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A commentary on

Microstructure, length, and connection of limbic tracts in normal human brain development

by Yu, Q., Peng, Y., Mishra, V., Ouyang, A., Li, H., Zhang, H., et al. (2014). Front. Aging Neurosci.
6:228. doi: 10.3389/fnagi.2014.00228

Limbic tracts are affected in various neurological and psychiatric diseases/disorders (Bogerts et al.,
1985; Modell et al., 1989; Braak and Braak, 1991; Tamminga et al., 1992; Becker et al., 2001; Amaral
et al., 2008; Sheth et al., 2013; Gottlich et al., 2014; Posner et al., 2014). The onset of the abnormality
is of particular interest since many psychiatric disorders are known to have genetic backgrounds
that might result in a specific phenotype of the brain anatomy (endophenotype) before the onset
of the symptoms (Menzies et al., 2008; Hajek et al., 2009; Fornito et al., 2013; Nery et al., 2013;
Dixson et al., 2014; Scognamiglio and Houenou, 2014; Zannas et al., 2014; Chakravarty et al.,
2015; Ordóñez et al., 2016). There is the potential that such endophenotypes could be detected
even in very early developmental stages, therefore, quantification of the developmental status of
the limbic fibers might be useful for identifying groups at high-risk for developing psychiatric
disorders in the future. However, little is known about the normal developmental trajectories of
these fiber tracts from a neonatal age to young adulthood, which is essential for the evaluation
of a pathological deviation from normal brain development (Oishi et al., 2013). MRI scans are
particularly challenging in subjects less than 4 years of age without sedation (Oishi et al., 2012), and
therefore, establishing the normal developmental trajectory of this age-range will be an important
asset for research communities(Oishi et al., 2011; Akazawa et al., 2015; Chang et al., 2016).

Yu and his colleagues aimed to identify the normal developmental characteristics of the limbic
fibers (Yu et al., 2014). They used diffusion tensor imaging (DTI) to characterize the microscopic,
anatomical features of the live human brain from the neonatal period to 25 years of age, based on
cross-sectional observation of 65 healthy individuals. Diffusion property, length, and anatomical
connections of the three limbic tracts were evaluated: The cingulate gyrus part of the cingulum
(cgc); the hippocampal part of the cingulum (cgh); and the fornix. The tracts-of-interest (TOI)
approach was applied to accurately identify the white matter tracts and has been used to evaluate
the microscopic status of the developing brain. Tractography was also used tomeasure the length of
the limbic tracts, as well as to evaluate the connectivity of the anatomical structures that are related
to the default mode network (DMN), which is defined by resting-state fMRI. In adult brains, the
limbic fibers are known to connect the DMN-related structures. However, the role of these limbic
fibers in connecting DMN structures has been unclear in early development.
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There were three major findings. First, the developmental
curve of four DTI-derived measures were mostly logarithmic,
with rapid changes until 2 years of age, followed by slow changes
that went on until 25 years of age. The important contribution
to science here is that these results were compared with and
without free water elimination (FWE) (Pasternak et al., 2009),
which was introduced to eliminate the partial volume artifact
that is caused by the inclusion of cerebrospinal fluid (CSF)
into each pixel, which results in falsely high diffusivity of such
pixels. There was a concern about whether to apply the FEW to
brains under development, since it could potentially eliminate
the effect of physiological changes of the brain related to
development by eliminating the intercellular water content that is
prominent in early development. The authors first demonstrated
that contamination of the CSF is the major source of free
water that is eliminated by the FWE algorithm. Importantly,
the application of the FWE did not change the pattern of the
developmental curves of the limbic fibers, which means that both
values, with and without FWE, are legitimate for the evaluation
of brain development, as long as the method for evaluation is
consistent. Second, the authors demonstrated that the length of
the cgc, normalized by the anterior-to-posterior length of the
brain, increased with age, but the normalized length of the cgh
and the fornix were unchanged. This means that the development
of the cgc is disproportionally rapid during this age-range, but
the development of the cgh and the fornix is proportional.
Third, the anatomical connections of DMN-related structures
were similar in both neonates and young adults, which means
that the functional and anatomical connectivity of the DMN is
already established in the early postnatal period. This suggested
the importance of the DMN in the basic brain functions that are
already needed at birth.

The simultaneous evaluation of the DTI-derived measures—
length and connectivity of the limbic fibers from early to late
development—provide an important foundation with which to
assess the types and onset of abnormalities in brain development
related to various neurological or psychiatric disorders. Indeed,
during the two years since publication, the results of this paper
were referenced to interpret DTI findings of traumatic brain
injury (TBI) and major depressive disorder (MDD); the left-side
dominancy in the effect of TBI was interpreted in relation to the

leftward asymmetry observed in normal development (Ewing-
Cobbs et al., 2016), and disrupted functional connectivity in

MDD was interpreted in the context of chronological patterns in
white matter maturation (Sacchet et al., 2016).

Several limitations should be noted. The limited number
of participants might introduce a selection bias. The limbic
pathways investigated were limited; the uncinate fasciculus,
stria terminalis, and the mammillothalamic fasciculus were
not included. The parameters investigated from diffusion
MRI were limited to those derived from the tensor model;
parameters acquired through advanced models, such as diffusion
spectrum imaging or high-angular resolution diffusion imaging,
remain to be investigated. For the evaluation of intra-individual
variation, a longitudinal design would be needed (Baltes, 1968).
To overcome these general and well-recognized limitations,
several longitudinal studies have been launched since the
publication of this paper, including the Developing Human
Connectome Project, Baby Connectome Project, Lifespan
Human Connectome Project, and the Adolescent Brain
Cognitive Development (ABCD) study. These projects adopted
state-of-the-art scanners and scan protocols. Among them, the
ABCD study is the largest study, and involves approximately
10,000 children, who will be followed for 9–10 years. These
studies are expected to overcome the limitations of previous
cross-sectional studies.
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