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Neurodegenerative diseases often have multifactorial causes and are progressive

diseases. Some are inherited while others are acquired, and both vary greatly in onset

and severity. Impaired endoplasmic reticulum (ER) proteostasis, involving Ca2+ signaling,

protein synthesis, processing, trafficking, and degradation, is now recognized as a

key risk factor in the pathogenesis of neurological disorders. Lipidostasis involves lipid

synthesis, quality control, membrane assembly as well as sequestration of excess

lipids or degradation of damaged lipids. Proteostasis and lipidostasis are maintained by

interconnected pathways within the cellular reticular network, which includes the ER and

Ca2+ signaling. Importantly, lipidostasis is important in the maintenance of membranes

and luminal environment that enable optimal protein processing. Accumulating evidence

suggest that the loss of coordinate regulation of proteostasis and lipidostasis has a direct

and negative impact on the health of the nervous system.
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INTRODUCTION

Neurodegenerative disorders are diseases of the nervous system, often chronic, and progressive
in nature, affecting many people worldwide and increasing in incidence each year1. They account
for about 1% of deaths worldwide and pose one of the largest health, economic, and social capital
burden. Environmental factors such as lifestyle, diet, and stress are high risk factors for developing
neurological disorders (Migliore and Coppedè, 2009; Ochoa-Repáraz and Kasper, 2014; Perry and
Holmes, 2014; Rothhammer and Quintana, 2016). Impaired cellular homeostasis is a hallmark of
neurodegenerative diseases (Hetz and Mollereau, 2014). The maintenance of cell homeostasis is a
complex and dynamic process relying on coordinated functions of the cellular reticular network,
the interconnected network of membranes within the cell that includes the endoplasmic reticulum
(ER). The ER is a dynamic membrane system and a multifunctional organelle. It is a major site
of protein and lipid synthesis (Hebert and Molinari, 2007; Schwarz and Blower, 2016), and the
major intracellular store of Ca2+ that is used by Ca2+ signaling processes (Krebs et al., 2015). The
purpose of this article is to discuss the dynamic events coordinated by the ER, namely synthesis,
quality control, and degradation of proteins and lipids, sensing of cellular lipid status as well as
maintenance of the ER Ca2+ in the cellular signaling network that influence cellular proteostasis
and lipidostasis, in the context of the pathogenesis of the diseases of the nervous system.

1http://www.who.int/mental_health/publications/neurological_disorders_ph_challenges/en/
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CELLULAR STRESS RESPONSES IN THE
NERVOUS SYSTEM

Cells, including neuronal cells (neurons, glial cells), are exposed
to a wide variety of internal and external factors that induce
cellular stress. These factors include gene variations that alter
protein structure and function, inducers of oxidative stress, viral
infection, environmental toxins, drugs, extremes in temperature,
extremes in pH, inflammatory cytokines, lipotoxicity, Ca2+

depletion, aging, and other factors that cause loss of nutrient
or energy homeostasis. Neurons are particularly susceptible to
cellular stress, and disrupted cellular proteostasis or lipidostasis,
due to their unique architecture and functional specialization
(connectivity and excitability). In response to cellular stress,
cells most frequently turn to the coping mechanisms such
as the unfolded protein response (UPR; Groenendyk et al.,
2013) and genome damage response (GDR; Dicks et al., 2015;
Figure 1). The UPR works to restore protein homeostasis in
the ER (Groenendyk et al., 2013; Hetz and Mollereau, 2014)
whereas the GDR functions to repair DNA or chromatin
damage (Dicks et al., 2015). Several recent review articles
discuss these topics in greater depth (Cao and Kaufman, 2013;
Groenendyk et al., 2013; Hetz and Mollereau, 2014; Wang and
Kaufman, 2014; Dicks et al., 2015; Hetz et al., 2015). Disrupted
proteostasis has been identified as an underlying cause of
many neurodegenerative diseases including Alzheimer’s disease,
Parkinson’s disease, Huntington disease, amyotrophic lateral
sclerosis, prion related diseases, all of which have been referred to
as diseases of protein folding (Hetz and Mollereau, 2014). These
examples illustrate that long term alteration of cellular function
in response to chronic disruption of proteostasis in the nervous
system eventually lead to the pathogenesis of neurodegenerative
disorders.

LIPID HOMEOSTASIS AND
NEURODEGENERATIVE DISEASES

The ER is a critical organelle for maintenance of cellular lipid
homeostasis (van Meer et al., 2008). It is the site of synthesis of
the bulk of structural phospholipids, sterols, and storage lipids
such as triacylglycerols and sterol esters (Higgins, 1974; Ikonen,
2008; Fagone and Jackowski, 2009; Chauhan et al., 2016). This
organelle also supplies lipids to other cellular organelles, and is
the driver of cellular lipid homeostasis. The brain is the most
cholesterol enriched organ in the body (Dietschy and Turley,
2001; Zhang and Liu, 2015). Cholesterol in brain cells is derived
primarily from de novo synthesis since lipoproteins are unable to
cross the blood-brain barrier (BBB; Valdez et al., 2010; Zhang and
Liu, 2015; Mistry et al., 2017). The majority of the cholesterol in
the brain is found in the myelin sheaths that surround axons.

Impaired metabolism and transport of lipids in the brain
has been linked to many neurodegenerative diseases such as
Alzheimer’s disease, Huntington disease, Parkinson’s disease,
multiple sclerosis, amyotrophic lateral sclerosis, including
inherited neurological diseases such as Niemann-Pick C disease,
Smith-Lemli-Opitz syndrome, and Gaucher’s disease (Cutler

FIGURE 1 | Cell stress coping responses and the interplay between

proteostasis and lipidostasis. Proteostasis refers to optimal protein

biosynthesis and trafficking whereas lipidostasis pertains to optimal lipid

biosynthesis, trafficking, and membrane assembly. Both of these processes

rely on the availability of energy (ATP), and nutrients (such as Ca2+, sugars,

amino acids, lipid subunits, nucleotides, other essential cofactors). When cells

experience external or internal insults that result in the loss of control of

nutrient and energy metabolism corrective strategies (UPR, GDR, autophagy,

other coping responses) are activated to counteract and eliminate cell stress.

The regulatory and metabolic pathways that operate to recover proteostasis

and lipidostasis are interconnected, and support each other in preserving

global cellular homeostasis.

et al., 2002; Vanier, 2010; Wu G. et al., 2011; Don et al., 2014;
Petrov et al., 2016; Schultz et al., 2016; Abdel-Khalik et al., 2017;
Kim et al., 2017; Mistry et al., 2017; Schuchman and Desnick,
2017). In the case of amyotrophic lateral sclerosis, accumulation
of ceramides, and cholesteryl esters which cause death of motor
neurons (Cutler et al., 2002) is associated with defects in the
metabolism of sterols (Cutler et al., 2002; Abdel-Khalik et al.,
2017). Lipids may also affect the function of certain proteins; for
example, the degree of membrane insertion of huntingtin, the
brain protein involved in Huntington disease, is influenced by
the amount of membrane cholesterol (Gao et al., 2016).

It is probable that inappropriate remodeling of membranes
potentiates the loss of proteostasis by causing the malfunction
of molecular chaperones and other membrane bound proteins
(Figure 1). A recent study reported that long term feeding of
mice with a diet enriched with saturated fats causes significant
remodeling of the brain lipidome, particularly those lipids that
make up the cell membrane (Giles et al., 2016). Considering
the integral role of the ER in lipid synthesis, transport and
degradation, we propose that lipidostasis is an emerging and
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significant risk factor in the pathogenesis of neurodegenerative
diseases.

PROTEOSTASIS AND CALNEXIN

The ER protein quality control system is comprised of many
molecular chaperones and folding enzymes that closely monitor
and facilitate the folding of proteins and their secretion in
order to prevent formation and accumulation of toxic protein
aggregates. Calnexin, calreticulin, and PDIA3 (a protein foldase
that catalyzes the formation and correct isomerization of
disulfide bonds and interacts with both calnexin and calreticulin),
are the core components of the ER protein quality control system
(Hebert andMolinari, 2007). Folding ofmost of non-glycosylated
proteins is supported by BiP/GRP78, a protein that interacts with
hydrophobic regions of newly synthesized proteins (Hebert and
Molinari, 2007; Halperin et al., 2014). Other chaperons including
GRP94, ERdj3, cyclophilin B, PDI, PDIA4, SDF2, and additional
members of the PDI family proteins form large protein folding
complexes that interact with misfolded and unfolded proteins
(Hebert and Molinari, 2007; Halperin et al., 2014) to assist in
their proper processing. Moreover, a class of small molecules,
termed proteostasis promoters (Vega et al., 2016), have been
identified.

Calnexin is a type I transmembrane molecular chaperone,
and is of special interest as this protein is highly expressed
during the development of the nervous system (Coe et al.,
2008; Kraus et al., 2010). In mice, calnexin deficiency causes
dysmyelination of peripheral and central nervous system (PNS;
Kraus et al., 2010; Jung et al., 2011) as a result of misfolding of
P0 and PMP22, two essential glycoproteins required for myelin
formation (Jung et al., 2011). Calnexin has also been shown
to interact with myelin oligodendrocyte glycoprotein (MOG;
Jung and Michalak, 2011; Jung et al., 2015), a protein that
is critically involved in the myelination of nerve cells in the
central nervous system (CNS). Although MOG is only a minor
component of CNS myelin it plays an important role in the
pathology of multiple sclerosis (MS), a progressive neurological
disorder caused by an autoimmune response against antigens
of the CNS. Autoantibodies against MOG have been detected
in the serum of MS patients (Reindl et al., 2013). Although
deficiency in calnexin does not impact on the intracellular
trafficking of MOG, the folding and stability of MOG are affected
(Jung and Michalak, 2011; Jung et al., 2015). The discovery
of a role for calnexin in maintaining myelin sheets (Kraus
et al., 2010; Jung et al., 2011) and folding of MOG (Jung
et al., 2015) provides new and unanticipated insights into the
mechanisms responsible for myelin diseases of the PNS and
CNS.

Calnexin interacts with the SH3-domain GRB2-like
(endophilin) interacting protein 1 (SGIP1), a neuronal regulator
of endocytosis, supporting a role for calnexin in the recycling
of synaptic membrane proteins and maintaining synaptic
homeostasis (Li et al., 2011). The balance between exocytosis
and endocytosis is vital in maintaining the function of the brain
cells (Lim and Yue, 2015). Endocytosis might also be a potential

mechanism involved in cell-to-cell transmission of protein
aggregates that underlie the pathogenesis of neurodegenerative
diseases stemming from accumulation of protein aggregates
(Lim and Yue, 2015). Synaptic transporters such as the serotonin
transporter (Tate et al., 1999) and glycine transporter 2 which
are expressed in the CNS (Arribas-González et al., 2013) are
also calnexin substrates. The appearance of calnexin on the
surface of hippocampal neurons has been reported (Itakura et al.,
2013), further supporting the participation of calnexin in the
integration of synaptic proteins to the plasma membrane as well
as in the maintenance of synaptic proteostasis.

Global knockout of the PDIA3 gene in mice is embryonic
lethal (Coe et al., 2010), however, targeted knockout of PDIA3
in the murine nervous system leads to severe motor dysfunction
and growth retardation associated with a loss of neuromuscular
synapses reminiscent of calnexin deficiency (Kraus et al., 2010),
and more recently, of amyotrophic lateral sclerosis in humans
(Woehlbier et al., 2016). Association between PDIA3 and the
amyotrophic lateral sclerosis may not be surprising as PDIA3
expression is high in the brain during embryonic development
(Coe et al., 2010). BiP, a key component of the UPR and essential
regulator of ER proteostasis and Ca2+ homeostasis, has also
been associated with neurodegenerative diseases (Hoozemans
et al., 2005; Carnemolla et al., 2009; Wang et al., 2009;
Gorbatyuk and Gorbatyuk, 2013). Global BiP gene knockout in
mice is embryonic lethal (Luo et al., 2006). However, targeted
deletion of BiP in developing Schwann cells manifests in a
phenotype reminiscent of that seen in calnexin-deficient mice
(Kraus et al., 2010), in particular PNS myelin abnormalities,
diminished number of myelinating Schwann cells and hind
limb paralysis (Hussien et al., 2015; Volpi et al., 2016). A
class of small molecules, termed proteostasis promoters (Vega
et al., 2016), have been described. For example, valproic acid,
a drug that is currently used in the clinical management
of mood disorders (Chiu et al., 2013), has been shown to
induce the UPR coping mechanism and inhibit ER stress
(Kakiuchi et al., 2003; Lee et al., 2014; Wang et al., 2015; Peng
et al., 2016). Although the precise mechanism of action of
specific compounds are not yet fully deciphered, proteostasis
promoters have in common the ability of enhancing protein
processing and relieving cellular stress, including in neuronal
cells.

Disrupted autophagy has been linked with pathology of
CNS disorders (Nikoletopoulou et al., 2015). Autophagy, a
dynamic process promoting self-digestion, to help eliminate toxic
aggregates through the lysosomal pathway (Yorimitsu et al.,
2006) involves bulk degradation of proteins, lipids and organelles,
including the ER (Kaur and Debnath, 2015). As neurons
are post-mitotic cells, they rely on autophagy for removal of
defective organelles, protection against protein aggregation and
in preventing the accumulation of toxic proteins. Abnormal
autophagy is involved in neurodegenerative disease pathology
(Nikoletopoulou et al., 2015) as well as in acute brain injuries
(Galluzzi et al., 2016). Calnexin is a component of the early
autophagosomes (Gagnon et al., 2002) pointing to its potential
role in an alternative mechanism for degradation of misfolded
proteins and removal of organellar membranes in the nervous
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system. The accumulating evidence from animal and clinical
studies support a role for calnexin, and likely other ER molecular
chaperones and folding enzymes, in maintaining neuronal
proteostasis and perhaps also lipidostasis.

ER CALCIUM HOMEOSTASIS

The ER is the major Ca2+ storage depot of the cell. Ca2+ release
from the ER impacts on the vast majority of cellular processes,
including cell proliferation, transcription, exocytosis, apoptosis
(Corbett and Michalak, 2000; Prins and Michalak, 2011; Krebs
et al., 2015). Accordingly, maintenance of normal ER Ca2+

capacity is vital in supporting cellular stress coping responses
in re-establishing proteostasis and lipidostasis (Figure 1), and
therefore ER Ca2+ levels must be finely regulated. This can be
accomplished by coordinating the function of multiple Ca2+

sensors, pumps, channels, exchangers, and Ca2+ binding proteins
(Prins and Michalak, 2011; Brini et al., 2014; Krebs et al.,
2015). Ca2+ in the lumen of the ER is frequently depleted by
Ca2+ signaling events occurring within the ER and in other
cellular compartments. Thus, in order tomaintain Ca2+ signaling
capacity, Ca2+ released from the ER lumen must be replenished.
This process, which involves Ca2+ entry from the external
environment of the cell into the ER, is referred to as store-
operated Ca2+ entry (SOCE; Soboloff et al., 2012).

SOCE is initiated by Ca2+ release through inositol 1,4,5-
triphosphate receptor (IP3R) and/or ryanodine receptor Ca2+

channels and relies on ER luminal Ca2+ sensors (STIM
proteins), a plasma membrane Ca2+ channel (ORAI), and sarco-
endoplasmic reticulum Ca2+-ATPase (SERCA; Soboloff et al.,
2012). Since ER chaperones and folding enzymes require Ca2+

to function, the sustained depletion of ER Ca2+ leads to the
accumulation of misfolded proteins which subsequently activates
UPR and other corrective strategies (Groenendyk et al., 2013).
In neuronal tissue, Ca2+ signaling is especially important as it
controls additional processes that do not occur in other tissues,
such as synaptic signaling and neurotransmission. Neuronal
Ca2+ signaling also plays an important role in learning, memory
and neuronal plasticity (Brini et al., 2014). Not surprisingly,
disturbance of ER Ca2+ homeostasis is commonly observed in
severe neurodegenerative diseases (Mattson et al., 2000; Ong
et al., 2010; Chen et al., 2011; Mekahli et al., 2011; Wu J. et al.,
2011; Belal et al., 2012; Selvaraj et al., 2012; Bezprozvanny and
Hiesinger, 2013; Popugaeva and Bezprozvanny, 2013; Zeiger
et al., 2013; Koran et al., 2014). For example, mutations
in the IP3R type 1 gene leads cerebellar neurodegeneration
in mice and causes spinocerebellar ataxia type 15 (SCA15)
leading to neurodegeneration in humans (van de Leemput
et al., 2007; Sasaki et al., 2015; Tada et al., 2016). Mechanisms
that ensure ER Ca2+ homeostasis might allow neuronal cells
to effectively maintain both proteostasis and lipidostasis, and
thereby prevent neuronal pathology. Overload of Ca2+ in the
ER is also harmful hence ensuring constant supply without
regulated release could lead to disease. Increased abundance of
STIM1 and ORAI1 in HEK cells resulted in reduced formation
and secretion of Aβ peptides (Zeiger et al., 2013). Furthermore,

neuronal cell expressing mutant Huntingtin protein exhibit
enhanced SOCE (Wu J. et al., 2011) and the loss of SOCE
was observed in neuroblastoma cells treated with agent that
mimics Parkinson’s disease in mice (Selvaraj et al., 2012).
Mechanisms that ensure the constant supply of Ca2+ in the
ER might allow neuronal cells to effectively maintain both
proteostasis and lipidostasis, and thereby prevent neuronal
pathology.

BRAIN PERMEABILITY

The BBB is a physical structure that separates the CNS from
the rest of the body, and selectively controls the flow of
molecules in and out of the brain. Dysfunction of the brain
endothelial cells, essential component of the BBB, is involved
in the pathology of many CNS disorders (Deane et al., 2004;
Cirrito et al., 2005; Zlokovic et al., 2005; Alvarez and Teale,
2006; Deane and Zlokovic, 2007; Tietz and Engelhardt, 2015),
however the molecular mechanisms underlying its contribution
are not fully understood. Abnormalities in BBB have been
linked to pathogenesis of the Alzheimer disease (Cirrito et al.,
2005; Zlokovic et al., 2005) involving defective clearance of
β-amyloid (Deane et al., 2004; Deane and Zlokovic, 2007).
Recent studies link ER stress coping responses and BBB
disruption in the rat model of epilepsy (Ko et al., 2015). Brain
endothelial cells are not only a physical barrier but also a
dynamic interface involved in transport of the molecules and
capable of response to inflammation on either side of the
barrier. Brain endothelial cells are sensitive to proinflammatory
factors, which affects the integrity and function of the BBB,
originating from both sides of the BBB (Tietz and Engelhardt,
2015). The crossing of the auto-reactive lymphocytes across
BBB accompanied by demyelination and neurodegeneration are
hallmarks of MS pathology (Mahad et al., 2015). Experimental
autoimmune encephalomyelitis (EAE), an animal model of MS
allowed insights into a potential role of ER chaperones in
initiation and progression of MS. ER quality control components
including calnexin, calreticulin, BiP and PDIs likely play critical
roles in facilitating the folding and trafficking of endothelial
specific proteins such as ICAM, VCAM, and p-selectin in
response to inflammation. Increased abundance of BiP has been
seen in brain of MS patients (Mháille et al., 2008; Cunnea
et al., 2011) and conditional knockout of the BiP gene and,
consequently a disrupted proteostasis, exhibits exacerbated EAE
symptoms that are not related to altered inflammatory response
(Hussien et al., 2015). It is conceivable that other components
of protein quality control, including PDIA3, calreticulin, and
calnexin, may influence the function and integrity of the BBB.
For example, calreticulin associates with MMP9 (Duellman
et al., 2015) a matrix metalloproteinase that is critical for
the integrity of BBB (Dubois et al., 1999; Rosenberg, 2009)
and contributes to amyloid formation and clearance (Nalivaeva
et al., 2008). Strategies allowing exogenous manipulation of
the ER protein quality control system may offer a means to
regain proteostasis as well as lipidostasis (Figure 1) in the
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nervous system, and assist in the management of neurological
disorders.

SUMMARY

We propose that disrupted proteostasis and lipidostasis underlie
many neurological disorders. Recent studies suggest that
molecular chaperones are intimately involved in coordinating
the cellular proteostasis and lipidostasis in the nervous system,
including the cells that make up the BBB, by ensuring the
quality of key proteins and lipid components of the membranes.
Importantly, the activity of ER chaperones depends on ER
Ca2+ homeostasis. A detailed knowledge of the regulatory and
metabolic pathways involved in proteostasis and lipidostasis in
cells that make up the nervous system, will provide better insights

into the heterogeneity of neurological disorders and uncover new
opportunities for therapeutic development.
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