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GFAP-TK mice are widely used in studies on neurogenesis and reactive astrocytes.

Previous studies reported that GCV treatment in GFAP-TK mice resulted in

reduced neurogenesis and deletion of proliferating GFAP-expressing astrocytes without

affecting mature GFAP-expressing astrocytes. In the present study, we found that

GFAP- and vimentin-expressing astrocytes were dramatically increased in the cortex

and hippocampus with or without GCV treatment in a line of GFAP-TK mice (Jackson

Laboratory, Stock No. 005698), while the neurons and microglia were not affected.

In a second line of GFAP-TK mice (MMRRC, Stock No. 037351-UNC) generated in

Dr. Heather Cameron’s laboratory in NIH, however, no difference in GFAP and vimentin

expression was found in both hippocampus and cortex, regardless of GCV treatment or

not. Furthermore, enhanced expression of aquaporin 4 (AQP4) was found in the cortex

and hippocampus of the GFAP-TKmice from Jackson lab but not in the brain of GFAP-TK

mice from NIH. Our data suggested that we should be careful to select different lines of

GFAP-TK mice to study adult neurogenesis or reactive astrocytes.
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INTRODUCTION

New neurons could be continuously generated in the hippocampus of adult mammals (Spalding
et al., 2013; Bond et al., 2015; Kempermann et al., 2015; Bonfanti, 2016). The newborn neurons
integrate into the pre-existing neural circuits (Van Praag et al., 2002; Toni et al., 2008; Vivar et al.,
2012; Restivo et al., 2015; Sultan et al., 2015; Toni and Schinder, 2016) and are associated with
several cognitive functions such as learning and memory, pattern separation, and mood regulation
(Clelland et al., 2009; Deng et al., 2010; Ming and Song, 2011; Sahay et al., 2011; Gu et al., 2012;
Christian et al., 2014). Abnormal generation of new neurons in the adult hippocampus was also
implicated in neurodegenerative disorders, epilepsy, and depression (Scharfman and Hen, 2007;
Chen et al., 2008; Demars et al., 2010; Snyder et al., 2011). Therefore, it is of specially interesting
to investigate whether manipulating the generation of new born neurons in the adult brain could
affect the pathogenesis of different neurological disorders.

A variety of methods have been developed to regulate the neurogenesis in adult brain. Enriched
environment and physical exercise, for example, could significantly increase the number of
newborn neurons in the hippocampus of adult mice or rats (Wolf et al., 2006;Mirochnic et al., 2009;
Valero et al., 2011). Intraperitoneal injection of MAM (Methylazoxymethanol acetate), a mitotic
inhibitor, however, greatly reduced the number of newborn neurons in the adult hippocampus
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(Hsiao et al., 2014; Liu et al., 2016). Recently, optogenetics and
chemogenetics were also used to regulate the activity of newborn
neurons (Temprana et al., 2015). On the other hand, several lines
of transgenic mice such as GFAP-TK and nestin-TK mice were
generated and they have been used together with ganciclovir
(GCV) treatment to inhibit adult neurogenesis (Singer et al.,
2009; Snyder et al., 2011; Cho et al., 2015). GFAP is a marker of
adult neural stem cells and astrocytes. Therefore, both astrocytes
and neural stem cells could potentially be affected when GFAP-
TK mice were used in different studies.

In the present study, we compared the expression of several
glial and neuronal markers between two lines of GFAP-TK
mice with or without GCV treatment. We found that adult
neurogenesis was effectively inhibited in both lines of GFAP-TK
mice after GCV treatment. However, the expression of GFAP
and vimentin was dramatically increased in the cortex and
hippocampus of one GFAP-TK line but not in the other. Our
results suggested that we should be careful to select different
lines of GFAP-TK mice to study adult neurogenesis or reactive
astrocytes.

MATERIALS AND METHODS

Animals
The first line of GFAP-TK mice (TK-1) were purchased from the
Jackson Laboratory (Stock No. 005698). These mice were on a
mixed C57BL/6J; C57BL/6N genetic background, and transgene-
derived HSV-TK in these mice was present exclusively in cells
expressing endogenous Gfap (Bush et al., 1998; Garcia et al.,
2004). The second line of GFAP-TK mice (Snyder et al., 2011)
(TK-2) (MMRRC, Stock No. 037351-UNC) were provided by
Dr. Tianming Gao (Southern Medical University, Guangzhou,
China) with permission from Dr. Heather Cameron (Section of
Neural Plasticity, NIMH/NIH). These mice were bred on amixed
C57Bl/6:CD-1 background. All mice were housed under standard
conditions at 22◦C and a 12 h light: dark cycle with free access to
food and water. The study as well as all experimental protocols
were reviewed and approved by the Institutional Animal Care
and Use Committee of the Zhejiang University.

Drug Treatment
For ganciclovir (GCV, Roche; in 0.9% sterile saline) treatment,
osmotic mini-pumps (Model 2004; Alzet; 0.25 µl/h release rate)
containing different dosage of GCV (0, 10, 20, 40mg kg−1 per
day) were implanted subcutaneously in the back of mice (2.5
months old) after anesthetization with 1% pentobarbital sodium.
Mice were treated with GCV for 4 weeks.

Immunostaining
Animals were perfused transcardially with ice-cold saline and
brains were removed and immersed into 4% PFA in PBS.
After dehydration in 30% sucrose in PBS, coronal sections

Abbreviations: GFAP, glial fibrillary acidic protein; AQP4, aquaporin 4;

HSV-TK, herpes simplex virus thymidine kinase; GCV, ganciclovir; MAM,

Methylazoxymethanol acetate; DCX, doublecortin; DG, dentate gyrus; SGZ,

subgranular zone.

(30 µm in thickness, one in tenth series) were prepared
with a sliding microtome (Leica). For immunofluorescence
staining, free floating sections were incubated with the following
primary antibodies: goat anti-DCX (sc-8066, Santa Cruz;
1:100), rabbit anti-Ki67 (s2532, Sigma; 1:500), rabbit anti-
Iba1 (019-19741, Wako; 1:1,000), rabbit anti-NeuN (MABN140,
Millipore; 1:1,000), rabbit anti-MAP2 (4542, Cell Signaling;
1:500), rabbit anti-AQP4 (AQP-004, Alomone labs; 1:1,000)
followed by incubation with appropriate secondary antibodies
conjugated with 488 (Vector Laboratories, 1:500) or Cy3 or
594 (Jackson, 1:500). For immunohistochemical staining, brain
sections were incubated with 3% H2O2 in methanol, to quench
endogenous peroxidase activity followed by incubation with
primary antibodies: mouse anti-GFAP (G3893, Sigma; 1:2,000)
and rabbit anti-vimentin (ab92547, abcam; 1:1,000). After
washing, sections were incubated with biotinylated goat anti-
mouse or rabbit (1:200, Vector Laboratories). Binding of the
antibodies was detected with the Elite kit (Vector Laboratories)
with diaminobenzidine (Sigma) and H2O2 for development. All
immunostaining analyses were done blindly.

Quantification
For cell counting, images were obtained with digital camera
(Olympus BX53, Japan). The numbers of GFAP-positive and
vimentin-positive cells in the cortex were determined by
counting positive cells in two areas (400 × 400 µm) of each
section in every 10th serial coronal section throughout the
rostrocaudal extent of the cortex. The numbers of GFAP-positive
cells were determined by counting positive cells in the DG, hilus,
CA3, and CA1–2 of the hippocampus. The numbers of GFAP-
positive and vimentin-positive cells were normalized to the cross-
sectional area of the region involved and expressed per mm2. At
least three coronal sections were analyzed per mouse, and the
average of the individual measurements was used to calculate
group means. The DCX-positive cells and Ki67-positive cells
from every 10th section covering the entire area of the DG were
counted with a fluorescence microscope (Olympus BX53, Japan)
with a ×40 objective. At least five sections from each side of the
DG were counted per animal. The number of animals in each
group was indicated in the figure legends.

For quantification of Iba1, NeuN, MAP2, and AQP4, three
coronal sections (300 µm apart) per mouse were selected.
Optical density was determined with image analysis software and
averaged in two areas (0.16mm2 each) of the cortex or of the
hippocampus. The fluorescence intensity was quantified as the
mean gray value of the same section. The number of animals in
each group was indicated in the figure legends.

Western Blotting Analysis
Mouse cortex or hippocampal samples were homogenized
in RIPA buffer containing 10mM HEPES (pH 7.4), 150mM
NaCl, 50 mM NaF, 1mM EDTA, 1mM dithiothreitol, 1mM
phenylmethylsulfonyl fluoride, 1mM Na3VO4, 10µg/ml
leupeptin, 10µg/ml aprotinin, and 1% SDS. Equal amounts
of protein (by BCA assay) were resolved by SDS-PAGE and
transferred to nitrocellulose membranes. After blocking,
membranes were labeled with rabbit anti-AQP4 (AQP-004,
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FIGURE 1 | Effects of GCV treatment on ablation of adult-born neurons in the dentate gyrus of TK-1 and TK-2 mice. (A) Representative photomicrographs

of DCX+ cells and Ki67+ cells in the dentate gyrus of TK-1 and TK-2 mice with GCV treatment at 0, 10, 20, 40mg kg−1 per day. Scale bar, 200µm. (B,C)

Quantification of the number of DCX positive cells in the dentate gyrus of TK-1 mice (n = 3 mice, 5 brain slices for each mouse) and TK-2 mice (n = 3 mice, 5 brain

slices for each mouse) with GCV treatment at 0, 10, 20, 40mg kg−1 per day. (D,E) Quantification of the number of Ki67 positive cells in the dentate gyrus of TK-1

mice (n = 3 mice, 5 brain slices for each mouse) and TK-2 mice (n = 3 mice, 5 brain slices for each mouse) with GCV treatment at 0, 10, 20, 40mg kg−1 per day.

Data represent mean ± SEM,*P < 0.05, ***P < 0.001 (one-way ANOVA with post hoc Turkey’s multiple comparison test).
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FIGURE 2 | The expression of GFAP and vimentin was dramatically increased in the hippocampus and cortex of 3-month-old TK-1 mice. (A)

Representative photomicrographs of GFAP+ cells in the cortex and hippocampus of 3-month-old TK-1 and TK-2 mice and their age-matched controls. Scale bar,

300µm. (B) Quantification of the number of GFAP+ cells in the cortex of 3-month-old TK-1 (n = 11 mice, 3 brain slices per mouse) and TK-2 mice (n = 8 mice, 3

brain slices per mouse) and their age-matched controls (n = 4 mice per group, 3 brain slices per mouse). (C) Quantification of the number of vimentin+ cells in the

cortex of 3-month-old TK-1 (n = 11 mice, 3 brain slices per mouse) and TK-2 mice (n = 9 mice, 3 brain slices per mouse) and their age-matched controls (n = 4 mice

per group, 3 brain slices per mouse). (D) Protein bands of GFAP and vimentin, GAPDH severed as the loading control. (E) Quantification of the levels of GFAP in the

hippocampus of 3-month-old TK-1 (n = 6 mice) and TK-2 mice (n = 5 mice) and their age-matched controls (n = 4 mice per group). (F) Quantification of the levels of

vimentin in the hippocampus of 3-month-old TK-1 (n = 7 mice) and TK-2 mice (n = 8 mice) and their age-matched controls (n = 3 mice per group). Data represent

mean ± SEM, *P < 0.05, **P < 0.01, ***P < 0.001 (unpaired t-test).

Alomone labs; 1:1,000), mouse anti-GFAP (G3893, Sigma;
1:5,000), rabbit anti-vimentin (ab92547, abcam; 1:1,000), goat
anti-Iba1 (016-20001, Wako; 1:200), or mouse anti-GAPDH
antibody (sc-137179, Santa Cruz; 1:10,000) and incubated with
HRP-goat anti-rabbit antibody (GAR007, LiankeBio; 1:5,000)
or goat anti-mouse antibody (GAM007, LiankeBio; 1:5,000).
Bands were visualized by enhanced chemiluminescence, and the
densitometry measurements of the bands were acquired from
scanned images with Quantity One software (Bio-Rad).

Statistical Analyses
All data are presented as mean ± SEM. Differences among
multiple means with one variable were evaluated by one-
way ANOVA and the Tukey-Kramer post-hoc test. Differences
between two means were assessed with unpaired, two-tailed t-
test. Only values with p < 0.05 were accepted as significant.
Statistical analyses were performed with Graphpad Prism 5 (San
Diego, CA).

RESULTS

Effects of GCV Treatment on Ablation of
Adult-Born Neurons between TK-1 and
TK-2 Mice
Both TK-1 and TK-2 mice (2.5-month-old) were treated with
different dosages of GCV or vehicle for 4 weeks. One week
after the completion of GCV treatment, mice were perfused
and processed for immunostaining. Results of doublecortin
(DCX) staining revealed that the number of adult-born immature
neurons in the dentate gyrus was significantly reduced at 10,
20, 40mg kg-1 per day in TK-1 mice (Figures 1A,B). However,
the number of adult-born immature neurons in the dentate
gyrus of TK-2 mice was only reduced with GCV treatment at
20, 40mg kg-1 per day (Figures 1A,C). Similarly, Ki67 staining
showed that the number of proliferating neural progenitors was
also dramatically reduced in the DG of TK-1 mice with GCV
treatment at 10, 20, 40mg kg-1 per day and of TK-2 mice
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FIGURE 3 | The increased expression of GFAP in the cortex and hippocampus of 3-month-old TK-1 mice was found between 3 and 5 months old of

age (A–F) Representative photomicrographs of GFAP+ cells in the cortex and hippocampus of 1.5-, 2-, 3-, 5-, 6-, and 8-month-old TK-1 mice. Scale bar, 500µm.

(G) Schematic depicting regions of the cortex and hippocampus analyzed for this study. (H) Quantification of the number of GFAP+ cells in the cortex of 1.5-, 2-, 3-,

5-, 6-, and 8-month-old TK-1 mice (n = 3 mice per group, 3 brain slices per mouse). (I–L) Quantification of the number of GFAP+ cells in the hippocampus of 1.5-,

2-, 3-, 5-, 6-, and 8-month-old TK-1 mice (n = 3 mice per group, 3 brain slices for each mouse). (I), CA1-2; (J), CA3; (K), DG; (L), hilus. Data represent mean ±

SEM,*P < 0.05, **P < 0.01, ***P < 0.001 (one-way ANOVA with post hoc Turkey’s multiple comparison test).

with GCV treatment at 20, 40mg kg-1 per day (Figures 1D,E).
These data suggested that the sensitivity to GCV treatment on
adult-born neurons was different between TK-1 and TK-2 mice.

The Expression of GFAP and Vimentin Was
Increased in the Cortex and Hippocampus
of TK-1 Mice
To determine whether astrocytes were affected in the brain of
GFAP-TK mice, TK-1, and TK-2 mice at different ages were

used for staining of markers for astrocytes. Our results showed
that the number of GFAP- and vimentin-positive astrocytes was

dramatically increased in the cortex and hippocampus of 3-

month-old TK-1 mice, but not in the TK-2 mice (Figures 2A–C).

Western blot analysis confirmed that the expression of GFAP and

vimentin was greatly increased in the hippocampus of 3-month-
old TK-1 mice compared with that of both age-matched controls
and TK-2 mice (Figures 2D–F). Interestingly, the increased
expression of GFAP in the cortex and hippocampus of TK-1
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FIGURE 4 | The expression of Iba1 was not affected in the cortex and hippocampus of both TK-1 and TK-2 mice. (A) Representative photomicrographs of

Iba1+ cells in the cortex and hippocampus of 3-month-old TK-1 and TK-2 mice and their age-matched controls. Scale bar, 200µm. (B,C) Fluorescence intensity was

quantified by using image-analysis software in the cortex and hippocampus. (n = 3 mice per group, 3 brain slices for each mouse). (D) Protein bands of Iba1 in the

cortex and hippocampus, GAPDH severed as the loading control. (E) Quantification of the level of Iba1 in the cortex of 3-month-old TK-1 (n = 4 mice) and TK-2 mice

(n = 4 mice) and their age-matched controls (n = 4 mice per group). (F) Quantification of the level of Iba1 in the hippocampus of 3-month-old TK-1 (n = 4 mice) and

TK-2 mice (n = 4 mice) and their age-matched controls (n = 4 mice per group). Data represent mean ± SEM.

mice was only found between 3 and 5 months old of age
(Figure 3).

The Expression of iba1 Was Not Changed
in TK-1 and TK-2 Mice
To determine whether microglia was affected in GFAP-TK mice,
we examined the expression of Iba1 by immunostaining and
western blotting in the cortex and hippocampus of 3-month-
old TK-1 and TK-2 mice and their age-matched controls. No

difference of Iba1 expression was found in the hippocampus and
cortex of TK-1 and TK-2 mice compared with their controls
(Figure 4), suggesting that microglia were not affected in the
GFAP-TK mice.

The Expression of NeuN and MAP2 Was
Not Affected in both TK-1 and TK-2 Mice
To determine whether neurons were affected in GFAP-
TK mice, we checked the expression of NeuN and MAP2
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FIGURE 5 | The expression of NeuN and MAP2 was not affected in the cortex and hippocampus of both TK-1 and TK-2 mice (2). (A) Representative

photomicrographs of NeuN+ cells in the cortex and hippocampus of 3-month-old TK-1 and TK-2 mice and their age-matched controls. (B) Representative

photomicrographs of MAP2+ cells in the cortex and hippocampus of 3-month-old TK-1 and TK-2 mice and their age-matched controls. Scale bar, 200µm. (C,D)

Quantification of the fluorescence intensity of NeuN positive signals in the cortex and hippocampus. (n = 3 mice per group, 3 brain slices for each mouse). (E,F)

Quantification of the fluorescence intensity of MAP2 positive signals in the cortex and hippocampus. (n = 3 mice per group, 3 brain slices for each mouse). Data

represent mean ± SEM.

by immunofluorescent staining. No difference in NeuN
and MAP2 expression was found in the hippocampus
and cortex of both TK-1 and TK-2 mice (3-month-
old) compared their age-matched controls (Figure 5),
suggesting that neurons were not affected in the GFAP-TK
mice.

The Expression of AQP4 Was Increased in
TK-1 Mice
AQP4 is abundantly expressed in astrocytic vascular end-feet and
plays important roles in regulating the physiological functions
of astrocytes (Nedergaard, 2013). To determine whether AQP4
expresison was affected in the GFAP-TK mice, we performed
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immunofluorescent staining and western blot to examine the
expression of AQP4. As a result, the expression of AQP4 was
increased in the cortex and hippocampus of 3-month-old TK-1
mice compared with that of both age-matched controls and TK-2
mice (Figure 6).

DISCUSSION

Several lines of GFAP-TK mice have been developed and they
were widely used in studies on neurogenesis and reactive
astrocytes (Garcia et al., 2004; Snyder et al., 2005). Previous
studies reported that GCV treatment in GFAP-TK mice resulted

in reduced neurogenesis and deletion of proliferating GFAP-
expressing astrocytes without affecting mature GFAP-expressing
astrocytes (Garcia et al., 2004; Lepore et al., 2008). In the
present study, we found that GCV treatment effectively inhibited
the neurogenesis in the adult hippocampus of the GFAP-
TK mice purchased from the Jackson Laboratory (Stock No.
005698). However, GFAP- and vimentin-expressing astrocytes
were dramatically increased in the cortex and hippocampus of
this line of GFAP-TK mice with or without GCV treatment,
suggesting that both adult neural stem cells andmature astrocytes
were affected. In a second line of GFAP-TK mice (MMRRC,
Stock No. 037351-UNC) generated in Dr. Heather Cameron’s

FIGURE 6 | The expression of AQP4 was increased in the cortex and hippocampus of 3-month-old TK-1 mice. (A) Representative photomicrographs of

AQP4 expression in the cortex and hippocampus of 3-month-old TK-1 and TK-2 mice and their age-matched controls. Scale bar, 200µm. (B,C) Fluorescence

intensity was quantified by using image-analysis software in the cortex and hippocampus. (n = 3 mice per group, 3 brain slices for each mouse). (D) Protein bands of

AQP4 in the cortex and hippocampus, GAPDH severed as the loading control. (E) Quantification of the level of AQP4 in the cortex of 3-month-old TK-1 (n = 7 mice)

and TK-2 mice (n = 4 mice) and their age-matched controls (n = 4 mice per group). (F) Quantification of the level of AQP4 in the hippocampus of 3-month-old TK-1

(n = 7 mice) and TK-2 mice (n = 4 mice) and their age-matched controls (n = 4 mice per group). Data represent mean ± SEM, *P < 0.05 (unpaired t-test).
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laboratory in NIH (Snyder et al., 2011), GCV treatment induced
dramatic depletion of DCX-positive cells in the dentate gyrus of
adult GFAP-TK+ mice, suggesting effective inhibition of adult
neurogenesis. However, no difference of GFAP and vimentin
expression was observed in both hippocampus and cortex
between GFAP-TK+ and GFAP-TK− mice, regardless of GCV
treatment or not, suggesting that mature astrocytes were not
affected in this line of GFAP-TK mice. Although we did not have
an explanation for the difference mentioned above, the different
genetic background of the two lines of mice could be one of
the reasons, and our data suggested that the GFAP-TK mice
(MMRRC, Stock No. 037351-UNC) generated in Dr. Heather
Cameron’s laboratory were better than the GFAP-TK mice
purchased from the Jackson Laboratory (Stock No. 005698) for
exploring the roles of adult neurogenesis.
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