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The intracerebral level of the aggregation-prone peptide, amyloid-ß (Aß), is constantly

maintained by multiple clearance mechanisms, including several degradation enzymes,

and brain efflux. Disruption of the clearance machinery and the resultant Aß accumulation

gives rise to neurotoxic assemblies, leading to the pathogenesis of Alzheimer’s

disease (AD). In addition to the classic mechanisms of Aß clearance, the protein

may be processed by secreted vesicles, although this possibility has not been

extensively investigated. We showed that neuronal exosomes, a subtype of extracellular

nanovesicles, enwrap, or trap Aß and transport it into microglia for degradation. Here, we

review Aß sequestration and elimination by exosomes, and discuss how this clearance

machinery might contribute to AD pathogenesis and how it might be exploited for

effective AD therapy.
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INTRODUCTION

Exosomes are a class of extracellular membrane vesicles with uniform spherical shape and a
diameter of 70–150 nm. They are generated and secreted via exocytosis of intraluminal vesicles
(ILVs) of multivesicular bodies (MVBs) by most cell types, including those in the central nervous
system (CNS). Cultured neurons and glial cells such as microglia, oligodendrocytes, and astrocytes
release exosomes into the medium and cerebrospinal fluid (CSF) of humans and model species
such as mice and monkeys (Yuyama et al., 2015). In vitro studies have revealed that exosomes are
involved inmultiple physiological CNS processes, including the formation of themyelin sheath and
regeneration of damaged axons (Bakhti et al., 2011; Lopez-Verrilli et al., 2013; Yuyama and Igarashi,
2016). On the other hand, because exosomes contain the proteins related to neurological diseases,
such as prion disease, Parkinson’s disease, and amyotrophic lateral sclerosis (ALS), and transport
them among cells, the connection of CNS exosomes to the pathogenesis and progression of these
diseases has attracted a great deal of attention (Howitt and Hill, 2016). Exosomes also contain two
major pathological factors of Alzheimer’s disease (AD), amyloid-ß protein (Aß) and tau, and the
commitment of CNS exosomes to pathogenesis of the disease is under investigation. Our recent
studies suggest that neuron-derived exosomes may participate in Aß clearance in the brains. In this
short review, we describe the pathway of Aß clearance by the exosomes and discuss the potential
significance of novel therapeutic and prevention strategies of AD in use of the exosomal functions.

AMYLOID-ß IN ALZHEIMER’S DISEASE

AD, a neurological disorder associated with irreversible and progressive loss of memory and
cognitive functions, is pathologically characterized by intracerebral deposits of Aß amyloid called
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senile plaques. Aß, which accumulates gradually over a long
period of time (>15 years) prior to symptomatic onset, elicits
other pathological hallmarks, such as neurofibrillary tangles
(NFTs) and neuronal loss, that are directly linked to symptoms
of the disease (Hardy and Selkoe, 2002). Aß is a ∼4 kDa peptide
generated by physiological processing of amyloid precursor
protein (APP), a membrane protein composed of 695–770 amino
acids in length. In neurons, the amyloidogenic processing of
APP is performed by two proteases, ß- and γ-secretases. ß-
secretase activity is mediated by a type I membrane protein called
ß-site APP-cleaving enzyme 1 (BACE1), whereas γ-secretase
cleavage is mediated by an intramembrane protease complex
containing presenilin, witch harbors the catalytic domain. APP
is transported to the plasma membranes and subsequently
internalized in endocytic pathways. Both secretases are also
sorted into endocytic compartments that maintain the optimal
pH; hence Aß is primarily generated in the endocytic pathway
(Rajendran and Annaert, 2012).

Steady-state levels of brain Aß are controlled by the balance
between generation and degradation/clearance. In the case
of familial AD, genetic alterations of molecules involved in
generating Aß such as APP and presenilin, appear to increase
Aß assembly by promoting production of aggregate-prone Aß. In
sporadic AD, a common form of AD, the rate of Aß elimination
in the brain is reduced (Mawuenyega et al., 2010). The slower
clearance indicates perturbation of Aß clearance, for example, via
a decrease in catabolism due to reduced proteolysis or impaired
efflux across the blood-brain barrier. However, the precise
mechanism of Aß amyloid accumulation remains controversial;
a number of other events that may influence the deposit, such as
endocytic perturbations, Aß seed formation and diabetic states,
have been found in AD brains (Cataldo et al., 1997; Ariga et al.,
2008; Ashraf et al., 2014; Danish Rizvi et al., 2015).

ASSOCIATION OF Aß ON EXOSOMES

In some neurons, endocytic perturbations such as endosome
enlargement occur at the early stage of AD, when Aß levels begin
to rise (Cataldo et al., 1997, 2001). Intracellular Aß accumulates
in the abnormal endosomes, suggesting these bodies contribute
to the earliest elevation of Aß (Cataldo et al., 2004). Electron
microscopic observations of the brains of APP/PS1 transgenic
mice and AD patients reveal that the neuronal endosomes
containing accumulated Aß include MVBs, whose ILVs are
precursors of exosomes (Takahashi et al., 2002; Langui et al.,
2010). In 2006, Rajendran and co-workers grasped and reported
that a minute fraction of Aß is released in association with
exosomes from APP-transfected cells to the culture medium
(Rajendran et al., 2006). In addition, they have showed that
Alix, an exosomal marker protein, is enriched around human
amyloid plaques, suggesting that Aß associated with exosomes
contributes to plaque formation. Aß is detected also in the
exosomes derived from the CSF collected from APP transgenic
mice and cynomolgus monkeys (Yuyama et al., 2015). As well as
Aß, APP, and its metabolites, APP C-terminal fragment (CTF),
and APP intercellular domain (AICD), are present in exosomes

and released to the extracellular space (Vingtdeux et al., 2007;
Sharples et al., 2008; Perez-Gonzalez et al., 2012). In human, a
subset of blood exosomes contain Aß, and its levels are elevated in
MCI andAD patients (Fiandaca et al., 2015; see section Exosomes
as Tools for AD Therapy).

Aß is produced via sequential processing of APP by the
two secretases described above, is translocated into intraluminal
space of endosomal compartment such asMVB and then released
from the cell via the recycling pathway. Hence when Aß is
present in exosomes, it is likely topologically bound to the
surface membranes. Immunoelectron microscopy reveals that
Aß is attached to the surface of the exosomes derived from APP-
expressed N2a cells (Rajendran et al., 2006). Surface plasmon
resonance analysis performed by our group also shows that
N2a-derived exosomes injected onto the immobilized synthetic
Aß (Aß1−40, Aß1−42, and Aß1−38) exhibit significantly elevated
resonance signals, demonstrating that the exosome interacts with
the Aßs (Yuyama et al., 2014).

What, then, molecular mechanism responsible for the binding
of Aß to exosomes? Aß binds to glycosphingolipids (GSLs),
a group of glycan-linked membrane lipids (Yanagisawa et al.,
1995; Ariga et al., 2008). GSLs are localized on the outer
layer of cellular and exosome membranes, and their glycans
are exposed to the external milieu. GSLs move laterally across
the membranes and form clusters at high densities: monomeric
Aß recognizes the GSL clusters and bind to them (Yamamoto
et al., 2008). GSLs also accelerate Aß assembly into fibrils.
Assemblies of Aß with GM1, a sialic acid–linked GSL, were
recovered from the tissues and interstitial fluid of brains of aged
monkeys and AD patients (Langui et al., 2010; Hong et al.,
2014). Our quantitative GSL-glycomic analysis of N2a-derived
exosomes and their parental cells revealed that GSLs are more
abundant in exosomes than cells (Yuyama et al., 2014), and
that sialylated GSLs such as GM1 are particularly concentrated
in the exosomes. Degradation of GSL-glycans or sialic acids by
endoglycoceramidase (EGCase) or sialidase efficiently prevents
the association between Aß and exosomes (Yuyama et al., 2014).
An in vivo study has revealed that N2a-derived exosomes, which
injected into the hippocampus of APP transgenic mice, also
associate with endogenous Aß. Removal of GSL-glycans on
neuronal exosomes by EGCase abolishes the Aß-binding activity
of the exosomes.

We also collected the exosomes from primary cultures
of mouse neurons, astrocytes and microglia, and analyzed
the profiles of their GSL-derived glycans, demonstrating that
significantly more GSLs are present in exosomes from neurons
than in those from glial cells (Yuyama et al., 2015). Accordingly,
only neuronal exosomes, but not glial exosomes, are associated
with Aß. These observations indicate that Aß can associate with
accumulated and clustered GLSs on exosomal membranes.

In addition to GSLs, neuronal exosomes bind with Aß
through prion protein (PrP) (An et al., 2013). PrP is
a glycosylphosphatidylinositol (GPI)-anchored protein and
localized on the outer leaflet of the membranes of both
neuronal cells and exosomes, and can function as a receptor for
Aß oligomeric species known as Aß-derived diffusible ligands
(ADDLs). Binding of ADDLs to cellular PrP induces toxic
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signaling and disrupts synaptic plasticity (Laurén et al., 2009).
In a study in rat in which exogenously prepared ADDLs are
infused into the hippocampus, co-administration of exosomes
derived from neuronal cultures or human CSF neutralizes
the ADDLs-induced impairment of long-term potentiation.
Thus, exosomal PrP may trap ADDLs to prevent their cellular
toxicity.

EXOSOME-DEPENDENT Aß CLEARANCE

Brain-resident phagocytes microglia can participate in
internalization of the exosomes derived from various types of
cells (Fitzner et al., 2011; Yuyama et al., 2012). When exosomes
are added to mixed brain cultures containing all major cell types,
they are preferentially uptaken by microglia (Fitzner et al., 2011).
An in vivo study of mouse brains reveals that cultured neuron-
derived exosomes injected intracerebrally are almost exclusively
internalized into microglia (Yuyama et al., 2014). Membrane
lipid phosphatidylserine (PS) is localized in the inner leaflet
of the plasma membrane via an energy-requiring mechanism.
Apoptotic cells rapidly lose the asymmetric localization of PS,

and are phagocytized and cleared by microglia; this process is
mediated by recognition of PS exposed on the cell surface by the
microglial PS receptor (Schlegel andWilliamson, 2001). Notably,
exosomal PS is localized in the outer leaflet of the surface
membranes, as well as apoptotic cells, and can be recognized by
the microglial PS receptor (Miyanishi et al., 2007). Therefore,
when annexin V, a PS-binding toxin, is exposed to exosomes
to mask the surface PS, the phagocytosis of neuron-derived
exosomes into microglial cells is significantly inhibited (Yuyama
et al., 2012).

The exosomes associated with Aß are also internalized into
microglia as well as native exosomes. The exosome-bound Aß
is transported through the endocytic pathway to microglial
lysosomes, where it is degraded. Thus, neuronal exosomes, which
can trap Aß, act as couriers of Aß for Aß clearance. In co-cultures
of human APP-transfected N2a cells and microglial BV2 cells,
promotion of exosome generation in N2a by knockdown of
sphingomyelin synthase increases engulfment of extracellular Aß
by BV2 and decreases the levels of Aß in the culture medium.
Although, free Aß can be taken up by microglia for degrade, the
exosomes might clear Aß more efficiently by transporting it in
assembled forms collectively (Figure 1).

FIGURE 1 | Pathway of exosome-dependent Aß clearance. APP is sorted into endosomes with acidic pH, where it is sequentially cleaved by secretases to

produce Aß. The resultant Aß is released to the extracellular milieu through fusion of recycling endosomes or MVBs with the plasma membrane. Some Aß is associated

with exosomes in MVBs or in the extracellular space, an interaction mediated by GSLs. Exosomes stack Aß on their surface by promoting the formation of nontoxic

Aß assembly by GSLs, followed by incorporation of Aß fibrils into microglia in a PS-dependent manner, resulting in degradation. Thus, neuronal exosomes are likely to

promote Aß clearance. In absence of microglial phagocytic activity, exosome-associated Aß might induce any pathogenic event, such as amyloid plaque formation.
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To determine whether exosomes affect the levels of brain
Aß, we also performed intracerebrally infusion of neuronal
exosomes into mouse brains (Yuyama et al., 2014). Continuous
infusion of neuronal exosomes for 2 weeks into 4-month-
old APP transgenic mice using an osmotic mini-pump
decreases Aß levels and attenuates the reduction in synaptic
densities induced by Aß toxicity in the hippocampus. Likewise,
the infusion into the brains of 12-month-old mice also
decreases Aß amyloid depositions (Yuyama et al., 2015).
These studies clearly demonstrated that intracerebral exosome
administration ameliorates Aß-related AD pathogenesis.
Therefore, improvement of Aß clearance to prevent its toxicity
by exosome supplementation or promotion of exosome
generation might provide a novel therapeutic approach for AD.

EXOSOMES AS TOOLS FOR AD THERAPY

Acceleration of Aß clearance by administration of neuronal
exosomes or promotion of exosome production represents a
novel therapeutic approach for AD. Instead of natural exosomes,
exosome-like synthetic liposomes that contain GSLs responsible
for capturing Aß and PS for the purpose of glial internalization
would have several advantages, including uniformity and the
absence of contaminants. Notably, the Aß-degrading enzymes
insulin-degrading enzyme and neprilysin are present in the
exosomes released from microglia and adipose tissue-derived
mesenchymal stem cells, respectively (Bulloj et al., 2010; Katsuda
et al., 2013). The exosomes have also been studied as a
delivery platform, encapsulating reagents or siRNAs (Alvarez-
Erviti et al., 2011; Zhuang et al., 2011). Peripheral injection

of exosomes containing BACE1 siRNA or curcumin can be
targeted into the brain to ameliorate AD-like pathology in mice.
As nanotechnological approaches, these functional exosomes or
exosome-like liposomes, or even fusion vesicles of both types
(Ashraf et al., 2015; Sato et al., 2016; Ansari et al., 2017) that
restore brain capacity, might be a valuable tools for AD therapy.

CONCLUSIONS

In this review, we summarize the roles of exosomes in
AD by focusing on the potential beneficial effects in Aß
degradation/clearance. Improvement of Aß clearance by
the regulation of the exosome production or intracerebral
administration of the exosomes may be a potent strategy for AD
therapy. However, recent findings implicate that exosomes act
as double-edged sword in AD. The exosomes derived from Aß-
stimulated astrocytes and aggregated tau-treated microglia are
involved in Aß aggregation and tau interneuronal propagation,
respectively (Asai et al., 2015; Dinkins et al., 2016; Xiao et al.,
2017). Depending on the cell origin and the pathological stage of
the disease, exosomes may have detrimental roles contributing
to worsening or spread of the pathogenesis. Further deliberate
researches on the pathophysiological properties of these vesicles
would open the door to develop new therapeutic strategies for
AD.
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