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Background: The ventral tegmental area (VTA), containingmesolimbic andmesocortical

dopaminergic neurons, is implicated in processes involving reward, addiction,

reinforcement, and learning, which are associated with a variety of neuropsychiatric

disorders. Electrical stimulation of the VTA or the medial forebrain bundle and its

projection target the nucleus accumbens (NAc) is reported to improve depressive

symptoms in patients affected by severe, treatment-resistant major depressive disorder

(MDD) and depressive-like symptoms in animal models of depression. Here we sought to

determine the neuromodulatory effects of VTA deep brain stimulation (DBS) in a normal

large animal model (swine) by combining neurochemical measurements with functional

magnetic resonance imaging (fMRI).

Methods: Animals (n= 8 swine) were implantedwith a unilateral DBS electrode targeting

the VTA. During stimulation (130 Hz frequency, 0.25 ms pulse width, and 3 V amplitude),

fMRI was performed. Following fMRI, fast-scan cyclic voltammetry in combination with

carbon fiber microelectrodes was performed to quantify VTA-DBS-evoked dopamine

release in the ipsilateral NAc. In a subset of swine, the blood oxygen level-dependent

(BOLD) percent change evoked by stimulation was performed at increasing voltages

(1, 2, and 3 V).

Results: A significant increase in VTA-DBS-evoked BOLD signal was found

in the following regions: the ipsilateral dorsolateral prefrontal cortex, anterior

and posterior cingulate, insula, premotor cortex, primary somatosensory

cortex, and striatum. A decrease in the BOLD signal was also observed in

the contralateral parahippocampal cortex, dorsolateral and anterior prefrontal

cortex, insula, inferior temporal gyrus, and primary somatosensory cortex

(Bonferroni-corrected < 0.001). During neurochemical measurements, stimulation

time-locked changes in dopamine release were recorded in the NAc, confirming

that mesolimbic dopaminergic neurons were stimulated by DBS. In the parametric

study, BOLD signal changes were positively correlated with stimulation amplitude.
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Conclusions: In this study, the modulation of the neural circuitry associated with

VTA-DBS was characterized in a large animal. Our findings suggest that VTA-DBS

could affect the activity of neural systems and brain regions implicated in reward,

mood regulation, and in the pathophysiology of MDD. In addition, we showed that a

combination of fMRI and electrochemically-based neurochemical detection platform is

an effective investigative tool for elucidating the circuitry involved in VTA-DBS.

Keywords: ventral tegmental area, deep brain stimulation, depression, functional magnetic resonance, fast-scan

cyclic voltammetry

INTRODUCTION

Recently, deep brain stimulation (DBS) has been performed
in several clinical trials to address treatment-resistant major
depressive disorder (MDD) (Mayberg et al., 2005; Bewernick
et al., 2012; Lozano et al., 2012; Schlaepfer et al., 2013; Dougherty
et al., 2015). The evaluation of its efficacy and safety for the
treatment of MDD is still in its first stages of development.
However, there are several brain regions that have shown
promising results as treatment targets of MDD with DBS
(Anderson et al., 2012). The targeted brain regions include the
subcallosal cingulate area (Mayberg et al., 2005; Lozano et al.,
2012), the nucleus accumbens (NAc) (Bewernick et al., 2012), the
ventral capsule/ventral striatum (that includes the NAc, olfactory
tubercle, and islands of Calleja) (Dougherty et al., 2015), and
the superolateral medial forebrain bundle (slMFB) (Schlaepfer
et al., 2013). These structures, together with the ascending
ventral tegmental area (VTA) mesocortical and mesolimbic
pathways, play a crucial role in the regulation of mood, reward,
and incentive-motivation processes that may be impaired in
depressed individuals (Russo and Nestler, 2013).

The VTA, a central structure of the reward network, has
been of interest in clinical research for MDD (Gazit et al., 2015;
Furlanetti et al., 2016). This region contains the dopaminergic
neurons of the mesocortical and mesolimbic circuitry, which
project via the medial forebrain bundle (MFB) to the medial
prefrontal cortex (mPFC), the NAc, the hippocampus, and the
amygdala (Russo and Nestler, 2013). Such connections highlight
the importance of the VTA in modulating mood and incentive-
motivational behavior, and can thus, provide the theoretical
basis for the stimulation of the VTA/MFB in rodent models of
depression (Friedman et al., 2009; Bregman et al., 2015; Gazit
et al., 2015; Furlanetti et al., 2016) and the slMFB for the clinical
trials involving treatment-resistant MDD patients (Schlaepfer
et al., 2013).

However, the VTA in its complex functional connectivity with
many subcortical (striatum, thalamus, hippocampus, amygdala)
and cortical structures (anterior cingulate, middle and inferior
frontal gyri, parietal associative cortex, and insula) (Hadley
et al., 2014), presents a need for a thorough evaluation of
the stimulation effect on its functional circuitry. Dopamine-
containing cells in the VTA project subcortically to the NAc,
the amygdala, the hippocampus, the bed nucleus of the stria
terminalis, the lateral septal area, the olfactory tubercle, and the
lateral hypothalamus (collectively, these connections comprise
the entire mesolimbic dopamine system), whereas separate

dopamine-containing cells in the VTA project to cortical
structures such as the prefrontal and insular cortex, and to
a much lesser degree motor (M1) and related motor cortices
(mesocortical dopamine system) (Berger et al., 1985; Oades
and Halliday, 1987; Björklund and Dunnett, 2007; Friedman
et al., 2009; Dichter et al., 2012; Russo and Nestler, 2013).
Additional ascending dopaminergic projections from the VTA
include the thalamus, hypothalamus, and the preoptic area
(mesodiencephalic pathway) and the superior colliculus, reticular
formation, periaqueductal gray, locus coeruleus, and cerebellum
(mesorhombencephalic pathway) (Oades and Halliday, 1987). It
is worth noting that many of these connections are reciprocal, in
that that they also receive inputs from the same regions, as well
as bilateral projections (Oades and Halliday, 1987).

Our group has recently used functional magnetic resonance
imaging (fMRI) in a swine model to investigate the functional
circuitry effect of DBS in the nucleus accumbens (Knight
et al., 2013), another brain region targeted for the treatment
of MDD. In the present study, we identified the functional
connectivity by stimulating VTA and its surroundingmesolimbic
and mesocortical structures: (1) We first combined DBS-fMRI
and fast scan cyclic voltammetry (FSCV) in a within-subject
large animal model (swine) study to confirm the activation
of the mesocortical and mesolimbic dopaminergic pathways
by measuring DBS-induced dopamine release in the NAc and
investigated the functional circuitry effects of DBS in the VTA
(VTA-DBS) in using fMRI [Repetition Time (TR): 3 s]; (2)
Subsequently, in a second subject group, we performed higher-
temporal resolution (TR 1.5 s) fMRI scans in a within-subject and
within-scan study to confirm the sensitivity of the fMRI blood
oxygen level-dependent (BOLD) response to several stimulation
voltages.

Activating the VTA circuitry by DBS is a challenging task,
and to date, there are few studies elucidating its functional
connectivity in a large animal model. Our study provides an
approach to identify the functional role of VTA-DBS and to
observe how the VTA via the mesocortical and mesolimbic
pathways modulate subcortical and cortical circuitry using fMRI
techniques.

METHODS

Subjects
All study procedures were performed in accordance with the
National Institutes of Health Guidelines for Animal Research
(Guide for the Care and Use of Laboratory Animals) and
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approved by Mayo Clinic Institutional Animal Care and Use
Committee. The subject group consisted of 8 normal healthy
domestic swine (30± 3 kg). Animals were housed individually in
a controlled environment (humidity 45% and temperature 21◦C)
and were fed once a day, with ad libitum access to water. The
detailed study design and groups are described in Figure 1A.

DBS Surgery
DBS electrode targeting and implantation was performed with
anMR image-guided Leksell stereotactic targeting system (Elekta
Inc., Stockholm, Sweden) modified for large animals (Min
et al., 2012; Kim et al., 2013). A 3 Tesla MR scanner (General
Electric Healthcare, Wakasha, WI; Signa HDx, 16x software)
with a custom four-channel transmit-receive radiofrequency
coil was used for acquiring MR images. 3D magnetization
prepared rapid acquisition gradient echo (MPRAGE) images
were used for MR image-based targeting with swine brain
atlas (Félix et al., 1999; Saikali et al., 2010) and COMPASS
navigational software (Stereotactic Medical Systems, Rochester,
MN), modified for large animals, to determine the Leksell
coordinates for stimulation target (Min et al., 2012).

Sedation was maintained with 1.5–3% isoflurane during
surgery and 1.5–1.75% isoflurane during the fMRI and NAc
dopamine recording experiments. Vital signs were continuously
monitored throughout all the procedures. Upon sedation,
subjects were implanted with a quadripolar (contacts labeled 0,

1, 2, and 3) DBS electrode (Model 3389, Medtronic, Inc.). The
electrode (contact 0) position targeted to the VTA are shown in
Figure 1C, based on the initial subject specific MR image and
targeting coordinates (Min et al., 2012).

Fast-Scan Cyclic Voltammetry
As described byMin et al. (2016), FSCV recordings were obtained
using a 7 µm diameter, ∼100 µm length carbon fiber sensing
electrode. The sensing electrode was targeted toward NAc based
on subject specific MR brain images. Dopamine signals were
recorded by either applying a triangular waveform (−0.4, 1.5,
−0.4 V) or an N-shaped waveform (−0.4, 1.0, −0.4, −1.4 V).
Dopaminergic signals were recorded across the three subjects in
Group 1. (As a preliminary setup, one animal in Group 1was used
to initially conduct only the DBS-fMRI part and not followed by
a FSVC study). Changes in dopamine oxidation current signal at
+0.6 V in the NAc in response to VTA-DBS (130 Hz frequency,
0.25 ms pulse width, 3 V amplitude, and 2 s stimulation) was
normalized to the average background current for each subject
(Min et al., 2016). The dopamine sensing area in NAc wasmarked
in Figure 1D based on the initial subject specific MR image and
targeting coordinates (Min et al., 2012).

Functional MRI
Stimulation during fMRI acquisition (gradient echo, echo-planar
imaging pulse sequence) consisted of two distinct protocols as

FIGURE 1 | (A) A total of eight subjects underwent DBS surgery and had an electrode placed in the ventral tegmental area (VTA). Group 1 subjects (n = 4) underwent

a standard stimulation protocol during fMRI, followed by subsequent electrochemistry (n = 3). A subset of subjects (Group 2, n = 4) underwent a parametric study

following DBS surgery to evaluate the effects of varying amplitudes (1, 2, 3 V). (B) Group 2 subjects underwent a stimulation block design of 1 min rest, followed by a

6 s, 3 V stimulation, repeated 5 times. Group 2 design included a 1 min rest, followed by a 6 s, 1, 2, or 3 V stimulation. (C) Location of VTA stimulating electrode

(contact 0). (D) Location of electrochemical recording electrode in the nucleus accumbens of each subject. Pig brain atlas used from Félix et al. (1999).
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shown in Figure 1B (group one: 130 Hz frequency, 0.25 ms
pulse width, and 3 V amplitude; group two: 130 Hz, 0.25 ms,
and increasing amplitudes of 1, 2, and 3 V). The scanning
consisted of a block design to detect changes in BOLD shown
in Figure 1B. Data processing and analyses were completed
as previously described (Min et al., 2012). Briefly, fMRI data
was converted to BrainVoyager format (Brain Innovation,
BrainVoyager QX, Netherlands) and a standard sequence of
pre-processing steps was applied to each subject (slice time
correction, motion correction, special smoothing, and temporal
filtering). Functional activation maps (t-maps) were generated
using a double-gamma hemodynamic response function, each
representing the block design for the corresponding voxel.

Each voxel was then, registered into swine brain atlas space
and group analyses were computed using a fixed-effects analysis
to concatenate the data from all the patients. We integrated
the multiple-subject data into a single general linear model
analysis. To correct for false positive voxels, we implemented
multiple comparisons and only included voxels with a Bonferroni
corrected p< 0.001 as regions of interest with significant changes
in BOLD (Min et al., 2012).

To obtain a quantitative estimate of the correlation between
stimulation voltage and the magnitude of regional hemodynamic
response of subjects in group 2, we conducted a linear
regression between the voltage intensity and the BOLD %
change. Linear regression was applied to the peak values of
BOLD percent change across three voltage levels (1, 2, and
3 V). The slopes, intercepts, and R2 values of the linear
model were obtained from the eight regions of interests
(ROIs) in each individual subjects. These values were averaged
and tested for statistical significance (one sample t-test). We
calculated the two-factor ANOVA (subject × voltage) and
performed multiple comparisons to identify how each factor
could help explain the differences we observed in BOLD
responses upon different stimulation voltages and subject-
dependent variability.

RESULTS

Confirmation of NAc and VTA Connectivity
The VTA contains dopaminergic projections that target the
NAc via the MFB, leading to a dopaminergic electrochemical
signature in the NAc during VTA-DBS. Figure 2A is a
representative pseudo-color plot, showing the electrochemical
signature of dopamine, oxidation (+0.6 V) and reduction
(−0.2 V) following VTA-DBS. In addition, Figure 2B shows
the time course and magnitude of changes in normalized and
averaged dopamine oxidation currents at +0.6 V evoked by
VTA-DBS (n = 3). Individual dopamine results included in
Supplementary Figure 1.

fMRI BOLD Signaling during DBS in the
VTA
The fMRI BOLD signal changes induced by the stimulation of
VTA, demonstrated in Figure 3, were significant across multiple
brain structures of the mesolimbic and mesocortical pathways.
During VTA-DBS, we observed significant BOLD signal changes

FIGURE 2 | (A) Representative pseudo-color plot of dopamine oxidation

(0.6 V) and reduction (−0.2 V) following VTA-DBS. (B) The average

(± standard error) current by time trace of a single representative dopamine

response, at the dopamine oxidation voltage for the 3 subjects who underwent

electrochemical evaluation (normalized to the average background current).

in both the ipsilateral and contralateral hemispheres (Bonferroni
correction < 0.001). This included the striatum, associative
cortex (anterior prefrontal cortex), limbic structures (insula,
dorsolateral prefrontal cortex, prepyriform area, dorsal anterior
and posterior cingulate cortex, NAc, hippocampus, inferior
temporal gyrus, parahippocampal cortex, and perirhinal cortex),
and the sensorimotor networks (premotor, primary motor and
primary somatosensory cortices, and cerebellum).

We found that the most significant BOLD changes were
located in the premotor (z = 16.96), primary motor cortices
(z = 15.62), dorsal posterior cingulate cortex (z = 15.60), and
dorsolateral prefrontal cortex (z = 14.93) on the ipsilateral
side of stimulation, as shown in Table 1. Bilateral changes in
BOLD signal were located in the associative, insular, limbic,
and sensory-motor regions. In the anterior prefrontal cortex,
insula and anterior cingulate cortex, we observed an ipsilateral
increase (z = 14.93, z = 14.26, and z = 13.86, respectively),
and a contralateral decrease (z = −8.91 and z = −9.11,
respectively) in BOLD signal. Significant changes in BOLD
signal were observed in the limbic structures, including the
dorsolateral prefrontal cortex (ipsilateral: z= 14.93; contralateral:
z = −7.47) and prepyriform area (ipsilateral: z = −9.26;
contralateral: z = −10.84), and in the primary somatosensory
cortex (ipsilateral: z = 14.24; contralateral: z = −8.72).
Additionally, ipsilateral increases in BOLD signal were mainly
located in the limbic regions (dorsal anterior cortex: z =

13.86; dorsal posterior cortex: z = 15.60), NAc (z = 7.97),
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FIGURE 3 | Areas of activation with unilateral ventral tegmental area (VTA) stimulation (3 V, 250 µs, 130 Hz, n = 4). Areas of significant BOLD change in the

(A) Coronal Plane, (B) Axial Plane, and (C) Sagittal Plan included cortical structures [anterior prefrontal cortex APFC, dorsolateral prefrontal cortex DLPFC, primary

motor cortex PIMC, dorsal anterior cingulate cortex DACC, premotor cortex PEMC, and primary somatosensory cortex PSSC, insular cortex IC, and

parahippocampal cortex PHC (contralateral)], subcortical structures [caudate CD, fornix Fnx, inferior temporal gyrus ITG (contralateral), nucleus accumbens NAc,

putamen PT, prepyriform area PIA, olfactory bulb OB and cerebellar lobule VI CLVI (contralateral). All areas of activation deemed significant were Bonferroni-corrected,

p < 0.001]. 3D pig brain atlas template used from Saikali et al. (2010).

caudate (z = 6.31), and putamen (z = 11.47). In contrast, the
perirhinal cortex showed negative BOLD change (z = −6.73).
To check individual variability, probabilistic map included in
Supplementary Figure 2.

The Effect of Varying Simulation Voltage on
BOLD Signaling during DBS
Our results also revealed a positive relationship between
stimulation voltage and fMRI BOLD signal. We applied three
different stimulation voltage levels (1, 2, and 3 V) to test the effect
on the differential activation patterns in several regions of the
brain.

We found a positive trend in the BOLD signal changes as the
stimulation voltage increased (Table 2). The linear model with
group averaged slopes and intercepts were plotted in Figure 4

for each of eight ROIs separately. The slopes of linear model
measured in the caudate (T = 9.8, p = 0.002), dorsolateral
prefrontal cortex (T = 3.9, p = 0.03), nucleus accumbens (T
= 3.6, p = 0.04), primary motor cortex (T = 4.6, p = 0.02),
and primary somatosensory cortex (T = 4.1, p = 0.03) were

significant with the statistical threshold at p < 0.05. There was
no statistical significant of slope in other regions, but showed
positive trends.

Two-factor ANOVA (subject× voltage) indicated a significant
difference (p < 0.05) in BOLD response when induced
by three different voltage levels in eight ROIs. We found
the significant effect of voltage levels in the ROIs (F >

5.2, p < 0.05), except the nucleus accumbens, premotor
cortex, and putamen. In multiple comparisons of post-hoc
analysis, the sensorimotor cortices (primary motor cortex, and
primary somatosensory cortex) showed significant differences
(p < 0.05) in BOLD response between 1 and 3 V, while
the caudate showed differences between the 1 and 2 V,
and between 1 and 3 V stimulation. We also observed
considerable inter-subject variability in BOLD response across
the three voltage levels. In all the ROIs except the putamen,
significant BOLD response differences between subjects were
observed (F > 4.7, p < 0.05). The regression results indicated
that the significant inter-subject variability was in part due
to the difference in the intercept (for details please see
Supplementary Table 1).
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TABLE 1 | Brain areas of significant BOLD response across Group 1 subjects.

Networks Ipsilateral Size (mm3) Z-score Contralateral Size (mm3) Z-score

Associative Anterior prefrontal cortex (I) 1,050 13.83 Anterior prefrontal cortex (I) 31 −8.91

Dorsolateral prefrontal cortex (I) 771 14.93 Dorsolateral prefrontal cortex (I) 44 −9.26

Limbic Prepyriform area (I) 54 −7.47 Prepyriform area (I) 64 −10.85

Insular cortex 119 14.26 Insular cortex 49 −9.11

Dorsal anterior cingulate cortex (I) 442 13.86

Dorsal posterior cingulate cortex (I) 167 15.60

Nucleus Accumbens (I) 94 7.97

Perirhinal cortex (I) 3 −6.73

Fornix and hippocampus (C) 33 7.69

Inferior temporal gyrus (C) 72 −9.11

Parahippocampal cortex (C) 44 −9.72

Sensory/motor Primary somatosensory cortex (I) 900 14.24 Primary somatosensory cortex (I) 142 −8.72

Premotor cortex (I) 1,041 16.96

Primary motor cortex (I) 230 15.62

Cerebellar lobule V (C) 42 7.58

Cerebellar lobule VI (C) 59 7.62

Cerebellar lobule VIIB (C) 29 7.6

Basal ganglia Caudate (I) 2 6.31

Putamen (I) 169 11.47

Associative network activation included the anterior prefrontal cortex on both the ipsilateral and contralateral side. Limbic regions of significant BOLD change included dorsolateral

prefrontal cortex, prepyriform area, insular cortex (bilateral), dorsal anterior cingulate cortex, dorsal posterior cingulate cortex, nucleus accumbens, perirhinal cortex (ipsilateral), fornix

and hippocampus, inferior temporal gyrus, parahippocampal cortex (contralateral). Sensory/motor regions included primary somatosensory cortex (bilateral), premotor and primary

motor cortex (ipsilateral), and cerebellar lobules V, VI, VIIB (contralateral). Basal ganglia regions included ipsilateral caudate and putamen.

TABLE 2 | Summary table of linear regression model between voltage and

BOLD change.

Regions Slope Intercept p-value

APFC 0.33 −0.16 0.11

CD 0.50 0.80 0.01**

DLPFC 0.40 0.07 0.03*

NAc 0.39 0.50 0.04*

PIMC 0.38 −0.19 0.02*

PEMC 0.30 0.00 0.11

PSSC 0.23 0.12 0.03*

PT 0.51 0.55 0.28

The slopes and intercepts of four subjects were averaged for each of the eight region-

of-interests (ROIs). The test of significance was conducted by one-sample t-test on the

slope of the linear model. (*P < 0.05, **P < 0.01).

DISCUSSION

Functional Connectivity of the VTA
Due to the complexity of the VTA circuitry and its extensive
connections to a variety of cortical and subcortical brain regions,
the full neuromodulatory effect of stimulating VTA or other
nodes within its circuitry is still poorly understood. To better
understand the global connectivity and the pattern of NAc
dopamine release induced by electrical stimulation of the VTA
and surrounding structures, we combined FSCV and fMRI

techniques and applied them to a large animal (swine) model
of VTA-DBS to study the high temporal resolution fMRI BOLD
responses and its links the stimulation voltage sensitivity.

Our fMRI results suggest that VTA-DBS directly modulates
the activity of a subset of regions anatomically and functionally
connected to the VTA. Upon VTA stimulation, we observed
BOLD signal changes in the bilateral dorsolateral prefrontal
cortex and the ipsilateral posterior cingulate. These cortical
regions, adjacent to the parahippocampal gyrus, inferior
temporal cortex, and insula, are involved in working memory,
arousal and awareness, and the regulation of mood, emotion, and
reward (Pochon et al., 2002; Leech and Sharp, 2014). It is in these
regions that depressive patients show alterations in neural activity
(Drevets et al., 2008).

The present data also show BOLD changes in several of
the mesostriatal components, such as the caudate, putamen,
and fornix. Interestingly, as shown in Table 1, the majority of
negative BOLD change was localized to the contralateral side
of the stimulation, including the dorsolateral prefrontal and
insular cortex, as well as the anterior prefrontal and primary
somatosensory cortex. Additionally, our data demonstrate
that a few areas, not traditionally associated with the VTA
circuit, were activated during stimulation. These areas include
the parahippocampal cortex, inferior temporal gyrus, and
prepyriform area.

Our current understanding for how DBS affects the structures
surrounding the VTA, such as the substantia nigra (SN), located
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FIGURE 4 | BOLD% change time course at 1, 2, and 3 V stimulation amplitude (red, purple, and blue, respectively) at each of 8 regions of interest (ROI):

anterior prefrontal cortex (APFC), primary motor cortex (PIMC), dorsolateral prefrontal cortex (DLPFC), premotor cortex (PEMC), nucleus accumbens

(NAc), primary somatosensory cortex (PSSC), caudate (Cd), and putamen (PT). Each amplitude is presented as the average (± standard error) across the 3

subjects in each region of interest (ROI). Insert: The inset graph demonstrates a linear regression of the peak value at each of the three amplitudes, with significant

differences denoted with a star (*). The APFC, DLPFC, PEMC, NAc, and Cd all had significant differences in BOLD percent change between 1 and 3 V amplitudes.

APFC also showed a significant difference between the 2 and 3 V amplitudes. PIMC, PSSC, and PT showed no significance between any of the three amplitudes.

immediately lateral to the VTA, is still very limited. Like the
VTA, the SN also projects to the motor and associative striatum
(caudate and putamen) (Joel and Weiner, 1997), and to the
subthalamic nucleus (Parent and Hazrati, 1995). Both structures
also contain projections to the cingulate and frontal cortex
(Fallon and Moore, 1978; Pioli et al., 2008). Therefore, this
overlap between the SN and VTA projections presents a potential
implication to our study. Although, our goal was to specifically
target the VTA, it is possible that, depending on the electrode
placement, the effect of the stimulation could have spread to
the SN and dopamine-containing cells therein comprising the
dopaminergic nigrostriatal pathway. Since both VTA and SN

fibers run through the MFB, it is necessary to confirm whether
the SN stimulation was the result of an epiphenomenon of VTA
stimulation before we assess the clinical efficacy and its short- or
long-term effects (e.g., hyperdopaminergic stimulation).

VTA Network Implicated in MDD
The central role of the VTA in the limbic and reward
network is of relevance in MDD condition, because VTA
dopamine-containing cells project to key areas including the
cingulate cortex, medial prefrontal cortex, NAc, hippocampus,
amygdala, olfactory tubercle, and entorhinal and pyriform
cortices (Björklund and Dunnett, 2007; Friedman et al., 2009;
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Russo and Nestler, 2013). Human fMRI studies have found
that during a reward task, the VTA and NAc BOLD responses
were positively correlated, suggesting a functional connection
between the two areas (D’Ardenne et al., 2008). Additional fMRI
studies further confirmed that the reward-processing regions, like
the striatum (caudate and putamen), medial prefrontal cortex,
pregenual and subgenual anterior cingulate, and medial frontal
gyrus, were hypoactive in MDD patients (Dichter et al., 2012).
The VTA projections to the NAc continue to be of importance
in MDD research because of their role in modulating the effect
of excitatory glutamatergic inputs that originate from the limbic
(e.g., amygdala and ventral subiculum of the hippocampus) and
prefrontal cortex (Dichter et al., 2012).

The areas strictly implicated in MDD include the prefrontal
cortex (medial, dorsolateral, orbital, and ventromedial frontal
polar), cingulate (dorsal and subgenual anterior, and dorsal
posterior), temporopolar cortex, premotor cortex, ventral
striatum (including the NAc), amygdala, parahippocampus, and
medial thalamus (Drevets and Raichle, 1992; Mayberg et al.,
2000, 2005; Neumeister et al., 2004; Drevets et al., 2008; Hasler
et al., 2008; Anderson et al., 2012; Singh and Gotlib, 2014).
Different studies report contrasting views on the patterns of
hypo- or hyperactivity in these regions in MDD patients.
Although, the reason for this phenomenon is unclear, it has
been suggested that different compensatory mechanisms may be
present in the depressive state in different patients (Mayberg,
2003). Additionally, the pattern of activation in the dorsal and
subgenual anterior cingulate and amygdala was found to be
a predictor of response to psychotherapy and pharmacological
treatment (Singh and Gotlib, 2014).

MDD patients who were responsive to pharmacological
treatments revealed decreased activity in the cingulate
(subgenual, anterior, and posterior), prefrontal (medial and
orbital), parietal (precuneus, inferior parietal lobule), and
temporal cortices, amygdala, hippocampus, parahippocampus,
pallidum, insula, and habenula; and increases in the prefrontal
(dorsolateral, dorsomedial, ventrolateral) cortex, anterior and
posterior cingulate, insula, and parietal cortex (Mayberg et al.,
2000; Kennedy et al., 2001; Singh and Gotlib, 2014). Those who
were responsive to interpersonal psychotherapy and cognitive
behavioral therapy were associated with modulatory activity
in the prefrontal cortex, hippocampus, and anterior cingulate
(Brody et al., 2001; Goldapple et al., 2004). So far, the effects of
treatment over subgenual and posterior cingulate activity have
been the most relevant in connection with clinical improvement
(Mayberg, 2003).

As a follow-up study, researchers applied stimulation to the
subgenual cingulate, a known target to the VTA, in patients with
treatment-resistant MDD (Mayberg et al., 2005). Initially, the
researchers tested the efficacy of this treatment with objective
markers and next performed positron-emission tomography
(PET) in the treated patients pre- and postoperatively (Mayberg
et al., 2005). In the responders, the changes in activation pattern
revealed similarities with those associated with pharmacological
and behavioral therapies. Metabolism was reduced in the orbital
and medial frontal cortices, hypothalamus, and insula, and
increased in the dorsolateral prefrontal, premotor, and parietal
cortices, and in the dorsal anterior and posterior cingulate

(Mayberg et al., 2005; Lozano et al., 2008). PET data collected
in patients undergoing NAc-DBS for MDD observed activity
changes compared to the preoperative activity levels in many
of these areas (Bewernick et al., 2010). The induction of the
NAc with DBS resulted in a decreased activity in the orbital
prefrontal cortex, subgenual and posterior cingulate, thalamus,
and caudate; increased activity in the precentral gyrus; and
decreased amygdala metabolism only in responders (Bewernick
et al., 2010).

Sensorimotor cortex activity was also affected by VTA-DBS.
The VTA output to the bilateral primary motor cortex is
important for motor skill training and, therefore, is currently an
area of interest in motor rehabilitative medicine (Kunori et al.,
2014). As noted above, neuromodulation of the sensorimotor
network was likely mediated by current spread to the SN, which
entails a higher level of connectivity with the sensorimotor
network (Kwon and Jang, 2014). While premotor cortex activity
changes have been associated with both MDD and with
its response to treatment, we cannot conclude whether the
BOLD signal change we observed in the primary motor cortex
specifically plays a role in VTA-DBS for MDD or is a result of a
epiphenomenon of the connectivity between these regions.

Dopaminergic and Non-dopaminergic
Network Involved with VTA/MFB DBS
While we aimed to confirm dopamine release induced in the
NAc by VTA-DBS, other neurotransmitters are known to be
involved in the complex VTA circuitry. Both dopamine and
serotonin precursors (Nakahara et al., 2000) as well as dopamine
itself (Hernandez et al., 2006) are present in the NAc, and
their concentrations change during intracranial self-stimulation
experiments, in which the MFB is stimulated to evoke hedonic
effects. Additionally, VTA-DBS evoked BOLD response appears
to be mainly glutamatergic dependent (Helbing et al., 2016),
suggesting that the effects of VTA-DBS are mediated by a
combination of dopaminergic and non-dopaminergic networks.
Interestingly, in this study (Helbing et al., 2016) dopamine
played a synergistic role with glutamate in eliciting BOLD signal
changes and was especially relevant in the setting of continuous
stimulation. This is discordant with evidence that intermittent
but not continuous stimulation works by dopaminergic activity
modulation (Bregman et al., 2015). MFB self-stimulation in
rodents is known to induce dopamine increase in the NAc
(Nakahara et al., 1992). Self-stimulation consists in intermittent
stimulation and is a paradigm more representative of reward
and addiction than of anti-depressive activity, vs. continuous
stimulation, which mimics the therapeutic model represented
by DBS (Bregman et al., 2015). In a recent study in rodents,
the antidepressant effect of continuous MFB-DBS in vivo at
stimulation parameters clinically relevant was mediated neither
by dopamine nor by serotonin release in the NAc (Bregman et al.,
2015). It is therefore possible that the dopamine signal observed
in our study would not be recorded with continuous stimulation.

Adverse Effects of Differential
Neuromodulation of VTA
Lastly, we evaluated the differential neuromodulation effects
induced by the increase of stimulation voltages during the

Frontiers in Neuroscience | www.frontiersin.org 8 March 2017 | Volume 11 | Article 104

http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Neuroscience/archive


Settell et al. VTA-DBS Functional Circuitry Effect

delivery of VTA-DBS. A recent study investigating VTA-DBS
in patients with cluster headaches reported adverse effects at
high voltages (Akram et al., 2016). At higher voltages, patients
experienced tachycardia, raised blood pressure, vertical diplopia
and feelings of panic. VTA-DBS appeared to differentially
modulate the global neural activity in presence of high
stimulation voltage, resulting in the adverse effects. However,
despite these adverse effects, changes in stimulation voltage
continue to be the prominent approach to deliver the therapeutic
effect of DBS in PD patients (Moro et al., 2002).

These symptoms bring to surface the importance of
establishing an objective marker to assess the differential
neuromodulatory effects of stimulation at the varying voltages.
There seems to be a ceiling effect to the therapeutic benefits of
DBS, where beyond a certain point, the detrimental side effects
appear (Gibson et al., 2016a). Adverse effects observed in clinical
trials, including hypomania, mania, and disinhibition (Malone
et al., 2009; Bewernick et al., 2010; Dougherty et al., 2015) are
comparable to the effects elicited by drugs of abuse in VTA-DBS
animal studies (Cleary et al., 2015).

FSCV and fMRI Application for Future
VTA-DBS
Our dual approach, using FSCV and fMRI, may be an effective
way to observe objectively brain network changes evoked by
DBS. Increases in the stimulation voltages have been associated
with increased BOLD percent change and larger cluster sizes,
suggesting that a larger electrical spread is able to recruit more
cell bodies and/or axonal fibers (McIntyre and Hahn, 2010;
Knight et al., 2013; Paek et al., 2015). These findings, along
with our results, demonstrate data showing that fMRI could
be used as an indicator for the global effect of VTA-DBS on
mesolimbic and mesocortical circuitry. It presents a potential
way of addressing the risks associated with stimulation of the
reward circuitry for those individuals considered for future DBS
procedures. It is evident that the connectivity of the VTA circuit is
complex andmay provide us with an approach to address current
MDD symptomatology through widespread neuromodulation.
However, with such structures with wide influences within the
brain, it would be crucial to approach with scientific awareness of
the risks associated with manipulating these structures.

Limitations
The small sample size (n = 4 per group) limits our statistical
power to conclude any generalizations from our results. To
control for DBS targeting error and variability, we performed
precision MR imaged guided stereotactic surgery, identical to
the human DBS surgery. We have previously shown, despite the
small sample size, consistent results with high statistical power
(Paek et al., 2015; Gibson et al., 2016b; Ross et al., 2016). In our
current study, we also applied Bonferroni correction to exclude
false positive results.

We recognize that the anesthetized and non-disease state
of the animal prose limitations in our interpretation of our
data. We have previously compared results in a small number
of Parkinson’s patients in the awake state (n = 5) and the

anesthetized state (n = 5; Knight et al., 2015). We have
also reported a study involving patients with essential tremor,
confirming the functional correlates of the therapeutic and
adverse effects evoked by thalamic stimulation using fMRI
(Gibson et al., 2016a). The DBS-fMRI data was collected during
the anesthetized state, and then compared with data from the
awake-clinical state in the tremor patients. We believe our study
demonstrates an effective technique that could be useful for
functional network mapping studies for DBS in the near future,
possibly in combination with other behavioral tests and animal
disease models.

CONCLUSIONS

In this study, we aimed to characterize the modulation of the
neural circuitry associated with VTA-DBS in a large animal.
Our findings suggest that VTA-DBS affects the activity in
areas implicated in working memory, arousal and awareness,
reward, mood regulation, and the pathophysiology of MDD.
VTA-DBS therefore affects the function of circuits potentially
related to the symptoms of treatment-resistant MDD. Further
studies in animal depression models and patients with MDD
will be necessary to confirm these results and improve
the array of therapeutic options in treatment-resistant mood
disorders.
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changes (1, 2, and 3 V) on the percent change of BOLD peaks by
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intercept, and coefficient determination—R2 ) were estimated separately for each

subject. The R-square value of the individual indicates the proportion of the

within-subject variance in BOLD % change, predicted from the voltage changes.

R2 demonstrates the tendency of inter-subject variability in voltage-dependent

effects. Linear regression analysis was performed on the group (Table 1).
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