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Once considered science fiction, gene therapy is rapidly becoming scientific reality,

targeting a growing number of the approximately 250 genes linked to hereditary retinal

disorders such as retinitis pigmentosa and Leber’s congenital amaurosis. Powerful new

technologies have emerged, leading to the development of humanized models for

testing and screening these therapies, bringing us closer to the goal of personalized

medicine. These tools include the ability to differentiate human induced pluripotent

stem cells (iPSCs) to create a “retina-in-a-dish” model and the self-formed ectodermal

autonomous multi-zone, which can mimic whole eye development. In addition, highly

specific gene-editing tools are now available, including the CRISPR/Cas9 system and the

recently developed homology-independent targeted integration approach, which allows

gene editing in non-dividing cells. Variants in the CRB1 gene have long been associated

with retinopathies, and more recently the CRB2 gene has also been shown to have

possible clinical relevance with respect to retinopathies. In this review, we discuss the

role of the CRB protein complex in patients with retinopathy. In addition, we discuss

new opportunities provided by stem cells and gene-editing tools, and we provide insight

into how the retinal therapeutic pipeline can be improved. Finally, we discuss the current

state of adeno-associated virus-mediated gene therapy and how it can be applied to

treat retinopathies associated with mutations in CRB1.

Keywords: crumbs complex, retinopathies, gene therapy, CRISPR, human iPSC, retinal organoids

CRB1-RELATED RETINOPATHIES: NO CLEAR
PHENOTYPE-TO-GENOTYPE CORRELATION

CRB1-linked retinal dystrophies represent a diverse spectrum and present with a wide complexity
of clinical features (Table 1). In children, mutations in the CRB1 gene have been identified as a
causal factor underlying Leber’s congenital amaurosis (LCA) and early-onset retinitis pigmentosa
(RP) (den Hollander et al., 1999; Richard et al., 2006). The CRB1 gene has been linked to 7–17%
of autosomal recessive LCA cases and 3–9% of autosomal recessive RP cases (Vallespin et al.,
2007; Bujakowska et al., 2012; Corton et al., 2013). In patients, CRB1-linked LCA is associated
with atypical thickening of the retina and disorganized retinal layering (Jacobson et al., 2003;
Aleman et al., 2011). Both of these features are also present in double-knockout mice lacking

http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org/Neuroscience/editorialboard
http://www.frontiersin.org/Neuroscience/editorialboard
http://www.frontiersin.org/Neuroscience/editorialboard
http://www.frontiersin.org/Neuroscience/editorialboard
https://doi.org/10.3389/fnins.2017.00175
http://crossmark.crossref.org/dialog/?doi=10.3389/fnins.2017.00175&domain=pdf&date_stamp=2017-04-05
http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Neuroscience/archive
https://creativecommons.org/licenses/by/4.0/
mailto:J.Wijnholds@lumc.nl
https://doi.org/10.3389/fnins.2017.00175
http://journal.frontiersin.org/article/10.3389/fnins.2017.00175/abstract
http://loop.frontiersin.org/people/401207/overview
http://loop.frontiersin.org/people/419748/overview
http://loop.frontiersin.org/people/362240/overview


Quinn et al. Strategies for CRB1 Gene Therapy

TABLE 1 | Summary of patient phenotypes associated with mutations in

the CRB1 gene.

Phenotype Inheritance References

Leber congenital amaurosis

8 (LCA8)

AR Jacobson et al., 2003;

Cordovez et al., 2015; Talib

et al., in press

Early-onset retinitis

pigmentosa (RP)

AR den Hollander et al., 1999;

Lotery et al., 2001

RP with preserved

para-arteriolar retinal pigment

epithelium

AR Heckenlively, 1982

RP with intraretinal cystoid

spaces

AR Cordovez et al., 2015

RP with Coats-like exudative

vasculopathy

AR den Hollander et al., 2001

Peripheral nummular

pigmentation

AR Bujakowska et al., 2012

Pigmented paravenous

chorioretinal atrophy

AD McKay et al., 2005

Cystoid macular edema AR Morarji et al., 2016; Tsang et al.,

2014

Macular atrophy AR Bujakowska et al., 2012

Familial foveal retinoschisis AR Vincent et al., 2016

AD, autosomal dominant; AR, autosomal recessive.

both Crb1 and Crb2 in their retinal progenitor cells. During
development, these Crb1Crb2 double-knockout mice also have
dysregulated apical-basal polarity in the retina, altered retinal
progenitor cell proliferation, and reduced downstream CRB
signaling, including dysregulation of YAP (Yes-associated
protein). These findings highlight the essential role that the
CRB (Crumbs) complex plays in normal retinal development
(Pellissier et al., 2013).

More than 230 pathogenic variants have been identified
in the CRB1 gene (see http://exac.broadinstitute.org/transcript/
ENST00000367400 and http://databases.lovd.nl/shared/variants/
CRB1). It is not currently clear why a given variant can lead
to either early-onset LCA or RP within the disease spectrum.
A possible modifier of this effect in the human retina is
CRB2, as shown in the mouse retina (Pellissier et al., 2014b).
Early studies suggest that variants in the CRB2 gene are not
a frequent cause of either autosomal recessive LCA or RP
(van den Hurk et al., 2005). However, missense mutations in
the human CRB2 gene were recently associated with minor
retinal symptoms, including mild optic atrophy, reduced visual
acuity, and irregular retinal pigmentation, in a subset of patients
(Lamont et al., 2016). Interestingly, the CRB2 gene is also
expressed in vital organs such as the brain, testis, and kidney,
and genetic variants lead to a clinically extensive syndromic
phenotype causing multiple abnormalities and lethality (Lamont
et al., 2016). Homozygous and/or heterozygous variants are
reported to cause brain conditions (e.g., ventriculomegaly and
hydrocephalus), kidney conditions (e.g., congenital nephrosis,
steroid-resistant nephrotic syndrome, and ureteropelvic renal
anomalies), and other conditions such as lung hypoplasia and
cardiac malformation (Ebarasi et al., 2015; Slavotinek et al., 2015;
Jaron et al., 2016; Lamont et al., 2016).

Crb2 knockout mice are embryonic lethal due to a
defect in epithelial-to-mesenchymal transition during the
gastrulation stage (Xiao et al., 2011; Ramkumar et al., 2016). In
addition, proteins that modify the extracellular domain of Crb2
(for example, O-glucosyltransferase-1) can alter the receptor’s
function (Ramkumar et al., 2015). The offspring of conditional
Crb2 knockout mice crossed with CrxCre mice mimic the
human CRB1-linked RP phenotype and develop hydrocephalus
(Alves et al., 2014a). Consistent with this report, conditionally
knocking out YAP—a Hippo pathway effector and an interactor
with CRB complex members—was recently reported to cause
hydrocephalus in a mouse model due to a disruption in the CRB
complex and adherens junctions (Varelas et al., 2010; Bui et al.,
2016; Park et al., 2016). Finally, although CRB3 mRNA has been
found in the macula and peripheral retina, the CRB3 gene has yet
to be linked to retinal disease (Pellissier et al., 2014b).

CRB EXPRESSION AND LOCALIZATION

The human CRB1 gene is a complex, large gene mapped to
chromosome 1q31.3. The gene contains 12 exons spanning 210
kb of genomic DNA (Figure 1A and Table 2) (den Hollander
et al., 1999, 2004). The gene has 10 predicted transcript variants,
95 orthologs, and 10 paralogs (interestingly, these are involved
primarily in Notch signaling) (http://www.ensembl.org/Homo_
sapiens/Gene/Summary?db=core;g=ENSG00000134376;r=1:
197268204-197478455). To date, mRNA corresponding to
three CRB1 transcript variants has been identified in the retina
(Figure 1A, Table 2); these variants are expressed at similar
levels in the macula and periphery of the retina, but are below
detectable levels in adult retinal pigment epithelium and choroid
tissues (Pellissier et al., 2014b). The first validated transcript
variant contains 12 exons and encodes the prototypic canonical
CRB1 isoform. This 1406-aa protein contains a signal peptide,
19 epidermal growth factor-like domains, 3 laminin-A globular
domains, a single C-type lectin domain, a single transmembrane
domain, and a short (37-aa) intracellular domain (Figure 2A;
den Hollander et al., 2004). In contrast, the second validated
transcript, which encodes a 1376-aa isoform of CRB1, contains
an alternative exon 11 (exon f; see Figure 1A). This isoform
lacks the transmembrane and intracellular domains, possibly
serving as a putative secreted protein (Figure 2A; den Hollander
et al., 1999). The third validated transcript encodes a 1294-aa
isoform of CRB1; this transcript lacks exons 3 and 4, causing
the in-frame deletion of epidermal growth factor-like domains
6 through 8 while retaining both the N- and C-termini present
in the prototypic CRB1 isoform (Figures 1A, 2A). Another
alternatively spliced transcript encodes a 1382-aa isoform of
CRB1. This transcript contains 15 exons: an additional exon
(exon e) lies between exons 7 and 8, and the prototypic first
exon is replaced by three noncoding exons (exons a, b, and c)
in the 5′ UTR, resulting in a protein with a shorter N-terminus
(Figures 1A, 2A).

In mammals, CRB1 is one of a three-member family of
CRB proteins, together with CRB2 and CRB3. In humans, both
CRB2 and CRB3 have additional predicted transcript variants
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FIGURE 1 | Schematic overview of CRB transcripts. In each panel, the gene structure is shown at the top, with the exons indicated. (A) The entire CRB1
gene with exons 1–12, alternative exons a through g, and the 10 predicted mRNA transcript variants that encode their respective protein isoforms. (B) The entire

CRB2 gene with exons 1-13, alternative exons a and b, and the four predicted mRNA transcript variants that encode their respective protein isoforms. (C) The entire

CRB3 gene with exons 1-4, alternative exon a, b, 4a, and 4b, and the two mRNA transcript variants (CRB3A and CRB3B) that encode their respective protein

isoforms. See Table 2 for further details.

that encode various protein isoforms in humans (Figures 1B–C,
2B–C, and Table 2). Both CRB1 and CRB2 contain a large
extracellular domain with epidermal growth factor-like domains
and laminin-A globular domains. The CRB3 gene encodes
two isoforms (CRB3A and CRB3B), both of which lack an
extracellular domain (Bulgakova and Knust, 2009). In addition,
the prototypic CRB1, CRB2, and CRB3A proteins contain a

single transmembrane domain and a short, highly conserved 37-
aa intracellular domain, a FERM (4.1, ezrin, radixin, moesin)
domain juxtaposed with the transmembrane domain, and a C-
terminal PDZ-binding motif. The 4-aa ERLI (Glu-Arg-Leu-Ile)
sequence in the C-terminal PDZ domain is important for the
protein’s interaction with key adaptor proteins, including PALS1
and PAR6 (Klebes and Knust, 2000; Bachmann et al., 2001;
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Lemmers et al., 2004). Binding of PALS1 to the C-terminal PDZ
domain leads to the recruitment of PATJ and MUPP1 and the
assembly of the core CRB complex. Binding of PAR6 to the C-
terminal PDZ domain leads to the recruitment of PAR3, aPKC
(atypical protein kinase C), and CDC42, known as the PAR
complex (Figure 3A; Hurd et al., 2003; Bulgakova and Knust,
2009). Via these proteins, the CRB complex regulates apical-
basal polarity, modulates apical membrane size, and maintains
cell adhesion through the cadherin-catenin complex at adherens
junctions (Hsu et al., 2006; Laprise et al., 2006; Gosens et al.,
2007; Gamblin et al., 2014). The FERM-binding domain—which
sits adjacent to the PDZ domain—binds other proteins such as
EPB4.1L5, which plays a role in the epithelial-to-mesenchymal
transition in the gastrulation stage of development (Lee et al.,
2007; Hirano et al., 2008). Although the function of EPB4.1L5
in the mammalian retina is not currently known, in zebrafish
this protein plays a role in retinal development and is a putative
negative regulator of outer segment size in rod photoreceptors
(Christensen and Jensen, 2008). Binding of PDZ and FERM
proteins to their respective binding motifs in CRB is mutually
exclusive (Li et al., 2014; Wei et al., 2015), suggesting that
different CRB complexes may exist, each with a specific function.
Consistent with this hypothesis, the PDZ domain in the non-
prototypic CRB3B isoform contains a C-terminal CLPI (Cys-
Leu-Pro-Ile) motif instead of an ERLI motif (Figure 2C), and
CRB3B plays a role in ciliogenesis and cell division (Fan et al.,
2007).

CRB proteins are localized primarily at the subapical
region above the adherens junctions between two or more
photoreceptors, between two or more Müller glial cells, and
between photoreceptors and Müller glial cells (Figures 3A, 4;
Pellikka et al., 2002; van de Pavert et al., 2004; Kantardzhieva
et al., 2005). In the subapical region, human CRB1 is present
in the microvilli of Müller glial cells and in the inner segments
of photoreceptor cells (Figure 4). Interestingly, an antibody that
recognizes all isoforms of CRB1 containing the prototypic N-
terminus (the “extracellular CRB1” antibody; see Figures 2A, 4)
reveals the presence of CRB1 proteins along the membranes of
photoreceptors and Müller glial cells; in contrast, an antibody
against the intracellular domain of CRB1 (the “intracellular
CRB1” antibody) shows only patchy or vesicular staining
(Pellissier et al., 2015). This difference in localization patterns
may be due to the presence of the secreted 1376-aa form of CRB1
(Figures 2A, 4). In addition to its localization at the subapical
region, CRB1 is also localized at vesicles in the vicinity of
mitochondria throughout themyoid region of the inner segments
of both rods and cones. Finally, CRB1 is also present in the outer
plexiform layer of Müller glial cells, surrounding photoreceptor
axons in Henle’s fiber structure at the fovea (Figure 4).

In the human retina, CRB2 is localized in Müller glial cells
(specifically, at the subapical region) and photoreceptor inner
segments (in vesicles, presumably in the striated ciliary rootlets at
the apical tips known as the ellipsoid region) (Figure 4; Pellissier
et al., 2015). CRB3 is present at the subapical region in the
microvilli of Müller glial cells and in the inner segments of
photoreceptor cells. In addition, CRB3 is localized in the ellipsoid
region at the interface between inner and outer segments. In the

outer plexiform layer, CRB3 is localized to the dendrites of rod
bipolar cells and in vascular pericytes (Figure 4; Pellissier et al.,
2014b, 2015).

CRB proteins are conserved among species and have both
overlapping and compensatory roles and functions (Pellissier
et al., 2015). In the human retina, CRB1 is located at the subapical
region in both Müller glial and photoreceptor cells, whereas
CRB2 is located exclusively at the subapical region in Müller
glial cells. CRB1, CRB2, and CRB3A are all present in the
inner segments of photoreceptors in specific, delimited patterns.
Surprisingly, the mouse retina has the opposite localization
pattern at the subapical region (Figure 3B; van de Pavert et al.,
2004; van Rossum et al., 2006). In zebrafish, Crb1 is not
present at the subapical regions of photoreceptors and Müller
glial cells; instead, two isoforms of Crb2—Crb2A and Crb2B—
are present (Figure 3B; Zou et al., 2012). Interestingly, when
human CRB2 is expressed selectively in mouse photoreceptors
that lack endogenous Crb2, it also localizes to the tip of inner
segments, presumably at striated ciliary rootlets. In contrast,
when expressed in mouse photoreceptors and Müller glial
cells, human CRB2 localizes to the subapical region (Pellissier
et al., 2015). Previous studies showed that in both zebrafish
and mice, Crb2 plays a role in determining the segment
length of photoreceptors (Hsu and Jensen, 2010; Alves et al.,
2013b). Moreover, CRB proteins may play complementary roles
in photoreceptor inner segments. For example, in Drosophila
myosin V is essential for transporting rhodopsin, and CRB
stabilizes myosin V in order to mediate this transport (Pocha
et al., 2011).

MOVING FROM ANIMAL MODELS TO THE
LABORATORY DISH

Recent analyses of mammalian models of CRB1-linked retinal
diseases provided key insight into the role of CRB proteins in
the retina. A variety of models are now available for studying the
function of both mutant Crb1 andmutant Crb2 (Figure 5). These
models mimic the diverse phenotypes and severities observed in
patients with CRB1-linked retinal dystrophies, including LCA,
early-onset RP, telangiectasia, and mild retinopathies (van de
Pavert et al., 2004; Alves et al., 2013b; Pellissier et al., 2013, 2014b;
Zhao et al., 2015). These models have also provided clues to the
cellular andmolecularmechanisms that underlie the downstream
actions of CRB1 and CRB2 (van de Pavert et al., 2007a; Pellissier
et al., 2013; Alves et al., 2013a). Models that mimic mild
retinopathies include the Crb1-knockout (Crb1−/−) mouse, the
Crb1C249W/− knock-in mouse, the naturally occurring Crb1rd8

mouse, and theMüller glial cell-specificCrb2PdgfrαCre knockout
mouse (Mehalow et al., 2003; van de Pavert et al., 2004, 2007b;
Alves et al., 2014a). All these models have several features in
common, including loss of integrity at the subapical region-
adherens junctions at the outer limiting membrane, displaced
photoreceptors in the subretinal space, and focal upregulation
of glial fibrillary acidic protein (GFAP). Crb2Chx10Cre and
Crb2CrxCre cell-specific knockout mice (which lack Crb2 in
retinal progenitor and photoreceptor cells, respectively) and
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Crb1Crb2F/+Chx10Cre double-knockout mice (which lack Crb1
and have a 50% reduction in Crb2 levels) develop an early-
onset RP phenotype (Alves et al., 2013a,b, 2014a; Pellissier et al.,
2013). The BN-J rat (a mutant line of Brown Norway rat with
a mutation in Crb1) develops an early-onset RP phenotype and
telangiectasia (Zhao et al., 2015). These more severe rodent
models develop photoreceptor half-rosettes in the outer nuclear
layer and relatively early-onset photoreceptor degeneration. The
double-knockout Crb1Crb2Chx10Cre mouse (which lacks both
Crb1 and Crb2 in retinal progenitor cells) develops LCA; the
double-knockout Crb1+/−Crb2Chx10Cre mouse (which lacks
one allele of Crb1 and both alleles of Crb2 in retinal progenitor
cells) also develops LCA (Pellissier et al., 2013). These models are
characterized by an early-onset severe reduction in retinal activity
(measured using electroretinography), a loss of photoreceptor
inner and outer segment layers, a loss of the outer plexiform layer,
fusion between the outer and inner nuclear layers, and ectopic
retinal cells in all nuclear layers.

These three phenotypically distinct sets of mutant CRB
models highlight the important role that CRB proteins play
in various cell types throughout life (Figure 5). These models
also illustrate that the total amounts of CRB proteins expressed
in various cell types can strongly influence the severity of the
phenotype (Alves et al., 2014b; Pellissier et al., 2014b). For
example, a mild decrease in CRB levels leads to a relatively
milder form of retinopathy, whereas greater reductions in
CRB1 and CRB2 lead to early-onset RP; finally, a complete
lack of CRB1 and CRB2 leads to LCA. These reductions in
CRB levels also lead to variations in morphological onset:
postnatally, late or early embryonically respectively. In turn,
this correlates to the duration of the therapeutic window.
Currently, the most suitable models for use in preclinical studies
are the mouse models that develop early-onset RP, as these
models most closely mimic human retinopathies with early-onset
retinal degeneration. Whether the neurodevelopmental retinal
disorganization present in LCA can be improved using gene
therapy—and whether retinal organization can be restored by
restoring CRB levels—is currently unknown. The therapeutic
window for preventing the phenotype in mouse models of CRB1-
associated LCA suggests that in utero application is needed
for introducing gene therapy vectors. In order to demonstrate
proof-of-concept with respect to this neurodevelopment-based
phenotype, viral vectors will require further development, for
example using specific promoters and/or AAV serotypes. This
approach would facilitate the targeting and expression of CRB
proteins during retinal development and maturation.

The animal models discussed above have provided valuable
mechanistic and phenotypic insights while providing a robust
platform for testing gene therapy strategies. However, the
ability to differentiate human adult stem cells in vitro in order
to generate “retina-in-a-dish” and “retinal disease-in-a-dish”
models has created several exciting new opportunities. First,
these models provide a viable alternative to animal models
for addressing basic mechanistic questions regarding ocular
morphogenesis, for example by modulating gene expression in
optic vesicles from patient-derived induced pluripotent stem
cells (iPSCs) (Capowski et al., 2016). Second, assays to measure
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FIGURE 2 | Schematic overview of the domains present in CRB1 (A), CRB2 (B), and CRB3 (C) protein isoforms. The epitopes for the extracellular and

intracellular anti-CRB1 antibodies are also indicated. See Table 2 for further details.

transgene expression and biological activity can be developed
using knockout iPSC-derived retinas (Quinn et al., in press).
Third, these models can be used both to test gene-editing
strategies and for high-throughput drug screening. Finally, these
models can serve as a source of transplantable material for
cell therapy strategies. In all of these applications, the material

used will be based on human cells and is disease-specific.
Many studies using rodent and/or primate models have shown
that photoreceptor cell transplantation is a feasible strategy
for improving retinal function (Lamba et al., 2009; Pearson
et al., 2012; Gonzalez-Cordero et al., 2013; Jayaram et al., 2014;
Shirai et al., 2015). Recently, donor-host cytoplasmic exchange
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FIGURE 3 | Model of the CRB complex in the retina in general, as well as in the human, mouse, and zebrafish retina. (A) General structure of the retina,

which is composed of seven cell types: Müller glial cells (orange), bipolar cells (dark blue), horizontal cells (green), amacrine cells (yellow), retinal ganglion cells (purple),

rods (light blue), and cones (red). The cell types are depicted over an image of a mouse section embedded in Technovit resin. The Crumbs complex is localized at the

subapical region (SAR) above the adherens junction (AJ) between photoreceptors, between Müller glial cells, and between photoreceptor and Müller glial cells. At the

right, the proteins that comprise the Crumbs complex and adherens junctions are shown schematically. (B) Model depicting CRB protein localization in

photoreceptors and Müller glial cells in the human, mouse, and zebrafish retina.

was highlighted as a major pathway used by transplanted
photoreceptors alongside the classically depicted processes of
migration and integration. Because this transfer of cytoplasmic
material between donor and host photoreceptors is not due to
classic cell fusion or facilitated uptake from the extracellular
matrix, it may represent a new therapeutic strategy for use in
retinal disease (Pearson et al., 2016; Santos-Ferreira et al., 2016;
Singh et al., 2016).

Of course, despite their advantages these in vitro models
have several possible shortcomings. For example, the in vitro
retina-in-a-dish model lacks the full macroscopic environment
of the entire organism. In addition, these techniques are time-
consuming and costly, including the need to generate knockout
and/or patient iPSCs which then need to differentiate andmature
to form functional retina-like or diseased retina-like structures.
Generating retina-like organoids from human embryonic stem

cells and iPSCs is relatively autonomous, although neural
induction requires the addition of extrinsic factors such as B-
27 and N-2 supplements. However, providing additional factors
such as retinoic acid andNotch inhibitors can accelerate neuronal
development and maturation (Wiley et al., 2016). The use of in
vitro disease models using human iPSCs has begun to overtake
the use of human embryonic stem cells, due in large part to
ethical concerns and technical issues (Zacharias et al., 2011). It
is also interesting to note that the in vitro model mimics well
the in vivo development. Mouse optic vesicles develop a fully
layered neural retina in just a few weeks; in contrast, human
optic vesicles take at least 180 days to develop a neural retina
with yet immature photoreceptor segments (Zhong et al., 2014).
Therefore, mouse iPSC-derived retinas may be applicable for
more basic, high-throughput initial testing, although differences
in retinal photoreceptor composition between species should be

Frontiers in Neuroscience | www.frontiersin.org 8 April 2017 | Volume 11 | Article 175

http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Neuroscience/archive


Quinn et al. Strategies for CRB1 Gene Therapy

FIGURE 4 | Model depicting the localization of CRB1, CRB2, and CRB3

proteins in retinal cells and structures. CRB1, detected using the

intracellular CRB1 antibody (dark red) and extracellular CRB1 antibody (light

red), is present in both Müller glia cells (MGC) and photoreceptor cells at the

subapical region (SAR) above the adherens junctions (AJ, shown in the inset).

CRB2 (blue) is present in MGCs at the SAR above the AJ. CRB3 (green) is

present at the SAR in MGCs and photoreceptors. CRB3 is also present in the

ellipsoid region of the inner segment, in the dendrites of rod bipolar (BP) cells,

and in pericytes (P) in the blood vessels (BV). See the text for further details.

considered. A more recent method developed for differentiating
cells is the self-formed ectodermal autonomous multi-zone.
This method mimics the development of the entire eye by
differentiating cells into four principal zones to recreate the
retinal pigment epithelium, retina, lens, and ocular surface
ectoderm (Hayashi et al., 2016). This method may be more
suitable for cell-based correction and transplantation, as well as
for use in patients with a disease that involves multiple ocular
tissues.

PERSONALIZED MEDICINE: STILL NOT
YET THE IDEAL SITUATION

The development of a proof-of-concept therapy for a gene
linked to a retinal disease will likely be driven by technological
advances that lead to a more streamlined approach in order
to realize “personalized medicine.” The recent advent of gene-
editing and gene-replacement strategies, improved cell targeting,
the ability to package genes into delivery vectors, and in
vitro models has certainly helped reduce the time needed to
obtain the first proof-of-concept results for other gene-linked

FIGURE 5 | Overview of CRB animal models, showing the duration of

the putative therapeutic window, total Crb1 and Crb2 levels,

phenotype severity, and timing of morphological onset. Based on this

multidimensional pattern, the various models can be grouped into models that

develop mild retinopathies, early-onset retinitis pigmentosa, or Leber’s

congenital amaurosis.

retinal diseases. Over the past several years, the development
of “retinal disease-in-a-dish” modeling approaches has led
to a highly robust and widely used treatment development
pipeline that spans from patient identification to therapy.
Several groups are now focusing their efforts on improving this
pipeline further in order to streamline the in vitro process,
providing several important advantages. First, new, less invasive
sources of human iPSCs become available, providing more
efficient generation of these iPSCs. In practical terms, this
means that iPSCs can be obtained from blood, urine, and
dermal pulp samples, as an alternative to skin biopsies; this
is particularly beneficial in children (Loh et al., 2010; Beltrão-
Braga et al., 2011; Valamehr et al., 2012; Zhou et al., 2012).
Second, patient phenotyping can be improved through the
use of disease models and transcriptomics, providing greater
insight into the underlying pathway dynamics. Third, optimal
human retinal-disease-in-a-dish procedures allow improved
treatment paradigms for the patient (Kaewkhaw et al., 2016;
Völkner et al., 2016). Lastly, this approach allows researchers
to develop strategies designed to correct point mutations and
exon insertions in both dividing and non-dividing neurons using
CRISPR/Cas9-based editing (Bassuk et al., 2016; Suzuki et al.,
2016).

In a typical clinical situation, patients are identified, screened,
and given a diagnosis only after retinal degeneration has already
begun. Thus, the optimal therapeutic window may have already
closed by this time (Figure 6A). Delaying diagnosis can affect
the therapeutic window, reducing the efficacy of potential
gene therapies, ultimately reducing patient outcome. In this
respect, other therapeutic strategies such as cell transplantation,
optogenetics, and the use of a retinal prosthesis might be
more applicable. In the future, this will hopefully become less
of an issue as we understand better the pathophysiology of
retinal diseases and as treatment platforms become routine
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FIGURE 6 | Proposed therapeutic timeline for treating retinal diseases. (A) With current approaches, the optimal therapeutic window is missed in most

patients. Typically, an ophthalmologist becomes involved—and treatment paradigms are initiated—only after the onset of retinal degeneration and vision loss. (B)

Under ideal conditions, a patient at risk for developing an inherited retinal degeneration will be identified well before disease onset and the start of vision loss. This will

enable the clinician to intervene within the therapeutic window, providing a well-planned, personalized intervention.

practice. In the ideal scenario, a patient with a putative
hereditary retinal disease will seek out an ophthalmologist in
order to obtain a diagnosis and genetic screening before the
onset of vision loss. In addition, the use of in vitro “retinal
disease-in-a-dish” approaches—in which the cultured retina is
physiologically stressed—will likely lead to earlier identification
of the retinal phenotype in prospective patients, ultimately
providing a more structured approach to developing and
implementing gene therapies (Figure 6B). After clinical studies
using degenerated retinas demonstrate therapeutic efficacy, this
early-stage planning may also increase the rate of success
by providing treatment at the optimal time during disease
progression.

RETINAL GENE THERAPY AND
CRISPR/CAS9

In recent years, gene therapy has been used successfully
to demonstrate the viability of providing therapeutic—albeit
transient—benefits. Current clinical trials for the RPE65, REP1,
and CNGA3 genes have revealed both the effectiveness and
limitations associated with retinal gene therapy, including the
timing, injection method, and transduction coverage (Bainbridge
et al., 2015; Edwards et al., 2016; Fischer et al., 2016;
https://clinicaltrials.gov; Maguire et al., 2008). However, these

limitations do not necessarily suggest that gene therapy will
not be able to halt the degenerative process, except perhaps at
a much later stage in the disease (Cepko and Vandenberghe,
2013; Cideciyan et al., 2013; Koch et al., 2015; Hurley and Chao,
2016). These technical limitations will likely require a more
technological advance than simply reinventing the wheel. While
gene-augmentation therapies are currently the most used and
most validated strategy, gene editing—in which the faulty gene
is replaced with a healthy copy—is potentially more appropriate,
as it corrects the specific genetic defect within the endogenous
gene. In recent years, the CRISPR/Cas9 approach has largely
replaced previous gene-editing methods, including transcription
activator-like effector nucleases and zinc finger nucleases, and
several research groups are currently competing to establish
proof-of-concept in the retina.

CRISPR/Cas9 is a bacterial defense system in which Clustered
Regularly Interspaced Short Palindromic Repeats (CRISPR)
allow the identification of previously invaded viruses. Upon
binding with a Cas (CRISPR-associated) protein, the resulting
complex then drives the cleavage of DNA in the invading virus.
Artificially synthesized guide RNA can be used together with
a Cas protein to induce double-strand breaks in the target
gene. Despite its growing popularity, however, the CRISPR/Cas9
system is not perfect, as the guide RNA can bind to similar sites
outside of the targeted gene, potentially leading to unspecified
and unintended mutations, thus limiting both its research
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FIGURE 7 | Schematic depiction of CRB-mediated gene therapy strategies. Targeted delivery of CRB exclusively to either the Müller glial cells (MGC) or

photoreceptors (PRC) provides no therapeutic benefit (left and middle panels, respectively); in contrast, delivering CRB to both MGCs and PRCs (right panel) elicits a

response. Intravitreal applied ShH10Y-CMV-CRB drives CRB expression in the subapical region (SAR) of MGCs, whereas subretinal applied AAV9-GRK1-CRB drives

expression at the SAR of photoreceptors. In contrast, subretinal applied AAV9-CMV-CRB drives expression at the SAR of both cell types.

value and clinical potential (Fu et al., 2013). Nevertheless,
CRISPR/Cas9 has been used to correct defects in several
genes, including genes linked to Duchenne muscular dystrophy,
metabolic liver disease, and hemophilia B (Guan et al., 2016;
Long et al., 2016; Maggio et al., 2016; Nelson et al., 2016;
Tabebordbar et al., 2016). Correcting a point mutation requires
that the Cas9 protein, guide RNA, and donor template for
recombination are introduced together into the same cells. This
strategy has been used successfully in patient-specific iPSCs to
repair a point mutation in the RPGR gene associated with X-
linked retinitis pigmentosa (Bassuk et al., 2016). However, to
apply this strategy in vivo currently requires a double-AAV
delivery system, with one AAV containing Cas9 and the other
AAV containing the guide RNA and donor template; thus,
packaging everything into a single delivery vector is the next
challenge (Yang et al., 2016). Another major—albeit recently
solved—drawback associated with this method is that it must
be used in dividing cells. Of course, early treatment of the
diseased retina would be ideal, but ethically this will likely
not become possible until safety and regulatory hurdles are
overcome. In this respect, obtaining proof-of-concept in both
in utero-treated mouse models and in vitro iPS-derived human
disease models may help facilitate this process. Proof-of-concept
has already been demonstrated for genomic editing in non-
dividing photoreceptors using in vivo CRISPR/Cas9-mediated
homology-independent targeted integration. Using the Royal
College of Surgeons (RCS) rat model of retinitis pigmentosa, the

authors showed both an improved morphological outcome and
an improved electroretinography response (Suzuki et al., 2016).
With respect to developing a cell therapeutic approach for use in
later stages of degeneration, CRISPR/Cas is a potentially viable
method, particularly with the off-target effects being minimized
using more specific guide RNAs and an array of other, recently
discovered endonucleases such as Cpf1 (Fu et al., 2014; Zetsche
et al., 2015, 2017). In summary, at least for the foreseeable future,
complete gene replacement using gene-augmentation strategies
appears to be the most viable and validated therapeutic strategy
for inherited retinal degenerations.

IS TARGETING CRB A FEASIBLE GENE
THERAPY APPROACH?

The feasibility of using a CRB-based gene therapy approach
seems to depend upon the ability to restore pre-disease levels
of CRB expression in order to sufficiently stop the degeneration
process. However, unlike other therapies, this approach may
not be as simple as replacing one gene for a similar gene,
nor as simple as targeting the gene replacement to a single
cell type. Although the CRB1 gene was first linked to retinal
disease back in in 1999, it took 16 years to obtain the first
in vivo proof-of-concept for CRB1-based gene therapy. This
long interval was due in part to several factors, including: (i)
the sheer size of the CRB gene sequences, which limited their
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ability to be packaged in AAV vectors, (ii) the need to engineer
vectors with codon optimization, and (iii) the need to develop
minimal promoters in order to express CRB proteins in Müller
glial cells and photoreceptors (Pellissier et al., 2014a). Expressing
the human CRB1 gene in mutant Crb1 mouse models—but
not in wild-type mice—led to an adverse immune response
(Pellissier et al., 2015). It is possible that some CRB1 mutations
lead to nonsense-mediated mRNA decay, leaving these patients
immunologically susceptible to the expression of recombinant
human CRB1 protein. In these patients, T cells primed against
the human wild-type CRB1 protein would be activated by
the new CRB1 epitopes on the surface of antigen-presenting
cells, inducing an immunogenic response. To circumvent this
problem, the most structurally similar CRB member—CRB2—
was expressed at near physiological levels. Expressing human
CRB2 in the retina of mice expressing normal levels of the mouse
homologs had no discernible detrimental effects. Importantly,
overexpressing human CRB2 in photoreceptors and Müller
glial cells with reduced levels of endogenous Crb2 and Crb1
expression improved both cell morphology and retinal activity,
and the human CRB2 protein was expressed at the appropriate
subapical regions; interestingly, expressing human CRB2 in
only one cell type had no effect. This supports our finding
that adequate levels of CRB protein in only a single cell
type is insufficient for maintaining retinal integrity (Figure 7;
Pellissier et al., 2015). It is also important to ensure that the
CRB2 protein is localized correctly at the subapical region
when expressed in both photoreceptors and Müller glial cells.
When expressed only in photoreceptors, CRB2 localized at
the tip of the inner segments at higher levels than in the
subapical region (Pellissier et al., 2015). This highlights the
need for CRB to be expressed in both Müller glial cells and
photoreceptors and to localize correctly to the subapical region,
thereby promoting the maintenance of adherens junctions via
the cadherin-catenin complex. In addition, this underscores our
current lack of knowledge regarding the physiological relevance
of CRB homomeric and perhaps heteromeric interactions via
their extracellular domains. Although these CRB-mediated cell-
cell interactions are poorly understood in mammals, homomeric
interactions between Crb2 extracellular domains in zebrafish
photoreceptors have been suggested to promote cell-cell adhesion
(Zou et al., 2012). In summary, although Müller glial cell-
Müller glial cell interactions and photoreceptor-photoreceptor
interactions alone are likely not sufficient for maintaining
retinal structure and function in patients with CRB1-linked
mutations, Müller glial cell-photoreceptor interactions may be
sufficient.

This brings us to the clinically relevant question. Given
that the human retina contains significant levels of CRB2 in
Müller glial cells, would CRB2-mediated gene therapy specifically
targeted at photoreceptors be sufficient to rescue function
in patients, or will the levels of CRB2 in Müller glial cells
also need to be increased? As discussed above, the levels
of functional CRB1 protein are reduced in Müller glial cells
and photoreceptors in patients with mutations in the CRB1
gene. The question remains, will increasing CRB2 expression

in photoreceptors be sufficient to restore the properties of
CRB-CRB-mediated Müller glial-photoreceptor interactions as
in healthy persons, and will this mimic the CRB2-CRB2-
mediated Müller glial cell-photoreceptor interactions observed
in retinal CRB1-deficient mice and zebrafish (which develop
late-onset retinal degeneration and no retinal degeneration,
respectively). This train of thought gives rise to reservations
regarding moving forward with human CRB1-directed therapy
targeted to both cell types (although this strategy might be a
viable option for a specific subset of patients who lack T cells
directed against CRB1). Given the high levels of both structural
and functional overlap between CRB1 and CRB2, as well as the
apparent need to express CRB proteins in both photoreceptors
and Müller glial cells in order to maintain a functional retina, we
believe that humanCRB2-mediated gene therapymay represent a
safe and viable treatment for fighting blindness due to mutations
in CRB1.

FUTURE DEVELOPMENTS

Thanks to the array of mouse models currently available
for addressing questions regarding CRB function and protein
interactions, together with the proof-of-concept showing the
feasibility of gene therapy, we now have a number of
tools at our disposal to help launch CRB-mediated therapy
into preclinical trials, ideally in the near future. Moreover,
several cutting-edge methods and techniques are now available,
including: (i) CRISPR/Cas9, to correct specific point mutations
in patients; and (ii) the ability to differentiate human iPSCs in
order to generate humanized retinal models for investigating
the pathways that underlie retinal disease, to test vector-
mediated gene therapies using potency assays, and to serve
as a viable source of transplant tissue. Together, these
powerful new technologies will accelerate the field toward
developing treatment options and addressing fundamental
questions.
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