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Expanded polyglutamine (polyQ) stretches in at least nine unrelated proteins lead to

inherited neuronal dysfunction and degeneration. The expansion size in all diseases

correlates with age at onset (AO) of disease and with polyQ protein aggregation,

indicating that the expanded polyQ stretch is the main driving force for the disease

onset. Interestingly, there is marked interpatient variability in expansion thresholds for a

given disease. Between different polyQ diseases the repeat length vs. AO also indicates

the existence of modulatory effects on aggregation of the upstream and downstream

amino acid sequences flanking the Q expansion. This can be either due to intrinsic

modulation of aggregation by the flanking regions, or due to differential interaction with

other proteins, such as the components of the cellular protein quality control network.

Indeed, several lines of evidence suggest that molecular chaperones have impact on

the handling of different polyQ proteins. Here, we review factors differentially influencing

polyQ aggregation: the Q-stretch itself, modulatory flanking sequences, interaction

partners, cleavage of polyQ-containing proteins, and post-translational modifications,

with a special focus on the role of molecular chaperones. By discussing typical examples

of how these factors influence aggregation, we provide more insight on the variability

of AO between different diseases as well as within the same polyQ disorder, on the

molecular level.

Keywords: aggregation, Huntington’s disease, Machado-Joseph disease, molecular chaperones, polyglutamine

disease

INTRODUCTION

Polyglutaminopathies are a family of diseases characterized by CAG trinucleotide expansions in
the coding regions of at least nine unrelated genes, resulting in proteins with an abnormally
long polyglutamine (polyQ) stretch, which have a high aggregation propensity. PolyQ aggregates
can impede cellular protein homeostasis, loss of which is also observed in many other
neurodegenerative diseases (Soto, 2003). These mutant proteins lead to one recessive inherited,
X-linked spinal and bulbar muscular atrophy (SBMA), and eight dominantly inherited neuronal
dysfunctions, Huntington’s disease (HD), dentatorubral pallidoluysian atrophy (DRPLA), and the
spinocerebellar ataxias (SCAs) type 1, 2, 3, 6, 7, and 17 (Margolis and Ross, 2001). All known
polyglutaminopathies show a strong inverse correlation between expansion size and age at onset
(AO) of the disease, with longer repeats significantly correlating with earlier onset of symptoms and
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higher aggregation proneness of the affected protein, indicating
that an expanded polyQ is tightly related to the diseases. There
are two main features that are striking in the association between
polyQ length and AO. First, there is marked variability between
polyQ diseases in expansion thresholds that determines the
pathogenicity, indicating that AO has only a partial dependence
on the polyQ stretches and their absolute lengths (Figure 1A).
Second, there is also CAG-length independent phenotypic
variation within a given polyQ disease (Figure 1B). Both these
findings imply that factors beyond the polyQ stretch are co-
determining disease onset (Ranum et al., 1994; DeStefano et al.,
1996; Hayes et al., 2000; Wexler et al., 2004; van de Warrenburg
et al., 2005; Kaltenbach et al., 2007; Branco et al., 2008; Lessing
and Bonini, 2008; Bettencourt et al., 2011; Tezenas du Montcel
et al., 2014; Bečanović et al., 2015). It was hypothesized that the
differential effects of distinct polyQ proteins with polyQ tracts
of similar lengths could be, at least in part, due to the sequences
flanking the polyQ expansion (Nozaki et al., 2001).

Here we discuss that, next to aggregation of the core
polyQ stretch, which is common to all polyglutaminopathies
(Figure 2A), the context around the cores can modulate
aggregation in several ways and may be linked to differential
handling of the protein quality control systems, including
molecular chaperones, the ubiquitin proteasome system,
and autophagy. These degradation processes, and their
relationship with the chaperone system, are of importance
and greatly influence the aggregation process (Rubinsztein,
2006). Certain chaperones act together with the protein
degradation machineries to effectively clear aggregation-prone
polypeptides, such as polyQ-containing proteins (Dekker et al.,
2015). The molecular details of these downstream events are
still unclear and will not be discussed here; instead we will
focus on the impact of molecular chaperones on the aggregation
process itself. Molecular chaperones are known to influence

FIGURE 1 | Age of onset of disease inversely correlates with the size of the expanded polyQ tract in all known polyQ diseases. (A) Correlation between

age of onset (AO) and CAG expansion size for all nine polyQ diseases identified so far. Circles depict mean AOs for a given expansion size based on multiple reported

cohorts of patients. Lines represent the fitted data according to an exponential decay model. (B) Age of onset of disease is not completely determined by the

expanded polyQ tract alone. Data on the variability of AO for a particular polyQ expansion size is shown as in (A) and was based on the large cohort of MJD/SCA3

patients reported by Saute and Jardim (2015). Circles represent single patients. Please refer to Supplementary File 1 for a complete list of references of the original

cohort descriptions. Note that graph (A,B) are not drawn to the same scale.

aggregation of polyQ proteins. This could either be directly
by preventing the polyQ stretch from aggregating or via the
flanking sequences. For only a few of the molecular chaperones
the direct interaction with the polyQ proteins has been shown,
although many chaperones are found to co-localize with polyQ
inclusions (Cummings et al., 1998; Kazemi-Esfarjani and Benzer,
2000; Schmidt et al., 2002; Helmlinger et al., 2004; Bilen and
Bonini, 2007; Hageman et al., 2010; Gao et al., 2011; Kakkar
et al., 2014; Matilla-Dueñas et al., 2014; Reis et al., 2016; Zhao
et al., 2016). However, co-localization of chaperones does not
provide information on their mode of interaction and does not
distinguish whether chaperones are truly interacting with the
polyQ protein, or whether the presence of chaperones in the
aggregates is a mere secondary effect due to a collapse of other
cellular components with the inclusions. In this review, we will
discuss: first, how polyQ tracts drive aggregation; second, how
their flanking sequences could directly affect the aggregation
proneness of the polyQ protein; and third, how polyQ proteins
can be modified, changed in conformation, or fragmented,
inducing aggregation (Figure 2B). We will not focus on the
function, or loss of function, of the affected polyQ proteins,
since this was so far not shown to be causative for disease, even
though the native function of the protein might be important
for normal cellular function. Furthermore, we will not go into
the discussion on the toxicity of aggregation. For instance, it is
still unclear whether the presence of aggregates contributes to
SCA2 pathology (Huynh et al., 2000), even though aggregates
are found in affected brain areas (Pang et al., 2002; Seidel
et al., 2016). Finally, we will highlight the role of chaperones in
the aggregation process and include only studies that provide
insight in direct interaction of chaperones with the polyQ
proteins. Rather than providing a complete overview, molecular
mechanisms of typical examples will be discussed, aiming at
providing general principles affecting polyQ aggregation on

Frontiers in Neuroscience | www.frontiersin.org 2 March 2017 | Volume 11 | Article 145

http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Neuroscience/archive


Kuiper et al. Chaperones in Polyglutamine Aggregation: Beyond the Q-stretch

FIGURE 2 | Representation of pathogenic polyQ proteins and known modulating events associated with aggregation. (A) Schematic representation of the

nine disease-related polyglutamine proteins drawn to scale. In each case, a polyQ stretch of fixed length is depicted at the approximate position (red boxes). Red bars

on the right side of each protein show the smallest and largest number of glutamine repeats identified in patients of each polyQ disease to date. Numbers between

brackets represent polyQ expansion sizes that have been reported to behave as incomplete penetrance alleles. (B) Detailed representation of all nine polyQ proteins.

Domain organization is indicated. Known post-translational modifications associated with disease, caspase/calpain cleavage sites, and fragments identified are

indicated. For ataxin-3, the long isoform with 3 ubiquitin-interacting motifs is shown. Residues C14, H119, and N134 depict the catalytic triad of the deubiquitylase

activity of the Josephin domain. The CACNA1A locus encodes two proteins: α1A (full-length α1A) and α1ACT (C-terminal fragment of α1A) using a bicistronic mRNA

with a cryptic internal ribosomal entry site. The polyQ is found in both. Many studies report a C-terminal fragment which probably represents α1ACT. For the androgen

receptor, the only phosphorylation sites depicted are those with biochemical evidence of modulation of polyQ aggregation, cleavage and/or toxicity. Similarly, amino

acid sequences 23FQNLF27 and 55LLLL58 highlight motifs shown to influence polyQ behavior. For simplicity, most huntingtin cleavage products are omitted and only

the major N-terminal polyQ containing fragment is indicated. Amino acid numbering is based on Uniprot accession numbers P42858 (HTT), P54253 (ATXN1), Q99700

(ATXN2), P54252 (ATXN3), O00555 (CACNA1A), O15265 (ATXN7), P20226 (TBP), P54259 (ATN1), and P10275 (AR). However, for clarity, some residues

(Continued)
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FIGURE 2 | Continued

are numbered according to their original publication, which might differ from the numbering according to the reference protein sequence (due to the expanding nature

of polyQ proteins). AR, androgen receptor; ATN1, atrophin-1; ATXN1, ataxin-1; ATXN2, ataxin-2; ATXN3, ataxin-3; ATXN7, ataxin-7; AXH, ataxin-1/high-mobility group

box containing protein-1; CACNA1, α1A subunit of the P/Q-type or CaV2.1 voltage-gated calcium channel; Casp, caspase; DBD, DNA binding domain; HTT,

huntingtin; PolyQ, polyglutamine stretch; NTD/AF-1, amino-terminal domain/ activation function-1; LBD/AF-2, ligand-binding domain/ activation function-2; NES,

nuclear export signal; NLS, nuclear localization signal; HEAT, huntingtin/elongation factor 3/PR65/A subunit of protein phosphatase 2A/ lipid kinase TOR domain;

PRR, proline-rich region; N17, first 17 amino acids of huntingtin; TBP, TATA-binding protein (domain); UIM, ubiquitin-interacting motif; Ub-1/Ub2, ubiquitin-binding

sites; Lsm, Like RNA splicing domain Sm and Sm2; LsmAD, Like-Sm-associated domain; PAM2, poly (A)-binding protein interacting motif 2; ZnF, SCA7-like zinc

finger domain. For references to specific domains or post-translational modifications, please refer to Supplementary File 1.

the molecular level that may partially explain the individual
differences between patients and steer future studies.

AGGREGATION PROPERTIES OF THE
POLYQ STRETCH

Aggregates formed by polyQ stretches contain identical β-
strand-based cores. Already in 1994, Perutz et al. described the
ability of elongated polyQ stretches to form β-sheets (Perutz
et al., 1994). Like many other amyloidogenic proteins (Sawaya
et al., 2007), the polyQ chains can form β-sheets that are
connected through interdigitating extended side chains and
contain intramolecular β-hairpins (Hoop et al., 2016). Formation
of β-hairpins allows for hydrogen bonding between the stacked
side chains, providing a strong interaction (Hoop et al., 2016).
The β-hairpins play an important role in the aggregation process.
Q-stretches with a range up to 25Q are not able to form stable
β-hairpins and therefore are not able to induce aggregation,
except when mutations known to enhance β-hairpin formation
are introduced (Kar et al., 2011, 2013). It is hypothesized that
longer polyQ stretches can form more stable intramolecular β-
hairpins, providing a critical monomeric nucleus necessary for
inducing aggregation (Kar et al., 2011). The high affinity of the
β-sheets affects interactions between molecules and might not
only do so for the same pathogenic polyQ protein, but also
as a secondary effect for other endogenous polyQ containing
proteins (Nóbrega et al., 2015). For example, the endogenous,
non-expanded TATA-box binding protein (TBP) was found to
sequester into aggregates formed by other pathogenic polyQ
proteins, such as huntingtin (HTT; Perez et al., 1998; Kim et al.,
2002; Matsumoto et al., 2006). Similarly, inclusions containing
ataxin-2 (ATXN2), ataxin-3 (ATXN3) and TBP are observed in
SCA1, SCA2, SCA3, andDRPLA (Uchihara et al., 2001).Whether
these secondary co-aggregating events contribute to disease is
currently not clear (Kampinga and Bergink, 2016).

The crucial role for the formation of β-hairpins in the
aggregation process is nicely illustrated by findings on missense
CAG to CAT mutations. These mutations, coding for histidine,
were found in the CAG-repeat in ATXN1, leading to insertion
of one or more other amino acids and interrupting the Q-stretch
(Sobczak and Krzyzosiak, 2004; Jayaraman et al., 2009; Menon
et al., 2013). The AO is in these cases inversely correlated to the
longer uninterrupted CAG stretch which, rather than a specific
interruption pattern, dictates also the aggregation propensity in
vitro (Menon et al., 2013). The structure of the polyQ-stretches
is not changed because of the histidine-interruptions but the

polyQ aggregation rates are decreased due to the Q-length
dependent ability of the protein to form a critical nucleus to
initiate aggregation (Jayaraman et al., 2009; Menon et al., 2013).

From all the different intracellular chaperones, so far the
only ones described that could act on the β-sheets or β-
hairpins formed by the Q-stretch are DNAJB6 and its closest
homolog DNAJB8, two members of the DNAJ family of Hsp70
co-chaperones. In a screen for suppressors of aggregation
of huntingtin (HTT-119Q) both DNAJB6 and DNAJB8 were
superior suppressors of aggregation with a specificity for the
polyQ tract, since they were similarly effective in the suppression
of aggregation of HTT, ATXN3, the androgen receptor (AR), and
polyQ alone (Hageman et al., 2010; Månsson et al., 2013). These
DNAJ chaperones have a unique region containing 18 residues
of the polar hydroxyl group amino acids serine and threonine,
that is exposed on one face of the DNAJB6 monomer where it
is predicted to interact with the hydrogen bonds in the polyQ
β-hairpins (Månsson et al., 2013; Kakkar et al., 2016).

AGGREGATION INITIATION BY FLANKING
DOMAINS IN POLYQ-CONTAINING
PROTEINS

A longer Q-stretch not only has a higher aggregation propensity,
but also affects the conformation of other parts of the protein.
This can cause exposure of other regions in the proteins that have
aggregation-prone properties by themselves (Ellisdon et al., 2006;
Kelley et al., 2009; Tam et al., 2009). The intrinsic aggregation
propensity leads to a two-stage aggregation mechanism (Ellisdon
et al., 2006) in which the first aggregation step is actually thought
to be a nucleation step of the non-polyQ-containing flanking
domains. The formed nucleus can speed up the aggregation of
the polyQ-stretch, which is then the second aggregation step.
Aggregation of the flanking region and the polyQ stretch may
enhance each other in a positive feedback loop accelerating
aggregation and AO (Ellisdon et al., 2007; Saunders et al., 2011).
The most striking examples of this process are known for HTT
and ATXN3.

HTT is a relatively large protein with the polyQ stretch located
in the first exon of the protein. The polyQ tract in HTT is
flanked by a 17 amino acid long N-terminal (N17) domain and
a polyproline domain on its C-terminus (Dehay and Bertolotti,
2006; Rockabrand et al., 2007; Figure 2). The N17 domain is
highly soluble by itself and has an intrinsic tendency to collapse
into an aggregation-resistant compact coil state (Thakur et al.,
2009; Crick et al., 2013). When the Q-stretch is expanded,
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the N17 domain undergoes a conformational change going
into a more α-helical extended state (Tam et al., 2009; Thakur
et al., 2009; Sivanandam et al., 2011), exposing a hydrophobic
face through which self-association is induced (Kelley et al.,
2009; Liebman and Meredith, 2010). Self-association provides
an initial nucleus that increases the local concentration of the
adjacent polyQ, promoting polyQ aggregation (Kelley et al., 2009;
Liebman and Meredith, 2010; Sahoo et al., 2016). Aggregation of
HTT can be prevented by modifying the hydrophobic face of the
α-helix (Tam et al., 2009), confirming the important role of the
N17 domain in initial aggregation. Moreover, synthetic polyQ
peptides lacking the N17 domain show much slower aggregation
kinetics (Månsson et al., 2013; Monsellier et al., 2015; Sahoo et al.,
2016).

The exposed hydrophobic face on the N17 domain was
identified as an interaction site for several chaperones amongst
which the chaperonin TRiC, specifically the subunit CCT1 (Tam
et al., 2006). CCT1 can suppress HTT aggregation by binding via
its apical substrate-binding domains to the hydrophobic motifs
in the N17, preventing the initial step of aggregation (Spiess
et al., 2006; Tam et al., 2009; Shahmoradian et al., 2013; Sahl
et al., 2015). The constitutively expressed Hsp70 (Hsc70/HSPA8)
was found to co-localize, like many other Hsp70s including the
prokaryotic DnaK and yeast Ssa1 (Jana et al., 2000; Muchowski
et al., 2000; Novoselova et al., 2005; Tam et al., 2006), and
interact with the N17 domain of HTT via its client protein
binding domain (Monsellier et al., 2015). HSPA8 is not able
to delay aggregation of a Q-stretch lacking flanking sequences
(Månsson et al., 2013) and acts, similar to CCT1, by disrupting
the interaction between N17 domains of HTT, slowing down
aggregate formation (Monsellier et al., 2015).

Another example of a polyQ protein that undergoes a
similar two-stage aggregation mechanism is ATXN3, causative
for SCA3. ATXN3 is involved in proteostasis by editing specific
ubiquitin sidechains that are targeting proteins to the proteasome
(Kuhlbrodt et al., 2011). ATXN3 has an unstructured C-
terminus containing the polyQ expansion and multiple ubiquitin
interacting motifs (UIMs), and an N-terminus containing the
Josephin domain (JD), which is a structured monomeric domain
that folds into a globular conformation (Chow et al., 2004;
Masino et al., 2004; Figure 2). The JD is the catalytic domain
responsible for the deubiquitinating (DUB) properties of ATXN3
and has a high α-helical content forming a groove with two
additional UIMs for recognition of the polyubiquitin chains of
different linkages, and positioning them for cleavage (Masino
et al., 2004; Nicastro et al., 2009, 2010). Sequence motifs
on the helices in the groove are functionally important for
binding conjugated ubiquitin but are predicted to be highly
amyloidogenic and therefore responsible for the aggregation
propensity of the JD itself (Masino et al., 2011; Lupton et al.,
2015). Indeed, in vitro the isolated JD shows fibrillogenic
behavior even under physiological conditions (Masino et al.,
2004, 2011; Ellisdon et al., 2006), but when ubiquitin is added,
the aggregation propensity of ATXN3 is lowered (Masino
et al., 2011). Expansion of the polyQ stretch influences the
conformation of the JD in such a way that the molecular
mobility of two α-helices is increased and the amyloidogenic

motif gets more exposed (Lupton et al., 2015; Scarff et al., 2015),
providing a nucleus through which the first aggregation step of
ATXN3 is initiated. This can in turn accelerate aggregation of
the polyQ stretch (Gales et al., 2005; Ellisdon et al., 2007). In
a dedicated screen, several modifiers of ATXN3 were identified
that all fell into the canonical chaperone and ubiquitin pathways
(Bilen and Bonini, 2007). Amongst the chaperones was alphaB-
crystallin (HSPB5), which was found to interact with the JD
in the distorted ubiquitin interacting groove, possibly masking
the amyloidogenic motives, and having an effect on the initial
nucleation step of ATXN3 (Robertson et al., 2010).

Flanking regions can also suppress aggregation of the polyQ
stretch. For example, the proline-rich flanking domain (C38)
in HTT has an opposite effect compared to the N17 domain.
The C38 is also highly soluble, but actually lowers the rate of
aggregation (Bhattacharyya et al., 2006; Dehay and Bertolotti,
2006; Duennwald et al., 2006; Crick et al., 2013). Other polyQ-
containing proteins apart from HTT, also have a proline-rich
region adjacent to the Q-stretch, like TBP, AR, and ATXN2 (Kim,
2014). It is tempting to speculate that these regions confer an
evolutionary benefit and co-evolved with Q stretches to modulate
their aggregation.

BINDING PARTNERS THAT CAN
INFLUENCE AGGREGATION

As we have now seen, the opening up of physiologically
needed hydrophobic, aggregation-prone, motifs in non-polyQ-
containing parts of the protein, can lead to the unwanted
formation of an initial nucleus for aggregation. These motifs
are normally buried or in interaction with binding partners (or
substrates), like ubiquitin in the case of ATXN3, which prevents
exposure of the hydrophobic regions (Masino et al., 2011).
Binding partners of polyQ-containing proteins can influence the
aggregation to a great extent, also for ataxin-1 (ATXN1). ATXN1
is the protein that underlies SCA1, and has a Q-stretch in the
N-terminal part of the protein and an AXH domain in the C-
terminus (Figure 2). Just like the JD in ATXN3, the AXH domain
in ATXN1 has aggregation-prone properties that are needed for
its normal functioning, but therefore can be detrimental in the
presence of an expanded polyQ stretch (De Chiara et al., 2013a).
The AXH domain is responsible for transcriptional repression,
RNA-binding activity, and is necessary for interacting with other
proteins, mostly transcriptional regulators. For the domain to
be able to bind all its different substrates, it has a remarkable
conformational plasticity (Chen et al., 2004; De Chiara et al.,
2013b; Deriu et al., 2016). Moreover, the AXH domain is
responsible for ATXN1 self-association. Multimerization can
bring polyQ stretches together, associated with aggregation and
amyloid formation (De Chiara et al., 2005b, 2013a; Lasagna-
Reeves et al., 2015). In vivo ATXN1 forms oligomers and
interestingly the interaction partner transcriptional repressor
Capicua (CIC) is found in these complexes (Lam et al., 2006;
Lasagna-Reeves et al., 2015). The interaction of CIC with the
AXH domain of ATXN1 stabilizes toxic soluble prefibrillar
oligomers of ATXN1. When CIC levels are reduced, ATXN1
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forms more fibrillar oligomers that are less toxic (Lasagna-Reeves
et al., 2015). Also when the AXH domain is deleted, aggregate
formation is reduced (De Chiara et al., 2005a,b). There are
chaperones known to prevent ATXN1 aggregation and reduce
toxicity, but the exact mechanism of action of the chaperones on
ATXN1 is not known (Cummings et al., 1998; Zhai et al., 2008).
A possible mechanism of action could be that chaperones bind to
the AXH domain of ATXN1 to prevent complex formation or to
prevent CIC from binding.

CLEAVAGE/FRAGMENTATION

Fragmented polyQ proteins have been found in patients and
proteolytic processing of polyQ proteins into smaller, highly
aggregation-prone fragments that are more toxic than the full-
length protein has been described for most polyQ diseases,
HD (Mangiarini et al., 1996; Martindale et al., 1998), DRPLA
(Igarashi et al., 1998;Wellington et al., 1998), SBMA (Butler et al.,
1998; Kobayashi et al., 1998; Wellington et al., 1998), and SCAs
(Ikeda et al., 1996; Paulson et al., 1997; Zander et al., 2001; Goti
et al., 2004; Helmlinger et al., 2004; Kordasiewicz et al., 2006;
Matos et al., 2016a; Figure 2B). However, for SCA1, SCA2, and
SCA17 the evidence for the presence of fragments is limited
(Matos et al., 2016a). Proteases play a key role in the generation of
these polyQ fragments, and inhibition of proteases or mutation
of their cleavage sites can modulate the disease AO (Ona et al.,
1999; Chen et al., 2000; Graham et al., 2006; Aharony et al.,
2015). Importantly, expression of these fragments containing the
polyQ stretch can already give rise to aggregation and the disease
phenotype (Ikeda et al., 1996), although it is still not entirely
clear why the polyQ fragments display enhanced toxicity when
compared to their respective full-length proteins. Cleavage may
lead to changes in aggregation propensity, conformation of the
protein, localization, and molecular interactions (Matos et al.,
2016a). For SBMA, it has been reported that a conformational
change exposing the polyQ tract is already sufficient to drive
aggregation (Heine et al., 2015) and cleavage might expose the
polyQ stretch in a similar way as such a conformational change
does. Protein domains that would otherwise prevent, or enhance,
the aggregation may be removed, exposing the Q-stretch itself for
aggregation. Finally, recognition sites and binding of molecular
chaperones could be changed, exemplifying once more the
importance of regions outside the polyQ tract in the modulation
of aggregation.

For ATXN3, a cleavage product containing the C-terminal
fragment from amino acid 221 with the 71Q expansion was
found in mice showing the disease phenotype, but rarely in mice
not showing the phenotype (Goti et al., 2004). This polypeptide
was also found in SCA3 patients (Goti et al., 2004) indicating
that fragmentation of the polyQ protein ATXN3 has a strong
correlation with disease. Interestingly, while full-length ATXN3
with an expanded polyQ was mostly non-aggregating, co-
expression with truncated ATXN3 makes the full-length protein
co-localize with the truncated version in perinuclear aggregates
(Paulson et al., 1997). More putative cleavage sites in ATXN3
were identified (Haacke et al., 2006; Colomer Gould et al., 2007)

and it was shown that caspases are not the sole contributors to the
fragmentation of ATXN3, but also the activity of calpains, such as
calpain-2, is involved (Simões et al., 2012; Hübener et al., 2013).
ATXN3 cleavage and translocation to the nucleus, and thus also
aggregation, can be prevented by inhibiting calpains through
overexpression of calpastatin in mice (Simões et al., 2012).
Conversely, knocking down calpastatin worsened aggregation
(Hübener et al., 2013). These data clearly show that under non-
stressed conditions in vivo, fragmentation is both required and
sufficient for aggregation of polyQ containing ATXN3. Similar
data has been found for HTT. In almost all studies on HD,
a fragment containing the first exon of HTT with the polyQ
stretch is being used, since this fragment already gives rise to
the HD phenotype. Toxic N-terminal fragments are found to be
generated through cleavage by caspases, both in animal models
and in patients (Wellington et al., 2002; Sawa et al., 2005; Graham
et al., 2006; Maglione et al., 2006). Like in SCA3, fragmentation
of HTT is crucial for disease progression, since the HD disease
phenotype can be rescued by either mutating the cleavage site of
caspase-6 in exon 13 (Graham et al., 2006), genetically ablating
caspase-6 (Wong et al., 2015), or pharmacologically inhibiting
caspases 1, 3, or 6 (Ona et al., 1999; Chen et al., 2000; Aharony
et al., 2015). We have already discussed the ability of certain
chaperones to bind to the N17 domain, which is present in the
cleaved fragments.

POST-TRANSLATIONAL MODIFICATIONS

Post translational modifications (PTMs) like phosphorylation,
ubiquitination, and SUMOylation, can affect the aggregation
propensity of many polyQ proteins (Humbert et al., 2001; Steffan
et al., 2004; Luo et al., 2005; Warby et al., 2005; Menon et al.,
2012; Matos et al., 2016b; Figure 2). The transient nature of
the PTMs usually indicates differential regulation of proteins
and they can provide an interesting extra layer of modulation,
possibly influencing all of the above-mentioned features of
polyQ aggregation. PTMs can create alternative binding surfaces,
affecting the affinity to binding partners like proteases and
chaperones, and can lead to conformational changes to expose
the Q-stretch. Therefore, either increased or decreased PTMs are
associated with aggregation.

For most of the polyQ proteins there are several residues
known to be modified (see Figure 2B for PTMs that impact
aggregation). For ATXN3 six phosphorylation sites have been
described, in the catalytic JD and in the UIMs (Fei et al.,
2007; Mueller et al., 2009; Matos et al., 2016b; Figure 2).
Phosphorylation of serine (S)340 and S352 in the third UIM did
not change aggregation propensity, but shifted the localization of
the aggregates from the cytoplasm to the nucleus (Mueller et al.,
2009). Phosphorylation of S256 in the second UIM was shown
to inhibit the formation of large insoluble polyQ complexes
(Fei et al., 2007), and phosphorylation of S12 in the JD also
reduces aggregation (Matos et al., 2016b). The protective effect
of constitutive phosphorylation of S12 might be dependent on its
close proximity to the catalytic sites in the JD, causing hindrance
of the intramolecular aggregation. Phosphorylation of HTT on
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S421 (Humbert et al., 2001) and S434 (Luo et al., 2005), leads to
a decrease in polyQ aggregation due to a reduction in caspase-
mediated cleavage thus preventing the formation of fragments
(Luo et al., 2005;Warby et al., 2009). For ATXN1, S776 is themost
studied phosphorylation site since it leads to reduced aggregate
formation (Emamian et al., 2003; Orr, 2012). Another interesting
PTM on ATXN1 is ubiquitination of K589 in the AXH domain.
Mutating this residue leads to reduced degradation and, hence,
more aggregation of ATXN1 (Kang et al., 2015), suggesting that
PTMsmay also affect the degradation of polyQ proteins resulting
in a higher concentration of proteins at risk for aggregation.

Chaperone-dependent degradation of still soluble polyQ
proteins could therefore be another important aspect in
ameliorating disease. Interestingly, the co-chaperone CHIP (C-
terminus of Hsp70-interacting protein), an E3 ligase that can
interact with and modulate Hsp70 activity (Ballinger et al., 1999;
Scheufler et al., 2000), has been implicated as a modulator in
many polyQ diseases (Jana et al., 2005; Choi et al., 2007; Gao et al.,
2011). CHIP interacts with ATXN1 via the phosphorylated S776
and the phospho-dead S776A mutation reduced this interaction.
The CHIP-ATXN1 interaction is likely mediated via Hsp70, since
the tetratricopeptide repeat (TPR) domain of CHIP, with which
it interacts with Hsp70, is needed for the interaction and for
promotion of ATXN1 degradation (Choi et al., 2007). A similar
model of CHIP andHsp70 interaction withHTT andATXN3was
proposed, although no single modified residue was identified as a
recognition site (Jana et al., 2005).

Members of DNAJ family of Hsp70 co-chaperones were also
shown to play a role in the PTM dependent degradation of
polyQ proteins, like in ATXN3 (Gao et al., 2011). DNAJB1 was
identified to suppress aggregate formation of ATXN3 (Chai et al.,
1999), but aggregation of the S256A mutant of ATXN3 could
not be prevented by DNAJB1 (Fei et al., 2007), it is still unclear
whether DNAJB1 has preferential affinity for phosphorylated
ATXN3. Interestingly, Hsp70 can prevent S256A aggregation (Fei
et al., 2007). Next to DNAJB1, DNAJB2 was found to suppress
polyQ protein aggregation via two UIMs that were shown to be
crucial for its interaction with K63-linked ubiquitination of HTT
(Labbadia et al., 2012). Intriguingly, all the PTMs onHTT are less
present in polyQ-expanded HTT, especially in the regions in the
brain that are mostly affected, abolishing the possible protective
effect of the modifications (Luo et al., 2005; Warby et al., 2005;
Aiken et al., 2009). Currently it is unclear whether the drop in
modification is causal or a consequence of aggregation.

PERSPECTIVES

The expanded polyQ stretches in the different disease-associated
proteins are the determining factor of disease onset and
progression in all of the polyglutaminopathies. Above a certain
threshold, Q-stretches are prone to aggregate. However, more
often than not, the Q-stretch and its aggregation propensities
are modulated by secondary events that we categorized here;
flanking regions, which have modulating capacity due to intrinsic
stability issues, binding of partners (including chaperones),
modification by PTMs, and cleavage of the Q-stretch. The

examples of molecular interactions described, clearly indicate
that polyQ protein aggregation is a multifactorial and likely
multistep process that not always has to go through the same
sequence of events toward aggregate formation. For example, the
intrinsic fibrillogenic behavior of the JD and cleavage of ATXN3
(leading to a fragment not containing the JD) can both trigger
aggregation independently. It could very well be that initial
aggregation can be triggered via different mechanisms leading
to secondary events that stimulate aggregation further. Thus, in
vivo aggregation of the JD might stimulate ATXN3 cleavage and,
vice versa, cleavage might destabilize the JD domain resulting in
a fast forward feedback loop of aggregation. Modulating events,
together with the unique expression pattern and level of each
polyQ protein, could explain the variation in AO between the
nine diseases.

Moreover, the modulating events acting on the flanking
regions might also explain the variation of AO among patients
with a similar Q length within a given polyQ disease. By
combining information on Q length (CAG repeat), expression
levels of the chaperone DNAJB6, which modulates Q aggregation
directly, and the expression levels of chaperones that act
on the disease-specific flanking regions, with the PTM and
fragmentation status, perhaps a better predication of AO
could be made. A strategy targeting chaperones acting on the
Q-stretch with those acting on the flanking regions might
provide a synergistic approach for delaying AO, benefiting
individuals diagnosed with an expanded polyQ tract. There
is little information on the factors influencing progression of
disease after onset and it would also be of interest to know
whether progression of disease is influenced by the same factors
that modulate aggregation propensity. If so, these could be used
as a therapeutic modality as well.
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