
the following optimization:

min
{wijaibj}

E
(

v, h, θ
)

−

m
∑

l = 1

log
∑

h

P
(

v(l), h(l)
)

+ λ

n
∑

j = 1

∣

∣

∣

∣

∣

p−
1

m

m
∑

l = 1

E

[

h
(l)
j

∣

∣

∣
v(l)

]

∣

∣

∣

∣

∣

2

(6)

where E[.] is the conditional expectation given the data, λ is
a regularization constant, and p is a constant controlling the
sparseness of the hidden neurons hj. The DBN is constructed by
stacking a predefined number of RBMs to allow each RBMmodel
in the sequence to receive a different representation of the EEG
data. The modeling between visible input (v) and N hidden layer
hk is as follows:

P
(

v, h1, . . . , hl
)

=





l−2
∏

k = 0

P
([

h(k)
∣

∣

∣
h(k+1)

])



P
(

hl−1, hl
)

(7)
where v = h0, P(hk|hk+1) is a conditional distribution for the
visible units conditioned on the hidden units of the RBM at
level k and P(hl−1,hl) is the visible-hidden joint distribution at
the top-level RBM. Two training types of the RBM can be used:
generative and discriminative. The generative training of RBM
is used as pre-training with un-supervised learning rule. After
greedy layer-wise unsupervised learning, the DBN can be used for
discriminative ability using the supervised learning. This paper
uses a sparse variant of DBN with 2 layers of semi supervised
sparse-DBN as shown in Figure 3 with the first layer using the
sparse-RBM for generative mode (un-supervised learning) and
the second layer using the sparse-RBM in discriminative mode
(supervised learning). After layer-by-layer training in DBN, an
ANN with back-propagation method is used through the whole
classifier to fine-tune the weights for optimal classification.

The performance indicators, including, sensitivity or
true positive rate [TPR = TP/(TP+FN)], specificity or
true negative rate [TNR = TN/(TN+FP)] and accuracy
(TP+TN)/(TP+TN+FP+FN), were used for the performance
measurement. TP (true positive) denotes the number of the
fatigue data correctly classified as fatigue state. FP (false positive)

FIGURE 3 | Structure of sparse-DBN for driver fatigue classification:

(A) Greedy learning stack of sparse-RBM; (B) the corresponding sparse-DBN.

is the number of alert datasets classified as a fatigue state. TN
(true negative) is number of alert datasets correctly classified as
an alert state. FN (false negative) is the fatigue datasets classified
as an alert state.

For network learning generalization, we presented the results
based on two cross-validation techniques: an early stopping
technique and k-fold cross-validation. The early stopping
technique used the “hold-out cross validation”—one of the
widely used cross validations techniques. Basically, it divided the
dataset into three subsets (training, validation, and testing sets).
Themodel is trained using the training set while the validation set
is periodically used to evaluate the model performance to avoid
over-fitting/over-training. The accuracy of the testing set is used
as the result of themodel’s performance. Another cross validation
technique is known as k-fold cross-validation (k = 3). In k-fold
cross-validation (k= 3), the dataset is divided into three equal (or
near equal) sized folds. The training of the network uses 2-folds
and the testing the network uses the remaining fold. The process
of training and testing is repeated for three possible choices of
the subset omitted from the training. The average performance
on the three omitted subsets is then used as an estimate of the
generalization performance.

Furthermore, a receiver operating characteristic (ROC)
graph is used to evaluate further the performance of the
proposed method with the compared method for this study.
The areas under the curve of the ROC (AUROC) were
also computed to evaluate quantitatively the classification
performance.

RESULTS

From the 32-EEG channel dataset for the 43 participants (2
participants who did not meet the criterion of becoming fatigued
were excluded from original 45 participants), 20 s of alert
state and 20 s of fatigue state data were available from each
participant. This was fed to the pre-processing module including
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artifact removal and a 2 s moving window segmentation with
overlapping 1.75 s to the 20 s EEG data, providing 73 overlapping
segments for each state. As a result, from the 43 participants, a
total 6,278 units of datasets were formed for the alert and fatigue
states (each state having 3,139 units).

The segmented datasets were fed to the feature extraction
module. AR modeling with the order number of 5 was used for
the feature extractor as it provided an optimum result from the
previous study (Chai et al., 2016). The size of the AR features
equaled the AR order number multiplied with 32 units of EEG
channels, thus the AR order number of 5 resulted in 160 units
of the AR features. For comparison and validity purposes, this
paper includes the PSD, a popular feature extractor in the EEG
classification for driver fatigue classification. The spectrum of
EEG bands consisted of: delta (0.5–3 Hz), theta (3.5–7.5 Hz),
alpha (8–13 Hz), and beta activity (13.5–30 Hz). The total power
for each EEG activity band was used for the features that were
calculated using the numerical integration trapezoidal method,
providing 4 units of power values. This resulted in 128 units of
total power of PSD for the 32 EEG channels used.

The variant of standard DBN algorithm, sparse-DBN with
semi supervised learning used in this paper, comprised of one
layer of sparse-RBM with the generative type learning and the
second layer of sparse-RBM with discriminative type of learning.
The training of the sparse-DBN is done layer-by-layer. The ANN
with back-propagation method was used to fine-tune the weights
for optimal classification.

For the discriminative learning of sparse-DBN, the total 6,278
datasets were divided into three subsets with similar amounts
of number sets: training (2,093 sets) validation (2,093 sets), and
testing sets (2,092 sets). The generative learning of sparse-DBN
uses unlabeled data from the training sets. For the training of
the sparse-DBN using the learning rate (η) of 0.01, the maximum
epoch is set to 200, with a regularization constant (λ) of 1, and the
constant controlling the sparseness (p) of 0.02. The selection of
these training parameters was chosen by trial-and-error, with the
chosen values achieving the best training result. Table 1 shows
the selection of the regularization constant (λ), with the chosen
value of 1 and the constant controlling the sparseness (p) with
the chosen value of 0.02, providing lowest the mean square error
(MSE) values of 0.00119 (training set) and 0.0521 (validation set)
with the iteration number of 69. The average of the MSE values
was 0.0046± 0.0018 (training set), and 0.0760± 0.0124.

In order to prevent over-fitting/over-training in the network,
a validation-based early stopping method was used for the
proposed classifier of sparse-DBN. The plot of the mean square
error (MSE) training set and validation set are shown in Figure 4

for classification using AR and sparse-DBN. Table 2 shows the
best performance of the training in term of the MSE values and
iteration numbers. For comparison, the results for ANN, BNN,
and DBN classifier are also included.

ANN, DBN and sparse-DBN classifiers utilized the early
stopping framework (with the dataset divided into training
validation and test sets) to prevent the overfitting problem,
except for BNN (where the dataset was divided into training and
testing). The BNN used a different framework for preventing the
overfitting problem utilizing adaptive hyper-parameters in the

TABLE 1 | Testing several values of regularization constant (λ) and the

constant controlling the sparseness (p) in order to select values with the

lowest MSE (trial-and-error method).

Regularization Sparseness MSE MSE Iteration

constant(λ) constant (p) training validation number

0.5 0.1 0.00492 0.06625 90

1 0.1 0.00680 0.06710 82

2 0.1 0.00676 0.07961 64

0.5 0.01 0.00542 0.07365 66

1 0.01 0.00507 0.08360 71

2 0.01 0.00395 0.06831 85

0.5 0.02 0.00288 0.07664 73

1 0.02 0.00119 0.05206 69

2 0.02 0.00288 0.07181 66

0.5 0.03 0.00327 0.08289 88

1 0.03 0.00574 0.09207 73

2 0.03 0.00665 0.09825 89

Mean 0.004629 0.07615 76.42

SD 0.001803 0.01269 9.72

Bold values signify the chosen parameters.

cost function to prevent the neural network weight from being
too large, which would have resulted in poor generalization. As a
result, the validation set is not required for the BNN. A detailed
analysis of BNN for EEG based driver fatigue classification has
been addressed in our previous study (Chai et al., 2016). The
core parameters for the training classifiers (ANN, BNN, DBN,
and sparse-DBN) are the ANN-based classifier which includes
the number of hidden nodes, an activation function, and learning
rate. In the BNN classifier, an additional hyper-parameter is
introduced to fine tune the optimal structure of the ANN.
Further, in the sparse-DBN classifier, the regulation constant
and constant controlling of sparseness were introduced for the
training the DBN classifier. The DBN and sparse-DBN used two
hidden layers: the first hidden layer as generative mode (un-
supervised learning) and second hidden layer as discriminative
mode (supervised learning).

The mean square error (MSE) of the training set decreased
smoothly. Using ANN classifier, the training network stopped
after 100 iterations as theMSE validation set reached a maximum
fail of 10 times the increment value to ensure no over-training
happened with the best validation MSE at 0.115. Using a BNN
classifier, the training network stopped after 77 iterations as
the conditions are met with the BNN parameters with the best
validation MSE at 0.0979. Using a DBN classifier in the first
hidden layer (generative mode), the training network stopped
after 200 iterations with best MSE at 0.434. Using a DBN classifier
in the second hidden layer (discriminative mode), the training
network stopped after 68 iterations as the MSE validation set
reached maximum fail of 10 times increment value to ensure no
over-training happened with the best validation MSE at 0.0649.
Using the proposed method of sparse-DBN classifier in the first
hidden layer (generative mode), the training network stopped
after 200 iterations with the best of MSE at 0.388. Using the
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FIGURE 4 | Plot of the training and validation MSE for early stopping of classifiers: (A) MSE training and validation of ANN. (B) MSE training of BNN. (C) MSE

training of DBN in hidden layer 1 (Generative mode). (D) MSE training of sparse-DBN in hidden layer 1 (Generative mode). (E) MSE training and validation of DBN in

hidden layer 2 (Discriminative mode). (F) MSE training and validation of DBN in hidden layer 2 (Discriminative mode).

TABLE 2 | The best MSE and iteration numbers from the training of the

classifiers (ANN, BNN, DBN, and Sparse-DBN).

Classifiers Best MSE Best iteration number

ANN 0.115 110

BNN 0.0979 77

DBN 0.0649 68

Sparse-DBN 0.0520 69

proposed method of sparse-DBN classifier in the second hidden
layer (discriminative mode), the training network stopped after
69 iterations as the MSE validation set reached maximum fail of
10 times increment value to ensure no over-training happened,
with the best validation MSE at 0.0520.

Using the classification results from the validation set, the
optimal number of hidden neurons of the sparse-DBN is shown
in Figure 5. For the PSD feature extraction, using 10 hidden
nodes resulted in the best classification performance. For the
AR feature extraction, using 15 hidden nodes produced the best
classification performance. These optimal hidden nodes were
then used for the training of the network to classify the test
set. Also, the results using a different number of layers (2, 3, 5,
and 10 layers) are also provided in Figure 5, with the 2 layers
(generative mode for the first layer and discriminative mode for
second layer) providing the optimal number of layers in this
study. This figure shows that using a higher number of layers
(3, 5, and 10 layers) results in a lower accuracy compared to
results of using only two layers. Therefore, the two layers sparse-
DBN was the chosen architecture providing the higher accuracy.
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FIGURE 5 | Plot of the optimal number hidden nodes and layers.

The optimal size of sparse-DBN to classify the PSD features of the
EEG-based driver fatigue is [128-10-10-2] and the optimal size of
sparse DBN to classify the AR feature is [160-15-15-2]. Table 3
shows the results for the classification of the fatigue state vs. alert
state using AR feature extractor and sparse-DBN classifier. For a
feature extractor comparison and validity of previous result, the
result of the classification using PSD feature extractor method is
included. Also for classifier comparison, the classification results
using original DBN, BNN and ANN are given.

First, for the artificial neural network (ANN) classifier: (i)
ANN with PSD, for the fatigue data, of a total with 1,046 units
of actual fatigue dataset, 782 units were correctly classified as
fatigue states (true positive: TP), resulting in a sensitivity of
74.8%. For the alert group, of a total of 1,046 units of actual alert
dataset, 731 units of alert data were correctly classified as alert
state (true negative: TN), resulting in a specificity of 69.9%. The
combination of ANN and PSD resulted in an accuracy of 72.3%,
(ii) ANN with AR, for the fatigue group, of a total of 1,046 units
of actual fatigue dataset, 845 units of fatigue data were correctly
classified as fatigue states (TP), resulting in a sensitivity of 80.8%.
For the alert group, of a total of 1,046 units of actual alert dataset,
814 units of alert data were correctly classified as alert states (TN),
resulting in a specificity of 77.8%, while the combination of ANN
with AR resulted in an improved accuracy of 79.3% compared to
ANN with PSD.

Second, for the Bayesian neural networks (BNN) classifier: (i)
BNN with PSD achieved an improvement compared to ANN
with PSD, and for the fatigue group, of a total of 1,046 units of
actual fatigue dataset, 808 units of fatigue data were correctly
classified as fatigue states (TP), resulting in a sensitivity of 77.2%.

TABLE 3 | Results classification fatigue state vs. alert state for the test set

on different feature extractors and classifiers—early stopping approach.

Feature extraction Classification Classification methods

methods results ANN BNN DBN Sparse-DBN

PSD TP 782 808 873 919

FN 264 238 173 127

TN 731 791 833 855

FP 315 255 213 191

Sensitivity (%) 74.8 77.2 83.5 87.9

Specificity (%) 69.9 75.6 79.6 81.7

Accuracy (%) 72.3 76.4 81.5 84.8

AR TP 845 882 950 982

FN 201 164 96 64

TN 814 868 946 965

FP 232 178 100 81

Sensitivity (%) 80.8 84.3 90.8 93.9

Specificity (%) 77.8 83.0 90.4 92.3

Accuracy (%) 79.3 83.6 90.6 93.1

Bold values signify improved classification results using proposed method.

For the alert state, of a total of 1,046 units of actual alert dataset,
791 units of alert data were correctly classified as alert state (TN),
resulting in a specificity of 75.6%. The combination BNN with
PSD resulted in an accuracy of 76.4%, (ii) BNN with AR achieved
an improvement compared to ANN with AR, and ANN with
PSD. BNN with PSD, for the fatigue state, of a total of 1,046 units
of actual fatigue data, 882 units were correctly classified as fatigue
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states (TP), resulting in a sensitivity of 84.3%. For the alert state,
of a total of 1,046 units of actual alert data, 868 units of alert
data were correctly classified as alert states (TN), resulting in a
specificity of 83%. The combination BNN with AR resulted in an
accuracy of 83.6%.

Third, when using the deep belief network (DBN) classifier:
(i) DBN with PSD achieved a further improvement compared
to BNN with PSD, ANN with PSD, and ANN with AR; for the
fatigue state, of a total of 1,046 units of actual fatigue data, 873
units of fatigue data were correctly classified as fatigue states (TP),
resulting in a sensitivity of 83.5%. For the alert state, of a total
of 1,046 units of actual alert data, 833 units of alert data were
correctly classified as alert state (TN), resulting in a specificity of
79.6%. The combination DBN with PSD resulted in an accuracy
of 81.5%, (ii) DBN with AR achieved further improvement
compared to BNNwith AR, ANNwith AR, DBN with PSD, BNN
with PSD, and ANN with PSD, for the fatigue state, of a total of
1,046 units of actual fatigue data, 950 units of fatigue data were
correctly classified as fatigue states (TP), resulting in a sensitivity
of 90.8%. For the alert state, of a total of 1,046 units of actual alert
data, 946 units of alert data were correctly classified as alert states
(TN), resulting in a specificity of 90.4%. The combination of DBN
with AR resulted in an accuracy of 90.6%.

Fourth, using sparse deep belief networks (sparse-DBN):
(i) sparse-DBN with PSD achieved additional improvements
compared to DBN with PSD, BNN with PSD, ANN with PSD,
BNN with AR, and ANN with AR; for the fatigue state, of a
total of 1,046 units of actual fatigue data, 919 units of fatigue
data were correctly classified as fatigue states (TP), resulting in
a sensitivity of 87.9%. For the alert state, of a total of 1,046
units of actual alert dataset, 855 units of alert data were correctly
classified as alert state (TN), resulting in a specificity of 81.7%.
The combination sparse-DBN with PSD resulted in an accuracy
of 84.8%, (ii) sparse-DBN with AR achieved the most superior
result to the other classifier and feature extractor combination
with the fatigue state, of a total of 1,046 units of actual fatigue
data, 982 units of fatigue data were correctly classified as fatigue
states (TP), resulting in a sensitivity of 93.9%. For the alert state,
of a total of 1,046 units of actual alert data, 965 units of alert
data were correctly classified as alert states (TN), resulting in
a specificity of 92.3%. The combination sparse-DBN with AR
resulted in best accuracy of 93.1% compared to the other classifier
and feature extractor combinations.

DISCUSSION

In summary, using the PSD feature extractor: (i) compared
to the ANN classifier, the sparse-DBN classifier improved
the classification performance with sensitivity by 13.1% (from
74.8 to 87.9%), specificity by 11.8% (from 69.9 to 81.7%),
and accuracy by 12.5% (from 72.3 to 84.8%); (ii) compared
to the BNN classifier, the sparse-DBN resulted in improved
performance indicators for sensitivity by 10.7% (from 77.2 to
87.9%), specificity by 6.1% (from 75.6 to 81.7%), and accuracy by
8.4% (from 76.4 to 84.8%); (iii) compared to the DBN classifier,
the sparse-DBN resulted in improved performance indicators for
sensitivity by 4.4% (from 83.5 to 87.9%), specificity by 2.1% (from
79.6 to 81.7%), and accuracy by 3.3% (from 81.5 to 84.8%).

Further, using the AR feature extractor: (i) compared to
the ANN classifier, the sparse-DBN classifier improved the
classification performance with sensitivity by 13.1% (from 80.8 to
93.9%), specificity by 14.5% (from 77.8 to 92.3%), and accuracy
by 13.8% (from 79.3 to 93.1%); (ii) compared to the BNN
classifier, the sparse-DBN resulted in improved performance
indicators for sensitivity by 9.6% (from 84.3 to 93.9%), specificity
by 9.3% (from 83.0 to 92.3%), and accuracy by 9.5% (from 83.6
to 93.1%); (iii) compared to the DBN classifier, the sparse-DBN
resulted in improved performance indicators for sensitivity by
3.1% (from 90.8 to 93.9%), specificity by 1.9% (from 90.4 to
92.3%), and accuracy by 2.5% (from 90.6 to 93.1%).

The result of sensitivity (TPR) and specificity (TNR) analyses
can also be viewed as the false positive rate (FPR= 1−specificity)
and false negative rate (FNR = 1−sensitivity). The FPR is the
rate of the non-fatigue (alert) state being incorrectly classified
as fatigue state. The FNR is the rate of fatigue state being
incorrectly classified as an alert state. As a result, the proposed
classifier (sparse-DBN) with the AR feature extractor resulted
in a sensitivity (TPR) of 93.9%, FNR of 6.1%, specificity (TNR)
of 92.3%, and FPR of 7.7%. For a real-time implementation,
an additional debounce algorithm could be implemented. By
adding a debounce component, it masks multiple consecutive
false positive detection that may decrease the FPR (Bashashati
et al., 2006). The real-time implementation with a debounce
algorithm will be a future direction in this area of our study.

For the early stopping classifier comparison, a k-fold
cross-validation, a popular method for EEG machine learning,
is evaluated as well (Billinger et al., 2012). As a result, this study
used k-fold cross-validation (k = 3) with the mean value of
10 results of accuracies on each fold. A total of 6,278 datasets
were divided into 3-folds (first-fold = 2,093 sets, second-fold =

2,093 sets, and third-fold = 2,092 sets). Overall, the mean value
accuracy of 3-folds was reported. Table 4 shows results using
k-fold cross validation approach with the chosen AR feature
extraction and different classifiers. The result shows that the
mean accuracy using the k-fold cross validation approach is
comparable to the early stopping approach with the proposed
classifier of sparse-DBN as the best classifier (94.8% ± 0.011 of
sensitivity, 93.3% ± 0.012 of specificity, and 94.1% ± 0.011 of
accuracy) and followed by DBN (90.9% ± 0.005 of sensitivity,
90.5% ± 0.005 of specificity, and 90.7% ± 0.005 of accuracy),
BNN (84.8% ± 0.012 of sensitivity, 83.6% ± 0.015 of specificity,
and 84.2% ± 0.014 of accuracy), and ANN (81.4% ± 0.010 of
sensitivity, 78.4% ± 0.012 of specificity, and 79.9% ± 0.011 of
accuracy).

One-way ANOVA was used to compare the four classifiers
(ANN, BNN, DBN, and sparse-DBN) and the resultant p-value
was 9.3666e-07. This p-value corresponding to the F-statistic of
one-way ANOVA is much lower than 0.05, suggesting that one
or more classifiers are significantly different for which Tukey’s
HSD test (Tukey−Kramer method) was used to detect where
the differences were. The critical value of the Tukey−Kramer
HSD Q statistic based on the four classifiers and v = 8 degree
of freedom for the error term, were significance levels of α =

0.01 and 0.05 (p-value). The critical value for Q, for α of 0.01
(Qα=0.01) is 6.2044 and the critical value for Q for α of 0.05
(Qα=0.05) is 4.5293. The Tukey HSD Q-statistic (Qi,j) values were
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TABLE 4 | Results of classification accuracy fatigue state vs. alert state with chosen AR feature extractors and different classifiers—k-fold cross

validation (3-folds) approach.

Classification results Classification methods

ANN

(Mean ± SD)

BNN

(Mean ± SD)

DBN

(Mean ± SD)

Sparse-DBN

(Mean ± SD)

TP 852.0 ± 10.583 888.0 ± 13.229 951.3 ± 4.933 992 ± 11.930

FN 194.7 ± 10.408 158.7 ± 13.051 95.3 ± 4.726 54.3 ± 11.719

TN 820.3 ± 13.051 874.7 ± 15.308 947.0 ± 5.292 976.0 ± 12.288

FP 225.7 ± 13.051 171.3 ± 15.308 99.0 ± 5.292 70.0 ± 12.288

Sensitivity 81.4% ± 0.010 84.8% ± 0.012 90.9% ± 0.005 94.8% ± 0.011

Specificity 78.4% ± 0.012 83.6% ± 0.015 90.5% ± 0.005 93.3% ± 0.012

Accuracy 79.9% ± 0.011 84.2% ± 0.014 90.7% ± 0.005 94.1% ± 0.011

Bold values signify improved classification results using proposed method.

calculated for pairwise comparison of the classifiers. In each pair,
the statistical significance is found when Qi,j is more than the
critical value of Q. Table 5 presents the Tukey HSD Q-statistic
(Qi,j) and Tukey HSD p-value and Tukey HSD inference of the
pairwise comparisons. The results inTable 5 show all six pairwise
combinations reached statistical significance (∗p < 0.05 and ∗∗p
< 0.01). In addition, to compare the proposed classifier (sparse-
DBN) and other classifiers (DBN, BNN, ANN), the sparse-DBN
vs. DBN resulted in a p-value of 0.021 (∗p < 0.05), while sparse-
DBN vs. BNN and sparse-DBN vs. ANN resulted in a p-value of
0.001 (∗∗p < 0.01).

Overall, the combination of the AR feature extractor and
sparse-DBN achieved the best result with improved sensitivity,
specificity and accuracy for the classification fatigue vs. alert
states in a simulated driving scenario.

Figure 6 shows the results displayed in the receiver operating
characteristic (ROC) curve analyses with AR feature extractor
and ANN, BNN, DBN, and sparse-DBN classifiers of early
stopping (hold-out cross-validation) techniques. The ROC graph
is a plot of true positive rate or sensitivity (TPR) on the Y
axis and false positive rate (FPR) or 1–specificity on the X-axis
by varying different threshold ratios as the sweeping variable.
A random performance of a classifier would have a straight
line connecting (0, 0) to (1, 1). A ROC curve of the classifier
appearing in the lower right triangle suggest it performs worse
than random guessing and if the ROC curve appears in the upper
left, the classifier is believed to have a superior performance
classification (Huang and Ling, 2005; Castanho et al., 2007). All
ROC curves in Figure 6 for ANN, BNN, DBN, and sparse-DBN
classifier shows the curves plotted in the upper left or above
random guess classification. The result also shows that the ROC
curve for sparse-DBN classifier achieved the best upper left curve
compared to DBN, BNN, and ANN.

The areas under the curve of ROC (AUROC) were
also computed to evaluate quantitatively the classification
performance. AUROC represents the probability that the
classifier will rank a randomly chosen positive example higher
than a randomly chosen negative example, and it exhibits several
interesting properties compared to accuracy measurement
(Huang and Ling, 2005). The AUROC value lies between 0 and

TABLE 5 | Result of Statistical significance of Tukey–Kramer HSD in

pairwise comparison.

Pairwise Tukey HSD Tukey HSD Tukey HSD

comparison Q-statistic p-value inference

Sparse DBN vs. DBN 5.376 0.021 *p < 0.05

Sparse DBN vs. BNN 15.795 0.001 **p < 0.01

Sparse DBN vs. ANN 22.733 0.001 **p < 0.01

DBN vs. BNN 10.419 0.001 **p < 0.01

DBN vs. ANN 17.357 0.001 **p < 0.01

BNN vs. ANN 6.938 0.005 **p < 0.01

Bold values signify statistical significance of proposed method vs. other methods. *p <

0.05 statistically significant. **p < 0.01 statistically highly significant.

FIGURE 6 | ROC plot with AUC values for AR feature extractor and

ANN, BNN, DBN, and sparse-DBN classifiers of early stopping

(hold-out cross-validation) technique.

1 with a higher AUROC value indicating a better classification
performance. Figure 6 shows that the classifier using sparse-DBN
and AR feature extractor achieved the best performance result
with the highest AUROC of 0.9624 compared to original DBN
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classifier with AUROC of 0.9428, BNN classifier with AUROC
0.8725, and conventional ANN with AUROC of 0.8306.

Figure 7 shows the results displayed in the receiver operating
characteristic (ROC) curve analyses with AR feature extractor
andANN, BNN,DBN, and sparse-DBN classifiers of k-fold cross-
validation (3-folds) technique with three subplots for each fold.
Similar with the ROC plot from the hold-out cross validation
technique, all ROC curves in Figure 7 for ANN, BNN, DBN, and
sparse-DBN classifier shows the curves plotted in the upper left
or above random guess classification, and the ROC curve for the
sparse-DBN classifier again had best upper left curve compared
to DBN, BNN, and ANN. For the area under the curve analysis,
in first-fold (k = 1), sparse-DBN achieved the best AUROC
of 0.9643 compared to DBN classifier with AUROC of 0.9484,
BNN classifier with AUROC of 0.8879, and ANN classifier with
AUROC of 0.8419. For second-fold (k = 2), the sparse-DBN
achieved the best AUROC of 0.9673 compared to DBN classifier
with AUROC of 0.9520, BNN classifier with AUROC of 0.8968,
andANN classifier with AUROCof 0.8458. For third-fold (k= 3),
the sparse-DBN achieved the best AUROC of 0.9627 compared
to DBN classifier with AUROC of 0.9434, BNN classifier with
AUROC of 0.8858, and ANN classifier with AUROC of 0.8372.

Our previous work in Chai et al. (2016) showed a promising
result with the inclusion of an additional pre-processing
component using a recent independent component analysis
(ICA) algorithm, AR feature extractor and BNN classifier.
However, it was concluded that the performance of the
classification needed to be improved. The findings presented
in this paper, strongly suggests that the use of an AR feature
extractor provides superior results compared to PSD method,
and also extends further the study by improving the reliability
including the sensitivity, specificity, and accuracy using sparse-
DBN classifier in combination with the AR feature extractor, even
without the need to include the ICA pre-processing component.

TABLE 6 | Comparison of the training time and testing time for different

classifiers.

Classifiers Training time (s)

(Mean ± SD)

Testing time (s)

(Mean ± SD)

ANN 24.02 ± 1.04 0.0371 ± 0.0023

BNN 55.82 ± 2.77 0.0381 ± 0.0082

DBN 86.79 ± 0.24 0.0334 ± 0.0016

Sparse-DBN 169.23 ± 0.93 0.0385 ± 0.0043

FIGURE 7 | ROC plot with AUC values for AR feature extractor and ANN, BNN, DBN, and sparse-DBN classifiers of k-fold cross validation (k = 3)

technique. (A) ROC plot with AUC value for 1st fold. (B) ROC plot with AUC value for 2nd fold. (C) ROC plot with AUC value for 3rd fold.
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Using chosen classifier parameters, Table 6 shows the
comparison of computation times between the proposed
classifier (sparse-DBN) and other classifiers (ANN, BNN, and
DBN). The computational time is estimated using the MATLAB
tic/toc function, where the tic function was called before the
program and the toc function afterward on the computer (Intel
Core i5−4570 processor 3.20 GHz, 8-GB RAM). The result shows
that for the training time, the sparse-DBN required 169.23 ±

0.93 s which was slower compared to other classifiers (86.79 ±

0.24 s for DBN, 55.82 ± 2.77 s for BNN and 24.02 ± 1.04 for
ANN). In terms of the testing (classification) time, all classifiers
required the same amount of time of 0.03 s or less than a
second to complete the task. Although the proposed sparse-
DBN required more time to complete the training process, the
classifier was able to perform as fast as other classifiers during
the testing process. The reason that the testing times of the
classifier are comparable to each other was because, after the
training process, the final weights were used as constants and
in the classification process all classifiers used the same ANN
feed-forward classification routine. For the operation of real-
time classification, there is no necessity to perform the classifier
training again. The classifier just needs to compute the feed
forward ANN routine with the saved weight parameters. Thus,
sparse-DBN classification time in the runtime mode (execution)
is fast, taking less than a second.

The potential future direction of this research includes:
(i) real-time driver fatigue with the active transfer learning
approach for new user adaptation (Wu et al., 2014; Marathe
et al., 2016; Wu, 2016), (ii) improvement of the classification
result through an intelligent fusion algorithm, and (iii) testing
the efficacy of hybrid driver fatigue detection systems using a
combination of physiological measurement strategies known to
be related to fatigue status, such as brain signal measurement
using electroencephalography (EEG), eye movement and
facial tracking systems using camera and electrooculography
(EOG), and heart rate variability measurement using
electrocardiography (ECG).

CONCLUSIONS

In this paper, the EEG-based classification of fatigue vs. alert
states during a simulated driving task was applied with 43
participants. The AR was used for feature extractor and the
sparse-DBN was used as a classifier. For comparison, the PSD
feature extractor and ANN, BNN, original DBN were included.

Using the early stopping (hold-out cross validation)
evaluation, the results showed that for a PSD feature extractor,
the sparse-DBN classifier achieved a superior classification result
(sensitivity at 87.9%, specificity at 81.7%, and accuracy at 84.8%)
compared to the DBN classifier (sensitivity at 83.5%, specificity
at 79.6%, and accuracy at 81.6%), BNN classifier (sensitivity at
77.2%, specificity at 75.6%, and accuracy at 76.4%), and ANN
classifier (sensitivity at 74.8%, specificity at 69.9%, and accuracy
at 72.3%). Further, using an AR feature extractor and the
sparse-DBN achieves a significantly superior classification result

(sensitivity at 93.9%, specificity at 92.3%, and accuracy at 93.1%
with AUROC at 0.96) compared to DBN classifier (sensitivity at
90.8%, specificity at 90.4%, and accuracy at 90.6% with AUROC
at 0.94), BNN classifier (sensitivity at 84.3%, specificity at 83%,
and accuracy at 83.6% with AUROC at 0.87) and ANN classifier
(sensitivity at 80.8%, specificity at 77.8%, and accuracy at 79.3%
with AUROC at 0.83).

Overall the findings strongly suggest that a combination of
the AR feature extractor and sparse-DBN provides a superior
performance of fatigue classification, especially in terms of overall
sensitivity, specificity and accuracy for classifying the fatigue vs.
alert states. The k-fold cross-validation (k = 3) also validated
that the sparse-DBN with the AR features extractor is the best
algorithm compared to the other classifiers (ANN, BNN, and
DBN), confirmed by a significance of a p < 0.05.

It is hoped these results provide a foundation for the
development of real-time sensitive fatigue countermeasure
algorithms that can be applied in on-road settings where fatigue
is a major contributor to traffic injury and mortality (Craig et al.,
2006; Wijesuriya et al., 2007). The challenge for this type of
technology to be implemented will involve valid assessment of
EEG and fatigue based on classification strategies discussed in
this paper, while using an optimal number of EEG channels (i.e.,
the minimum number that will result in valid EEG signals from
relevant cortical sites) that can be easily applied. These remain the
challenges for detecting fatigue using brain signal classification.
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