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The two main drivers of Alzheimer’s disease (AD), amyloid-β (Aβ) and

hyperphosphorylated Tau (p-Tau) oligomers, cooperatively accelerate AD progression,

but a hot debate is still ongoing about which of the two appears first. Here we present

preliminary evidence showing that Tau and p-Tau are expressed by untransformed

cortical adult human astrocytes in culture and that exposure of such cells to an Aβ42

proxy, Aβ25−35, which binds the calcium-sensing receptor (CaSR) and activates its

signaling, significantly increases intracellular p-Tau levels, an effect CaSR antagonist

(calcilytic) NPS 2143 wholly hinders. The astrocytes also release both Tau and p-Tau by

means of exosomes into the extracellular medium, an activity that could mediate p-Tau

diffusion within the brain. Preliminary data also indicate that exosomal levels of p-Tau

increase after Aβ25−35 exposure, but remain unchanged in cells pre-treated for 30-min

with NPS 2143 before adding Aβ25−35. Thus, our previous and present findings raise

the unifying prospect that Aβ•CaSR signaling plays a crucial role in AD development and

progression by simultaneously activating (i) the amyloidogenic processing of amyloid

precursor holoprotein, whose upshot is a surplus production and secretion of Aβ42

oligomers, and (ii) the GSK-3β-mediated increased production of p-Tau oligomers which

are next released extracellularly inside exosomes. Therefore, as calcilytics suppress

both effects on Aβ42 and p-Tau metabolic handling, these highly selective antagonists

of pathological Aβ•CaSR signaling would effectively halt AD’s progressive spread

preserving patients’ cognition and life quality.
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INTRODUCTION

Late onset (non-familial) Alzheimer’s disease (LOAD) is the most
common dementia afflicting millions of people worldwide. It is
characterized by extracellular deposits of fibrillar Aβ42 peptides
(neuritic or senile plaques) and by intracellular pre-tangles and
neurofibrillary tangles (NFTs) of phosphorylated Tau (p-Tau)
protein (Selkoe, 2008a,b; Grinberg et al., 2009; Braak et al.,
2011; Attems et al., 2012; Elobeid et al., 2012; Braak and Del
Tredici, 2013). LOAD neuropathology develops stealthily during
20–40 years before its clinical emergence (Masdeu et al., 2012).
It is thought to be driven by the tandem toxic activities of
oligomers of amyloid β (Aβ-os) and p-Tau (p-Tau-os) let out
from affected cell processes via exocytosis and/or exosomes (or
extracellular vesicles) (Saman et al., 2012). Both released Aβ-os
and p-Tau-os thus reach adjacent or connected cells, inducing
them to release in their turn newly produced Aβ-os and p-
Tau-os. Thus, LOAD spreads from entorhinal cortex layer II to
upper cognitive cortical areas killing unreplaceable neurons and
disconnecting their networks in its path (Morrison and Hof,
1997; Selkoe, 2008a,b; Khan et al., 2014). Notably, p-Tau can be
neurotoxic all by itself too in advanced AD and in tauopathies
caused by mechanisms independent of Aβ-os or senile plaques
(Medeiros et al., 2013). Which of the two main AD toxic drivers
appears first is controversial. According to some, a very early
surfacing and spread of intraneuronal p-Tau pathology (i.e., pre-
tangles, NFTs, and neuropil threads) from the brainstem to the
cerebral cortex occurs in the total absence of extra-neuronal
Aβ42 accumulation (Braak et al., 2013; see also below). However,
others hold that poorly detectable soluble Aβ42-os are the earliest
LOAD drivers (Selkoe, 2008a,b; Crimins et al., 2013; Kayed
and Lasagna-Reeves, 2013), bringing about p-Tau-os, NFTs,
and synaptic pathology in the total absence of senile plaques
(reviewed by Klein, 2013). Indeed, the para-hippocampal and
inferior temporal gyri of 8-year-old Down’s syndrome children
already exhibited Aβ deposits (Leverenz and Raskind, 1998). In
fact, they had a chromosome 21 tri-ploidy and three copies of
the Aβ precursor holoprotein (hAPP) gene which made them
susceptible to develop an early AD neuropathology. In long-term
in vitro three-dimensional cultures of neural cells, Aβ-os build-
up preceded any p-Tau-os detection further strengthening the
view Aβ-os are the first AD drivers (Choi et al., 2014) while also
stressing the usefulness of preclinical in vitromodels to elucidate
molecular mechanisms underlying AD development.

Accordingly, p-Tau-os seem to occupy the second tier in the
hierarchy of AD drivers (Clavaguera et al., 2009, 2013a,b; Gerson
and Kayed, 2013). Under physiological conditions, Tau is a
soluble microtubule-associated phosphoprotein (MAP) strongly
expressed in neurons (Goedert, 1993) and human astrocytes
(Ferrer et al., 2002; Tanji et al., 2003;Wakabayashi et al., 2006, and
present results). Tau moiety encompasses a microtubule-binding
C-terminal repeat domain, a central proline-rich domain, and
an N-terminal domain interacting with membranes and/or other
proteins. In human adult brain, an alternatively spliced single
gene allows the expression of six Tau isoforms, of which 4RTau
and 3RTau are the most intensely produced and phosphorylated
ones (Hanger et al., 1998; Hasegawa, 2006). Soluble Tau

monomers are physiologically gathered within neurons’ axons
where they tightly bind, stabilize, and help elongatemicrotubules,
besides associating with the plasma membrane (Pooler and
Hanger, 2010). They partake in the fast anterograde transport
(FAT) of various cargos (e.g., mitochondria, synaptic vesicles) on
kinesin motors linked to microtubule trackways. Tau is rapidly
and reversibly phosphorylated by several protein kinases and
phosphatases. Soluble Tau purified from normal human brains
is phosphorylated at about 10 sites only (Hanger et al., 2007;
Sergeant et al., 2008). Yet, Tau is endowed with 85 serine and
threonine phosphorylable sites, and glycogen synthase kinase
(GSK)-3β is the main kinase for 45 of them in poorly soluble
p-Tau (Buée et al., 2000; Sergeant et al., 2008; Tavares et al.,
2013). When GSK-3β hyper-phosphorylates Tau, the latter’s
ability to promote normal microtubule assembly wanes (Utton
et al., 1997). Then p-Tau detaches from tubulin, destabilizing
and disassembling microtubules (Lindwall and Cole, 1984;
Drechsel et al., 1992). Hence, increases in p-Tau due to GSK-
3β activity surges are typical marks of blunted physiological
functions (e.g., axonal transport, etc.) in neurons (LaPointe
et al., 2009). In AD and various tauopathies, p-Tau accumulates
intracellularly as filaments, pre-tangles, and insoluble NFTs, and
hyper-reacts to anti-p-Tau-specific antibodies (Greenberg and
Davies, 1990; Ballatore et al., 2007; Gendron and Petrucelli,
2009). Not surprisingly, GSK-3β colocalizes with NFTs in AD
and AD-related disorders (Hanger et al., 1998; Ferrer et al.,
2002; Hanger and Noble, 2011). Notably, p-Tau from AD brains
coimmunoprecipitates with a fraction of Tau, revealing that AD’s
p-Tau-os are Tau/p-Tau mixtures (Köpke et al., 1993) just as AD’s
Tau filaments or fibrils are (Alonso et al., 1997). The pathological
role of GSK-3β-phosphorylated Tau is supported by results in
mouse transgenic AD or tauopathy models, in which GSK-3β
inhibition lessened Tau phosphorylation and aggregation and
axonal degeneration (Serenó et al., 2009; Leroy et al., 2010). And,
SB-415286, a specific inhibitor of GSK-3β activity, decreased p-
Tau levels and kept cultured primary neurons viable (Gross et al.,
2001).

According to Braak et al. (2011) and Braak and Del Tredici
(2012, 2013), abnormal p-Tau-os in non-fibrillar form were seen
within proximal axons and AT-8 antibody-positive pre-tangles
were observed within the somata and dendrites of projection
neurons of brainstem locus coeruleus/ subcoeruleus of young boys
well before they became manifest in the hippocampal trans-
entorhinal region, the putative site of AD onset (Khan et al.,
2014). The authors posited AD begins from brainstem neurons
which inject neurotoxic p-Tau-os into higher cortical regions
(Hertz, 1989; Agnati et al., 1995)—a process starting AD’s “Braak
stages” (Braak et al., 2011; Braak and Del Tredici, 2012, 2013).
Concurrently, others set forth the concept of trans-synaptically
transmittable, prion-like, soluble Tau-os which by destroying
first synapses, then axons, and finally neurons would disconnect
neuronal networks (Clavaguera et al., 2009, 2013a,b; Lasagna-
Reeves et al., 2012; de Calignon et al., 2012; Gerson and Kayed,
2013). However, p-Tau-os cannot cross synaptic terminals as
prions do (Stranahan and Mattson, 2010).

Hitherto, as with Aβs, neurons were held as the main source
of Tau/p-Tau (Wu et al., 2013; Avila et al., 2014). But what about
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other neural cell types? Wakabayashi et al. (2006) reported the
co-localization of Aβ and p-Tau in the subiculum and entorhinal
cortex astrocytes of a patient with corticobasal degeneration.
They interpreted this finding as follows: “the phagocytosis of Aβ

coincides with production of phospho-Tau in the same reactive
astrocytes.” However, as we previously showed, untreated cortical
untransformed adult human astrocytes produce basal amounts of
Aβ42 and, once challenged with exogenous fibrillar (f)Aβ25−35,
an Aβ42 proxy, make and release significantly greater amounts
of endogenous Aβ42/Aβ42-os (Armato et al., 2013; Dal Prà et al.,
2015; Chiarini et al., 2016). We also demonstrated exogenous
fAβ25−35-os bind the astrocytes’ and neurons’ calcium-sensing
receptors (CaSRs) (Dal Prà et al., 2014a,b) and activate their
signaling pathways heightening the production and secretion
of endogenous Aβ42/Aβ42-os. In fact, a specific CaSR agonist
(calcimimetic), NPS R-568 (Nemeth and Goodman, 2016),
mimicked the enhancing effect of exogenous fAβ25−35-os on
Aβ42/Aβ42-os secretion (Armato et al., 2013). Conversely, a
highly selective CaSR antagonist (calcilytic), NPS 2143 (Nemeth
and Goodman, 2016), fully quelled the fAβ25−35-os-induced
surplus de novo production and secretion of Aβ42/Aβ42-os in
both human neurons and astrocytes (Armato et al., 2013; Dal
Prà et al., 2015; Chiarini et al., 2016). Interestingly, human MIC
neuroblasts secrete Tau enclosed within exosomes which are
found in human cerebrospinal fluid too (Saman et al., 2012).
Even plasma astrocyte-derived exosomes contain p-Tau proteins
(Goetzl et al., 2016). And, neurons uptake exogenous Tau
proteins via endocytosis into the somatodentritic compartments
or axon termini from which they are conveyed to various cell
sites (Wu et al., 2013). Altogether, these data indicated the urgent
need to reassess the relationship between Aβ peptides exposure
and p-Tau production and release in adult human astrocytes
and neurons. Therefore, we undertook a pilot study using as
model cultured human astrocytes (Armato et al., 2013) whose
preliminary results we herein report. Details on materials and
methods we used are in Supplementary Materials.

RESULTS

Aβ•CaSR Signaling Increases GSK-3β Tau
Kinase Activity in Normal Adult Human
Astrocytes
An ongoing balance between phosphorylation and de-
phosphorylation of some of its serine (Ser) and tyrosine
(Tyr) residues controls GSK-3β enzymatic activity: relative
increases in Tyr216 phosphorylation upregulate and, conversely,
of Ser9 phosphorylation downregulate it (Forde and Dale,
2007) heightening or reducing, respectively, p-Tau levels (Qian
et al., 2010). In human adult astrocyte lysates an exposure to
exogenous fAβ25−35 nearly doubles between 0 and 48-h the
p-Tyr216GSK-3β/total GSK-3 ratio values (Figures 1A,B) while
simultaneously curtailing p-Ser9GSK-3β/total GSK-3 ratio
values (Figures 1A,C). As a consequence, the p-Tyr216/p-Ser9

ratio values and hence GSK-3β activity increase up to 8-fold in
fAβ25−35-exposed astrocytes (Figure 1D) as the latter does in
hippocampal neurons (Takashima et al., 1998). Remarkably, a

30 min pre-treatment with calcilytic NPS 2143 totally quells the
raise in fAβ25−35-induced p-Tyr216GSK-3β levels; contrariwise,
the p-Tyr216GSK-3β/total GSK-3 ratio values fall below control
values (Figures 1A,B). Concurrently, NPS 2143 increases the
p-Ser9GSK-3β/total GSK-3 ratio values well above control ones
(Figures 1A,C). As a result, the p-Tyr216/p-Ser9 ratio values and
hence activity levels fall below basal values (Figure 1D). These
results constitute the first evidence that pathological Aβ•CaSR
signaling directly intensifies GSK-3β activity besides rising
endogenous Aβ42/Aβ42-os production/release from the cortical
adult human astrocytes.

Expression of Tau Protein Isoforms in Adult
Human Astrocytes
First, we examined Tau proteins expression in astrocytes
by means of immunofluorescence staining and observed a
diffuse granular Tau-immunoreactivity pattern mostly in the
cytoplasm (Figure 2A). Cytoplasmic granular Tau aggregates
were previously reported (Ward et al., 2013). Then, to identify the
several Tau isoforms involved, we analyzed via Western blotting
whole astrocyte lysates from both untreated and fAβ25−35-treated
cells (Figure 2B). We used a pan-Tau antibody which recognizes
all Tau isoforms (Tran et al., 2011), and confirmed the identity of
each specific isoform band by using a commercially available Tau
protein ladder composed of the six known Tau isoforms. Thus,
in both untreated and fAβ25−35-treated astrocytes, the pan-Tau
antibody recognized three resolvable Tau bands in the size range
between 45 and 60 kDa, corresponding to Tau isoforms 2N4R,
1N3R, and 0N4R, which are those involved in the formation of
pre-tangles and NFTs (Espinoza et al., 2008). Total Tau levels
were alike in untreated and fAβ25−35-treated cultures, suggesting
no changes in total Tau isoforms expression were elicited by
fAβ25−35-exposure vs. no treatment in the astrocytes at least
during 72-h of treatment.

fAβ25−35-Treated Astrocytes Have
Increased Intracellular P-Tau Levels NPS
2143 Suppresses
Via Kinex Antibody MicroarrayTM we analyzed the p-Tau
pattern in total cellular lysates of untreated and fAβ25−35-
treated astrocytes. Using phospho-site-specific antibodies this
analysis tracked the main Tau phospho-sites regulated by GSK-
3β activity (Hanger and Noble, 2011) and demonstrated that the
phosphorylation levels of Ser199, Ser396, and Ser422 of the Tau
molecule were remarkably increased in 24-h fAβ25−35−exposed
astrocytes (not shown). This preliminary evaluation invited
further investigations in order to specifically establish the amount
of increased p-Tau proteins.

Therefore, we first immunoprecipitated the phosphorylated
proteins from whole lysates of untreated and fAβ25−35-
exposed astrocytes—the latter pre-treated or not pre-treated
with calcilytic NPS 2143 since, as we just saw, Aβ•CaSR-
signaling regulates GSK-3β activity (Figure 1). Next, we
probed the immunoblots of the immunoprecipitated total
phospho-proteins with a specific anti-Tau antibody. As shown
in Figure 2C, the levels of p-Tau markedly increased in
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FIGURE 1 | Time course of GSK-3β phosphorylations in human adult astrocytes exposed to fAβ25−35 ±NPS 2143. (A) Typical immunoblots of human

astrocytes total protein lysates illustrating the changes in the specific bands corresponding to p-Tyr216GSK-3β, p-Ser9GSK-3β, and total (tot) GSK-3 total in untreated

(control) cells and in cells exposed to fAβ25−35± a short (30-min) treatment with calcilytic NPS 2143. LC, loading control (lamin B1). (B) p-Tyr216GSK-3β/GSK-3 ratio

increased in fAβ25−35 (20 µM)-treated cells (red line), an effect a short NPS 2143 pre-treatment completely prevented (blue line). (C) p-Ser9GSK-3β/GSK-3 ratio

decreased under the stimulus of fAβ25−35 alone whereas it increased when of fAβ25−35 administration was preceded by a 30-min pre-treatment with calcilytic NPS

2143 (blue line). (D) As indicated by the augmented pTyr216GSK-3β/pSer9GSK-3β ratio, the activity of GSK-3β hugely increased in the astrocytes exposed to

exogenous fAβ25−35 alone (red line), but was significantly downregulated when calcilytic NPS 2143 was given for 30-min before fAβ25−35 to the astrocyte cultures

(blue line). Points in the curves express the mean ratios between the specific phosphorylated sites and total GSK-3 ± SEMs from 3 distinct experiments. *P < 0.01 vs.

control (0-h) values.
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FIGURE 2 | Characterization and release of Tau/p-Tau from human adult astrocytes. (A) Immunofluorescence staining of total Tau (antibody HT7) in untreated

astrocytes as a diffuse granular green labeling of the cytoplasms. Nuclei are stained with DAPI. Merged picture. Magnification, 640X. (B) Top: Typical immunoblot

(Continued)
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FIGURE 2 | Continued

analysis of the Tau isoforms astrocytes express when untreated (Ctr) or exposed for 24 or 48-h to fAβ25−35 alone treatment. Notably, 1N3R, 0N4R, and 2N4R are

known as the Tau isoforms involved in the formation of pre-tangles and NFTs (Espinoza et al., 2008). LC, load controls (lamin B1). Bottom: Densitometric assessment

of the three Tau isoforms integrated intensities. No significant changes are detectable (n = 3). (C) Typical immunoblot analysis of immunoprecipitated p-Tau in lysates

from untreated and 48-h fAβ25−35±NPS 2143-treated astrocytes. Adding NPS 2143 pretreatment totally blocks any increase in p-Tau levels elicited fAβ25−35 alone

which remain at basal values. (D) Densitometric data corresponding to p-Tau specific bands are shown as bars which are the means ± SEMs expressed as arbitrary

units (n = 3), and normalized taking as 1.0 the values of untreated astrocytes. *P < 0.001 vs. control values. (E) Time course of Tau protein release in the growth

medium of un-treated and fAβ25−35-exposed astrocytes. The ELISA values of total Tau protein detected in 24 to 72-h astrocytes treated with fAβ fAβ25−35 do not

significantly differ from control ones at each time point examined. Bars are the mean values ± SEMs of three experiments in duplicate. (F) p-Tau is released in

exosomes under physiological conditions and its amount remarkably increases in fAβ25−35 treated astrocytes, but adding NPS 2143 for 30 min prior to exposing

astrocytes to fAβ25−35 prevents any increase in exosomal p-Tau from occurring. Bars are means ± SEMs of three experiments in duplicate. *P < 0.001 vs. control

values and vs. fAβ25−35±NPS 2143-treated values.

the fAβ25−35-treated astrocytes as compared to untreated cells.
Importantly, NPS 2143 pre-treatment kept p-Tau at physiological
(untreated control) levels in the fAβ25−35-exposed cells
(Figures 2C,D).

Exosome-Associated Tau and P-Tau
Releases From Human Adult Astrocytes
Untreated and Aβ-exposed cortical adult human astrocytes also
release Tau proteins into the growth medium. In preliminary
experiments, by using an ELISA assay with a sensitivity <10
pg/mL we found total Tau protein levels of 21.8 pg/mL in
72-h untreated (control) astrocytes medium samples. In the
medium of 24–72-h fAβ25−35-treated astrocytes, we detected
unchanging values of the total Tau proteins which did
not differ from control ones, suggesting the operation of
a steady balance between Tau release and Tau re-uptake
(Figure 2E).

But, is Tau/p-Tau secreted free into the growth medium or
is it enclosed within exosomes? To answer this question, we
started analyzing Tau release under physiological conditions.
We purified exosomes from media conditioned for 72-h by
untreated astrocytes and then quantified Tau by means of a
specific ELISA kit in exosome fractions purified from them and
in exosome-depleted media samples. This analysis showed Tau
proteins associated with the exosome fractions and the exosomal
Tau levels did not significantly differ from those found in whole
media samples (∼24.3 pg/mL). Conversely, under the same
conditions, Tau could not be detected at all in exosome-depleted
media samples. Therefore, all the Tau human astrocytes release is
enclosed within exosomes.

Next, we investigated whether endogenous Tau released
from astrocytes within exosomes was phosphorylated. By means
of a p-Tau-specific ELISA kit we could demonstrate that
under physiological conditions p-Tau secretion occurred inside
exosomes too (Figure 2F, Ctr). Finally, we asked whether an
exposure to fAβs25−35 ±NPS 2143 affected the amount of p-Tau
released via exosomes. Our pilot results (n = 3) hint that
this is indeed the case. In fact, using the same p-Tau-specific
ELISA kit we observed that exosome-associated p-Tau increased
markedly with fAβ25−35-treated astrocytes as compared to
untreated ones, but a 30-min pretreatment with NPS 2143 of the
fAβ25−35-exposed cells wholly quelled any exosomal p-Tau surge
keeping it at controls’ levels (Figure 2F). Further in depth studies
will validate and extend these pilot findings.

CONCLUSIONS AND FUTURE
PERSPECTIVES

AD is a complex human illness which is only partially modeled
in rodents. Using as paradigm cultured cortical untransformed
adult human astrocytes, which differ from rodents’ ones from
both morphological and functional standpoints (Ogata and
Kosaka, 2002; Tsai et al., 2012; Robertson, 2014) and are
not killed by accumulating Aβs (Armato et al., 2013; Dal
Prà et al., 2015; Chiarini et al., 2016) has brought to light
molecular mechanisms which likely partake in AD’s onset and
progression. Previous work showed exogenous Aβs bind the
plasma membrane CaSRs of human astrocytes and neurons (Dal
Prà et al., 2014a,b). The thus triggered pathological Aβ•CaSR
signaling increases the amyloidogenic processing of hAPP which
entails a surplus extracellular secretion of endogenous Aβ42
from both cell types (Armato et al., 2013; Dal Prà et al., 2015;
Chiarini et al., 2016). Additionally, Aβ•CaSR signaling elicits
neurotoxic surpluses of nitric oxide and VEGF-A production
and release from human astrocytes (Dal Prà et al., 2005, 2014b;
Armato et al., 2013). Under these multiple neurotoxic insults
human cortical neurons start progressively dying (Armato et al.,
2013; Chiarini et al., 2015). And the Aβ42-os accumulating
in the neuropil spread to bind and activate the CaSRs of
adjacent neurons and astrocytes, thus promoting further Aβ42-
os production and diffusion (Dal Prà et al., 2015; Chiarini et al.,
2016). Remarkably, a highly selective CaSR antagonist (calcilytic),
NPS 2143, effectively blocks the Aβ•CaSR signaling and all of
its neurotoxic consequences, preserving human neurons’ viability
notwithstanding a persisting Aβ-os presence. Thus, from the Aβs
standpoint calcilytics would be effective as anti-AD therapeutics
(Armato et al., 2013; Dal Prà et al., 2014b, 2015; Chiarini et al.,
2015, 2016).

However, we cannot ignore the main drivers of AD are both
Aβ-os and p-Tau-os. It has been argued that p-Tau-os advent
precedes Aβ42-os’ (Braak et al., 2011; Elobeid et al., 2012). But,
evidence also exists that Aβ42-os manifestation antecedes p-
Tau-os’ (Leverenz and Raskind, 1998; Klein, 2013; Choi et al.,
2014). Beyond question is only that when both Aβ-os and p-
Tau-os are present, AD course toward patient’s demise briskly
accelerates (Ittner and Gotz, 2011). So how this drivers’ antinomy
might be solved? Our findings show that besides stimulating
the pathological amyloidogenic processing of hAPP into Aβ42,
Aβ•CaSR signaling increases the activity of GSK-3β and hence
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the intracellular accumulation of p-Tau in human astrocytes.
Next, mixtures of both Tau and p-Tau are enclosed within
exosomes and released into the extracellular environment. In
the static in vitro system we used, a balance is kept between
release and reuptake of Tau/p-Tau-containing exosomes. In vivo,
such Tau/p-Tau-containing exosomes would spread into the
neuropil to be uptaken by adjacent neurons and astrocytes.
Given astrocytes’ higher numbers, a persistent Aβ-elicited
exosomal p-Tau overrelease would exacerbate the neurons’ toxic
accumulation of p-Taues favoring their aggregation into pre-
tangles and NFTs.

Therefore, our present results raise the enticing prospect that
pathological Aβ•CaSR signaling would simultaneously trigger
both the Aβ-mediated and the p-Tau-mediated neurotoxic
mechanisms driving AD neuropathology. The other exciting
facet of these findings is that calcilytic NPS 2143 can fully
suppress all the neurotoxic effects Aβ•CaSR signaling wakes
up, including the intracellular accumulation and exosomal
release of p-Tau surpluses from human astrocytes. Further work
will assess whether calcilytics similarly hinder excess p-Tau
production/release from Aβ-exposed human cortical neurons.
However, NPS 2143 does suppress the Aβ42 surplus production
and secretion from Aβ-exposed human neurons (Armato et al.,
2013). Therefore, it seems feasible that NPS 2143 would block
neurons’ GSK-3β’s Tau hyperphosphorylating activity too.

In conclusion, with all the advisable caution our preclinical
findings deserve, the present perspective suggests CaSR
antagonists would block the intracerebral seeding of both
AD main drivers, the Aβs and p-Taues, besides accessory
neurotoxic factors like NO and VEGF-A surpluses. Accordingly,
if administered early enough, calcilytics would freeze AD

progression and preserve patients’ ongoing cognitive abilities
and quality of life.
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