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Brain function is often characterized by the connections and interactions between highly

interconnected brain regions. Pathological disruptions in these networks often result

in brain dysfunction, which manifests as brain disease. Typical analysis investigates

disruptions in network connectivity based correlations between large brain regions. To

obtain a more detailed description of disruptions in network connectivity, we propose

a new method where functional nodes are identified in each region based on their

maximum connectivity to another brain region in a given network. Since this method

provides a unique approach to identifying functionally relevant nodes in a given network,

we can provide a more detailed map of brain connectivity and determine new measures

of network connectivity. We applied this method to resting state fMRI of Alzheimer’s

disease patients to validate our method and found decreased connectivity within the

default mode network. In addition, new measure of network connectivity revealed a

more detailed description of how the network connections deteriorate with disease

progression. This suggests that analysis using key relative network hub regions based

on regional correlation can be used to detect detailed changes in resting state network

connectivity.

Keywords: resting fMRI, node identification, subject-specific ROIs, Alzheimer’s disease, connectomics

INTRODUCTION

Modern neuroscience has shown that cognitive functions are composed of integrative processes
coupled with dynamic interactions that can be distributed across a specific set of various brain
regions (Barrett and Satpute, 2013; Power and Petersen, 2013; van den Heuvel and Sporns, 2013;
Ester et al., 2015). In other words, the structural and functional connections in the brain, or the
“connectome,” are thought to play a major role in behavior and cognitive performance (Park and
Friston, 2013; Smith et al., 2015). Connectomics are of particular interest in the study of brain
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diseases because deficits in cognitive functions are thought to
be representative of disruptions in cortical connectivity (Stam,
2014; Fornito et al., 2015). Many studies have shown that these
disruptions in connectivity target specific functional networks in
different neurological diseases and psychiatric disorders (Seeley
et al., 2009). Therefore, detailed brain connectomes may provide
a means to understand how changes in functional connectivity
in specific networks or regions of the brain can characterize
the symptoms and deficits in cognitive and behavioral functions
(Crossley et al., 2014; Stam, 2014). Additionally, these patterns
of neurodegeneration progress along large-scale networks (Seeley
et al., 2009), supporting a “network degeneration hypothesis”
that suggests that pathological brain changes occur primarily in
vulnerable hub regions in distinct major brain networks (Drzezga
et al., 2011; Li et al., 2016). Recent studies have proposed various
models or mechanisms behind network degeneration (Zhou
et al., 2012; Brier et al., 2014; Fornito et al., 2015), however these
models are still being developed, and further studies are required.

An important step in network analysis is node selection.
In brain network representations, nodes represent neural
populations or brain regions that have shared structural or
functional relevance (van den Heuvel and Sporns, 2013).
The most common methods for node identification rely on
anatomical or functional brain parcellations (Craddock et al.,
2013; Smith et al., 2013). However, current methods are
problematic because there are many different strategies and the
results can based on the method used (Zalesky et al., 2010;
Craddock et al., 2013; de Reus and van den Heuvel, 2013; Thirion
et al., 2014). Additionally, template and group parcellations fail
to address the issue of individual variability. This problem is
illustrated in many studies which revealed distinct individual
differences in the functional organization of individuals (Mueller
et al., 2013; Finn et al., 2015; Hahn et al., 2015; Dubois and
Adolphs, 2016), suggesting that a subject-specific approach
may offer better representations of network connectivity
(Chamberland et al., 2015; Li et al., 2015; Sohn et al., 2015; Wang
et al., 2015). Finally, interpretation of the results is often limited
by the way that nodes are defined. Traditional methods result in
direct correlation values and connectivity matrices. These results
are often interpreted by direct node to node connectivity, or
as a whole with patterns or descriptive measures such as graph
theory properties. With the exception of intra/inter network
connectivity, it is difficult to classify and characterize specific
types of connectivity within a connectome due to the nature of
how nodes were defined. While this suitable to for distinguishing
simple patterns of functional connectivity, detailed connectomes
require a more comprehensive method of node selection. This
is essential for developing existing models of functional changes
which occur with various neurological disease.

We propose a new method that utilizes maximum
connectivity among regions in a network to define functionally
relevant nodes for resting state analysis. The idea of using
maximum connectivity at the voxel level has been implemented
in various other methods (Cole et al., 2010; Golestani and
Goodyear, 2011). However the unique way in which this is
implemented in our method allows for new definitions and
characterizations of nodes and connectivity that in turn results

in novel measures for subsequent connectivity and network
analysis. We propose that these new measures will allow for
more detailed and individualized connectomes, leading to
in-depth analysis of functional connectivity. To illustrate the
advantages of this method, we analyzed resting state fMRI scans
of patients in various stages of Alzheimer’s disease (AD). Using
this method, we were able to identify well-known changes in
patterns of connectivity in AD and in addition, create a more
detailed description of network deterioration. We propose that
this method canmove beyond simple properties of brain network
organization and more comprehensively describe the underlying
pathophysiological mechanisms behind specific brain diseases.

METHODS

Subject Demographics
The patient dataset used in this study included 22 healthy
controls (HC) matched to 65 subjects with aMCI and 25
patients with AD (Table 1). Of these subjects, 2 healthy
controls, 26 aMCI patients and 1 AD patient were excluded
due to age or MRI quality. Subjects under the age of 65
were excluded. Subjects were excluded based on MRI quality
based on individual network reconstruction and movement
with an average frame wise displacement over 0.2. Each
patient underwent a comprehensive neurological examination,
laboratory investigations, neuropsychological testing, and brain
MRI. The patients’ caregivers were also interviewed. Amnestic
MCI was diagnosed based on the Clinical Research for Clinical
Dementia of South Korea (CREDOS) criteria (Park et al., 2011),
which is a modified version of Peterson’s criteria (Petersen et al.,
1997). Patients with low delayed recall performance (based on
a word list) were categorized as aMCI. The diagnosis of AD
was made based on the National Institute of Neurological and
Communicative Disorders and Stroke-Alzheimer’s Disease and
Related Disorders Association (NINCDS-ADRAD) criteria. HCs
were drawn from volunteers with no history of neurological
disease or disorders and no history of brain trauma. This study
was approved by the Institutional Review Board at Samsung
Medical Center and was performed in accordance with the
Declaration of Helsinki. Written informed consent was provided
by both participants and/or caregivers.

Resting state MRI scans were obtained using a 3.0T scanner
(Model: Philips Intera Achieva, Phillips Healthcare, Netherlands)
for 5 min. Scans involved the acquisition of 35 axial slices
using a gradient echo planar imaging pulse sequence as follows:
TR = 3,000ms; TE = 35ms; FOV = 220mm; voxel size (RL,
AP) = 2.875 × 2.875mm with a slice thickness of 4mm.
Additionally, T1- weighted anatomical images were obtained for
each participant using the following sequence: TR= 1,114ms; TE
= 10 ms; FOV (RL, AP, FH) = 220 × 220 × 132mm; and REC
voxel size= 0.43× 0.43× 0.43mm.

Reproducibility analysis was done on a separate dataset.
Resting dataset from 93 healthy controls with no history of
neurological diseases was gathered. Four subjects were discarded
due to MRI quality. Subjects were interviewed by experienced
psychiatrists using The Structured Clinical Interview for the
Diagnostic and Statistical Manual of Mental Disorders, Fourth
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TABLE 1 | Demographics.

HC aMCI AD p-value

ALZHEIMER’S DISEASE

N 20 39 24

Age 71.6 ± 4.9 74.7 ± 5.2 74.9 ± 5.1 0.054

Sex 8M:12F 16M:23F 9M:15F 0.96

CDR 0.5 0.5 –

MMSE 26.2 ± 2.1 21.3 ± 3.8 <0.0001

SVLT_Delayed 1.5 ± 1.5 0.9 ± 1.8 0.875

RCFT_Delayed 5.8 ± 4.1 2.3 ± 2.64 0.0005

edition, Axis I (SCID-I). This study was approved by the
Institutional Review Board at Seoul National University Hospital
and was performed in accordance with the Declaration of
Helsinki. Written informed consent was provided by participants
and/or caregivers/guardians.

Resting-state MRI scans were acquired using a 3.0T scanner
(Model: Siemens Trio, Siemens Healthcare, Erlangen, Germany)
for 8min and 45 s. Scans involved the acquisition of 35 axial slices
using a gradient echo planar imaging pulse sequence as follows:
TR= 3,500 ms; TE= 30 ms; FOV= 240 mm; voxel size (RL, AP)
= 1.9× 1.9 mm; and slice thickness= 3.5 mm. Additionally, T1-
weighted anatomical images were obtained for each participant
using the following sequence: TR= 1,890ms; TE= 1.89ms; FOV
= 240 mm; and voxel size (RL, AP, FH)= 1.0× 1.0× 1.0mm.

MRI Data Pre-Processing
Pre-processing of fMRI and structural MRI data was
performed using MRIcron (http://people.cas.sc.edu/rorden/
mricron/index.html) and the FMRIB Software Library (FSL,
www.fmrib.ox.ac.uk/fsl/). MRIcron converted the raw fMRI
images to a compressed FSL format. Image pre-processing
consisted of skull stripping using the Brain Extraction Tool
(BET), slice timing correction, temporal high-pass filter
(Gaussian-weighted least-squares line fitted with sigma =

100.0 s), MCFLIRT motion correction, spatial smoothing (using
a Gaussian kernel of FWHM 4 mm) and global signal regression.
FLIRT (FMRIB’s Linear Image Registration Tool) was used to
register and normalize the images to the Montreal Neurological
Institute (MNI) template (2-mm resolution). Group measures of
head movement were measured using the FSL Motion Outliers
with framewise displacement (FD). White matter signals were
identified from ICA and CSF signals were identified by averaging
time series from the left and right ventricles. Both signals
were regressed out using partial correlation during subsequent
analyses.

MRI Data Processing
Group MELODIC ICA was performed with a 25 component
selection. Major networks were identified within subjects using
FSL’s MELODIC software. Four major networks were identified:
the default mode network (DMN), the left and right fronto-
parietal networks (FPNL and FPNR), and the salience network
(SAL). Each network was then separated into various brain
regions and masks were created for each region. Resulting

networks from ICA were transformed to MNI space. The regions
selected for each network were based on distinct and commonly
reported regions in each resting network (Damoiseaux et al.,
2006; Watanabe et al., 2013; Betzel et al., 2014; Chan et al.,
2014). Major regions in each network were identified in the
corresponding ICA network and masks were created over each
of these regions. Excess voxels in each region were trimmed by
hand. Regional masks created for the DMN include the prefrontal
cortex, posterior cingulate cortex (PCC), the left and right
parietal lobes (PLL, PLR), and the left and right hippocampus
(HCL, HCR). The regions created for the FPNL and FPNR
were the left and right frontal lobe, the anterior cingulate cortex
(ACC), the PCC, the PLL, PLR, and the corresponding left or
right occipital temporal cortex. For the SAL network, regions
identified were the ACC, the left and right superior frontal gyrus,
and the left and right inferior frontal gyrus. Time-series were
extracted for each voxel within each region.

Node Identification
Node identification was defined by the voxel with the highest
correlation to another region (Figure 1). Voxel by voxel
correlations were calculated with a threshold at r > 0.25. This
threshold is selected based on parameters set in global brain
connectivity (Buckner et al., 2009; Cole et al., 2010). The total
correlation of every voxel in a given region was calculated by
summing the correlation to all the voxels in another region. The
voxel with the highest total correlation was identified and selected
as the representative node to the other network region. The
time-series for that voxel was extracted for subsequent analyses.

Notation
Definitions for all nodes are defined in the context from one
region to another. Each node will be notated as Vxy, where
x is the region where the node is located and y is the target
region used to identify the node. Connections or edges will be
notated as ekl,mn, which represents the connection between Vkl

and Vmn (Figure 2). The unique process in which these nodes
are identified provides new definitions of specific nodes and
edges. For example, the nodes and connections between two
regions (regions a and b) can be characterized based on how
they were defined (Figure 2A). These nodes, derived from voxel
to voxel correlations to these regions, are defined as primary
nodes (Vab and Vba), and the connection between these two is
defined as a primary connection (R1, Figure 2B). If we continue
to examine the connectivity in the context from region a to
region b, then the connections between the nodes derived from
connectivity to other regions (regions c and d) are labeled
secondary nodes (Vac, Vad, Vbc, and Vbd). The connection
between a primary node and secondary node can be called a
primary to a secondary connection (R12, Figure 2C), and a
connection between secondary nodes can be called a secondary
connection (R2, Figure 2D). Finally, connections between nodes
in the same functional region are defined as intra-regional
connections (RI, Figure 2D). If the context of which brain
regions are being investigated is changed, the definition of the
nodes will also change. For example, if we instead look at the
connections between regions a and c, the primary nodes become
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FIGURE 1 | Outline of proposed method compared to traditional methods. Traditional methods typically use large regions as nodes for network analysis.

Regional correlation identifies specific nodes within each region that represent relative hubs to other regions in the same network. This is calculated by the

identification of the voxel in a given region with the highest correlation to another region. Identification of these hub voxels as nodes within each network region allows

for more detailed representations of network connectivity. The current figure shows only primary connectivity. Further breakdown of connectivity measures are outlined

in Figure 2.

Vac and Vca , where, in the context of looking at connectivity
between a and b, these were secondary nodes. It is important
to note that the while the definition of nodes will change with
the context, the definitions of the connections or edges will
not change as the context that the connection represents is
always fixed. These new definitions allow for new measures of
connectivity that can be used to measure the strength of network
connectivity and to characterize and identify patterns of changes
in network connectivity.

Measures of Correlation
Tradition measures of correlation (ROI to ROI) are calculated
and shown using a correlation matrix (Figure 3). Correlations
values are obtained for each subject and averaged for each
subject group. Comparison of correlation values between AD
groups and healthy controls was performed using an unpaired t-
test. Unequal variances were accounted for using Satterthwaite’s
approximation. Statistical significance are reported using p-
values. Because of the number of connections being compared,
significance for correlation matrices are reported using both
an uncorrected p-value of less than 0.001, in addition to FDR
corrected connections (α < 0.05).

For each network, the measures of correlation are calculated
between regions and then averaged across the whole network.
In addition, regions of the DMN were further broken down and

analyzed for each measure based on overall connectivity to each
region. The equations below represent the calculated connectivity
between two specific regions within a given network.

Primary Connectivity (R1)
Connections between nodes derived from the correlation to
analogous regions will be defined as primary connections. For
example, if a node in region a was determined by connectivity to
region b (Vab) and another node in region b was determined by
connectivity to node a (Vba), then the connectivity between the
two nodes is a primary connection. The equation for the primary
connection can be determined by:

R1ab = eab,ba (1)

Primary to Secondary Connectivity (R12)
However, more than one correlation is calculated between
regions a and b. Correlations calculated between the primary
node Vab and the remaining nodes in region b are defined
as primary-secondary connections. Primary to secondary
connectivity between two specific nodes is defined as the average
of all such connections. The equation can be expressed as:

R12ab =

(

∑N−1
i= 1 eab,bi +

∑N−1
i= 1 eaj,ba

)

2(N− 2)
(2)
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FIGURE 2 | Breakdown of regional areas from major networks allows for the calculation of connectivity between specific nodes within each network.

The figure shows a representation of how more detailed measures of functional connectivity can be derived (A). All connections within a given network can be broken

down and defined according to how each node was defined. Functional definition allows for labeling of each ROI and edge for categorization into specific types of

nodes and connections. Primary connectivity (R1) is the connection between the two nodes that were defined by maximum connectivity between the opposite region

(B). A primary to secondary connection (R12) is the connectivity between a primary node and a node that is a primary node to another region (C). Secondary

connections (R2) are the connections between secondary nodes in the two regions (D) and intra-regional connections (RI) are the connections between the nodes in a

given region (E).

where N is defined as the total number of regions in the network.
Since no node is determined from the connectivity to the region
in which it resides (i.e., Vaa), the summation must follow that
when i ≥ a, then i= i+ 1, and when j > = b, then j= j+ 1.

Secondary Connectivity (R2)
Secondary connections are the remaining connections calculated
between nodes derived independently from the connectivity
between the two regions. To put it simply, secondary connections
can be calculated by the total correlation between the two
regions minus the R1 and R12 connections. The equation can be
expressed as:

R2ab =

(

∑N−1
i, j= 1 eai,bj −

(

∑N−1
i= 1 eab,bi +

∑N−1
j= 1 eaj,ba

)

− eab,ba

)

(N− 2)2
(3)

where N is defined as the total number of nodes in the network.
Again, since no node is determined from the connectivity to the
region in which it resides, the summation must follow that when
i ≥ a, then i= i+ 1, and when j > = b, then j= j+ 1.

Intra-Regional Connectivity (RI)
Intra-regional connectivity is defined as the correlations between
ROIs within the same region of a given network. The value is
calculated as:

RIa =
∑N−1

i= 1, j=i+ 1
ei,j (4)

where N is defined as the total number of nodes in the network.
Since no node is determined from the connectivity to the region
in which it resides, the summation must follow that when i ≥ a,
then i= i+ 1, and when a ≥ b, then j= j+ 1.
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FIGURE 3 | Calculated correlation with AD progression. Average functional connectivity was calculated for all nodes in HCs (A), aMCI (B), and AD (C).

Connectivity matrices represent pairwise connectivity between all derived nodes. Significant differences in correlation between HCs and disease groups are shown for

aMCI (D) and AD (E). Subject group sizes included 20 HCs, 39 aMCI subjects and 24 AD patients. Connections that are significant after correction are shown in white

(α < 0.05). Uncorrected p < 0.001 is shown in orange.

Comparison of newly derived measures of connectivity
(RI,R1, R12, and R2) was calculated between groups
using ANOVA with post-hoc analysis. For all analysis
involving new measures. Significance is reported with a
corrected value of α < 0.05 using Benjamini-Hochberg
correction. Corrections are done within similar measures of
connectivity.

Following the extraction of time-series from brain
regions using FSL, all calculations and subsequent analyses
were performed using in house coding in MATLAB.
Codes and masks used in this study are available upon
request.

Reproducibility of ROIs
The reproducibility of ROIs was evaluated based on various
masks from the DMN. For this analysis, the regions that were
targeted for analysis was the PCC, PFC, PLL, and PLR regions
of the DMN. The original masks used in the AD analysis were
either eroded, adjusted or inflated to varying degrees (Table 2)
to simulate different ICA results. Eroded masks represent
possible ICA results that can be significantly smaller than the
regions defined in our study, and inflated masks represent
possible ICA results that can be significantly larger. In addition,
ICA was performed on the reproducibility dataset using a 25
component decomposition to create a new set of masks. The
DMN was identified and a new set of masks were created
for the regions mentioned above (Supplementary Figure 1).
Inter-regional correlation analysis was performed for each
set of masks, and the extracted time-series were then
compared with the time-series obtained from using the original
masks.

TABLE 2 | Size of masks (# of voxels) used to test reproducibility of node

identification.

Original Eroded Adjusted Inflated New

DMN ROIs

PCC 6490 M1: 4080

M2: 2354

M1: 6349

M2: 6254

M1: 9523

M2: 13096

M1: 5687

PFC 6944 M1: 4538

M2: 2692

M1: 6814

M2: 6728

M1: 9909

M2: 13443

M1: 5823

PLL 4957 M1: 2830

M2: 1309

M1: 4834

M2: 4745

M1: 7591

M2: 10723

M1: 3801

PLR 5101 M1: 2947

M2: 1371

M1: 4981

M2: 4888

M1: 7780

M2: 10999

M1: 3265

RESULTS

Connectivity Matrix
Standard correlation analysis revealed decreases in connectivity
between the edges in all networks when comparing subjects
with aMCI to HCs (Figure 3D, p < 0.001). When comparing
connectivity between AD patients and HCs, only connectivity
in the DMN and the connections between the DMN and FPNL
network showed significant decreases (Figure 3E, p < 0.001).

Overall Network Connectivity
Newly defined measures showed distinct changes in network
connectivity. Analysis showed progressively decreased
connectivity in the DMN with all measures of connectivity in
aMCI. Analysis showed significantly decreased R1 connectivity
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(Figure 4B, α = 0.007), R12 connectivity (Figure 4C, α < 0.001),
R2 connectivity (Figure 4D, α = 0.005) and RI connectivity
(Figure 4A, α = 0.010 in aMCI compared to HCs. When
comparing AD patients to HCs, the analysis showed a significant
decrease in R1 connectivity (Figure 4B, α = 0.020), R12

connectivity (Figure 4C, α < 0.001), R2 connectivity (Figure 4D,
α < 0.001), and RI connectivity (Figure 4A, α = 0.004). The
FPNL and FPNR networks showed no significant changes in
aMCI or AD.

Connectivity of Each Region in the DMN
In the DMN, RI connectivity showed significant decreases in
aMCI subjects in the PFC (Figure 5A, α = 0.046), the PLR
(Figure 5A, α = 0.009), the HCL (Figure 5A, α = 0.009) and
HCR (Figure 5A, α = 0.029). AD patients showed decreases
in significant RI connectivity in the PCC (Figure 5A, α =

0.004), PFC (Figure 5A, α = 0.012), PLR (Figure 5A, α =

0.003), and HCL (Figure 5A, α = 0.031). R1 connectivity shows
significant decreases in aMCI subjects in the PCC (Figure 5B,

FIGURE 4 | Change in derived functional measures for each network with AD progression. Analysis reveals significant decreased correlation with for RI

(A) R1 (B), R12 (C), and R2 (D) in the DMN with no changes in FPNL, FPNR, and SAL connectivity. Graph shows mean, SD, and 95% confidence intervals. Lines with

asterisks show which groups demonstrated statistical differences: **α < 0.01, ***α < 0.001. Only connections that are significant after FDR correction for multiple

comparison are shown (α < 0.05).

FIGURE 5 | Average connectivity for each region of the DMN for derived measures. Average calculated connectivity for RI (A) R1 (B), R12 (C), and R2 (D) in

each region shows R12 and R2 connectivity to be universally affected in regions of the DMN while R1 connectivity remains relatively intact. Graph shows mean, SD,

and 95% confidence intervals. Lines with asterisks show which groups demonstrated statistical differences: *α < 0.05, **α < 0.01, ***α < 0.001. Only connections

that are significant after FDR correction for multiple comparison are shown (α < 0.05).
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α= 0.026), andHCR (Figure 5B, α= 0.022). AD patients showed
significant decreases in R1 connectivity in the PCC (Figure 5B,
α = 0.009), and PFC (Figure 5B, α = 0.008). R12 shows
significant decreases in aMCI subjects in the PCC (Figure 5C,
α = 0.003), PFC (Figure 5C, α < 0.001), PLL (Figure 5C, α

= 0.013), PLR (Figure 5C, α = 0.007), HCL (Figure 5C, α <

0.001) and HCR (Figure 5B, α < 0.001). AD patients showed
decreases in significant R12 in the PCC (Figure 5C, α < 0.001),
PFC (Figure 5C, α < 0.001), PLL (Figure 5C, α = 0.005), PLR
(Figure 5C, α < 0.001), HCL (Figure 5C, α < 0.001), and
HCR (Figure 5C, α < 0.001). Finally, R2 connectivity shows
significant decreases in aMCI subjects in the PCC (Figure 5C,
α < 0.001), PFC (Figure 5C, α = 0.002), PLR (Figure 5C, α <

0.001), and HCL (Figure 5C, α = 0.014). AD patients showed
decreases in significant R2 in the PCC (Figure 5C, α < 0.001),
PFC (Figure 5C, α = 0.006), PLL (Figure 5C, α = 0.018), PLR
(Figure 5C, α < 0.001), HCL (Figure 5C, α = 0.003), and HCR
(Figure 5C, α = 0.007).

Reproducibility Analysis
Comparison of extracted time-series using various masks for
analysis shows small differences based on howmasks are defined.
Analysis shows close to no change with masks that are varying in
∼100–200 voxels (Table 3). Differences in extracted time series
become more evident with larger differences in masks sizes
however correlation still remains relative high for all different
masks. Time-series which are extracted from masks that are
derived entirely from separate datasets still show high correlation
among one another (Table 3). These results are consistent across
all individual regions which are tested in our analysis (Table 4).

DISCUSSION

Identification of Functional Nodes Using
Regional Correlation
The new measures derived in this method provide an intuitive
breakdown of the connections that exist in a network.
Currently, node definitions only allow for comparisons of specific
connectivity (Figure 3). These offer limited information other
than the presence of a disconnection between two nodes.
However, if we are able to define and group certain connections,
it allows for a deeper understanding of network characteristics
in the brain. Therefore, the exact significance behind these
definitions should be discussed. R1 connections can represent
the strength of direct connections between two regions of a
network. R12 and R2 connections represent connections between
relative hub regions that may not be directly connected. Finally,
RI connectivity represents the local connectivity within each

TABLE 3 | Average correlation of time-series identified from different

masks with the original time-series.

Eroded Adjusted Inflated New

AVERAGE CORRELATION

M1: 0.87 ± 0.16

M2: 0.78 ± 0.18

M1: 0.98 ± 0.07

M2: 0.98 ± 0.08

M1: 0.89 ± 0.17

M2: 0.82 ± 0.20

M1: 0.81 ± 0.19

region or intra-regional connectivity. Further studies are needed
to confirm the biological basis behind these measures.

In our analysis, R1 and RI connections showed higher
calculated correlations than R12, and R2 connections (Figures 4,
5). This was expected based on the significance behind each type
of connection. R1 connections represented connectivity between
ROIs selected due to their high correlation to the analogous
region. In contrast, R12 connections represented connectivity
between ROIs where one was not a representative node to the
other region and as such had lower calculated correlations.
Finally, because R2 is calculated between two secondary ROIs,
they showed the lowest correlation.

This method is not the first to explore methods utilizing the
idea of identifying voxels with high connectivity for subsequent
analysis. Several studies advocate using various voxel-wise
approaches and highlight the advantages of identifying key
hub regions over large regional parcellations (van den Heuvel
et al., 2008; Cole et al., 2010; Liang et al., 2015; Rajtmajer
et al., 2015; Lee K. et al., 2016). Previous methods such as
global brain connectivity (GBC) analyze the correlations of every
voxel with every other voxel in the brain to determine whole
brain connectivity (Cole et al., 2010). This method is useful for
identifying globally connected regions, but it cannot distinguish
the local hubs that play a significant role in specific networks.
Another method called inter-voxel cross-correlation (Golestani
and Goodyear, 2011) identifies highly correlated voxels between
two regions but uses the ROIs for whole brain analysis. Our
method is distinguished from thesemethods in that we are able to
define and characterize specific types of connections which exist
in a connectome.

Functional Changes in Alzheimer’s Disease
AD is a progressive neurodegenerative disorder characterized
by the formation and accumulation of amyloid plaques and
tau protein tangles in the brain (Querfurth and LaFerla, 2010)
Previous studies with resting state fMRI have revealed that
the DMN is particularly vulnerable in AD (Buckner et al.,
2005; Lee E. S. et al., 2016). In this study, analysis comparing
calculated connectivity with correlation matrices alone did not
reveal any discernable pattern in connectivity changes (Figure 3).

TABLE 4 | Average correlation of time-series extracted from each region

of the DMN using different masks with the original time-series.

DMN

ROIs

Eroded New Inflated New

PCC M1: 0.90 ± 0.13

M2: 0.83 ± 0.16

M1: 0.99 ± 0.05

M2: 0.99 ± 0.06

M1: 0.91 ± 0.15

M2: 0.84 ± 0.18

M1: 0.81 ± 0.17

PFC M1: 0.87 ± 0.17

M2: 0.79 ± 0.21

M1: 0.98 ± 0.08

M2: 0.98 ± 0.09

M1: 0.87 ± 0.19

M2: 0.81 ± 0.21

M1: 0.78 ± 0.21

PLL M1: 0.86 ± 0.17

M2: 0.76 ± 0.20

M1: 0.98 ± 0.08

M2: 0.98 ± 0.09

M1: 0.89 ± 0.16

M2: 0.82 ± 0.21

M1: 0.82 ± 0.18

PLR M1: 0.86 ± 0.17

M2: 0.75 ± 0.16

M1: 0.98 ± 0.07

M2: 0.98 ± 0.07

M1: 0.88 ± 0.18

M2: 0.81 ± 0.21

M1: 0.82 ± 0.19
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Overall we observe general decreases in network connectivity in
aMCI (Figure 3D) however showed only decreased connectivity
in the DMN and connectivity to the DMN and FPNL for
AD (Figure 3E). Only one connection was significant after
multiple comparison correction. The difficultly of interpreting
these results highlights the need for new measures which can,
to a degree, organize and consolidate correlation measures for
better interpretability. Analysis using the new measures defined
in this study showed significant decreases in connectivity with
R1, R12, R2, and RI in the DMN. We showed a progressive
decrease in connectivity in the DMN, no changes in the
FPNL and FPNR networks and fluctuating changes in the SAL
network (Figure 4). These results were consistent with previous
studies that showed that changes in functional connectivity
were shown most distinctly in the DMN (Buckner et al., 2005;
Seeley et al., 2009; Brier et al., 2014; Crossley et al., 2014;
Sohn et al., 2014; Toussaint et al., 2014). In our study, we
observed decreased connectivity in the DMN network beginning
in aMCI.

From a network perspective, AD pathology is thought to
exemplify the “disconnection” hypothesis (Brier et al., 2014).
The formation of amyloid deposition and tau proteins in key
regions of the brain result in loss of synapses in the brain,
which leads to the loss of functional connectivity (Small, 2008;
Lim et al., 2014; Myers et al., 2014; Chung et al., 2016).
Studies have revealed that structures or regions that compose
the DMN are highly susceptible to AD pathology (Buckner
et al., 2005; Querfurth and LaFerla, 2010). As a result, the
deterioration in the functional connectivity of the DMN has
been highly reflective of AD pathology. Our study showed a
decrease in all measures of connectivity in only the DMN.
We propose that the results obtained in our study accurately
reflect the pathological effects of AD on functional connectivity
in the brain. The significant decreases in R1, R12, R2, and
RI connectivity functional changes occur in AD at all levels.
Therefore, we propose that the network deterioration caused by
the amyloid deposition and tau proteins in AD is a network-
wide phenomenon that targets all types on connections within
the DMN.

Additional analysis of the regions within in the DMN
showed a detailed picture of the vulnerability of each region
in AD. Numerous models have been proposed in network
degeneration (Zhou et al., 2012; Brier et al., 2014; Fornito
et al., 2015), however many of these models do not fully
account for the observed changes in functional connectivity.
Our results supports a model which proposes that while
specific brain regions are affected by AD pathology, they
continue to communicate in a disrupted manner (Brier et al.,
2014). Our results show that not all regions are affected
equally. Significant decreases in R1 connectivity only occurred
in the PCC, PFC, and HCR regions (Figure 5B). However,
with the exception of the PLL in RI connectivity, all other
measures showed significant decreases in all regions of the
DMN (Figure 5). These results show that R1 connectivity is
relatively unaffected compared to other measures, suggesting
that a major contributor to deficits in intrinsic connectivity
of the DMN can be attributed to decreased connectivity to

secondary hubs (R12, R2 connectivity). The detailed information
we obtain from breaking down and defining specific measures
of connectivity illustrates the strengths our method has in
uncovering functional changes which occur in neurological
diseases.

Limitations and Future Directions
One important issue is the possibility that the same voxel
can be selected as a primary node to multiple regions
because the resulting calculated correlation between the two
voxels will be one. Additionally, nodes that are spatially too
close to one another demonstrate high connectivity. This
phenomenon could be the cause of higher intra-regional
correlation obtained in our study for HCs compared to AD.
We showed that the actual spatial differences between intra-
regional ROIs are similar between different AD and HCs
(Figure 6). Additionally, no specific measures for between
network (extrinsic) connectivity, were defined in this paper.
However, it would not be difficult to develop such measures for
further analysis.

Finally, this method is dependent on networks derived
from ICA decomposition. Since this method begins by first
identifying the main regions of networks, only major networks
that have been shown to be consistently reproduced were
used (Beckmann et al., 2005; Abou Elseoud et al., 2011; Chou
et al., 2012). Even so, ICA iterations can produce slightly
different results from the same dataset (McKeown et al.,
2003). We show that small variations in region size have very
little effect on extracted time series (Tables 3, 4). Even large
variations in region size reveal a relatively small effect on
the extracted time-series, showing that this method will be
robust for reasonable differences in ICA results. Variations in
ICA results can be eliminated by using standardized functional
templates. It is possible to select these regions from anatomical
atlases; however, the functional relevance of deriving such

FIGURE 6 | Distance between identified nodes for the DMN. The figure

shows the average distance in voxels between identified nodes within each

region. The figure shows no significant differences between groups.
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ROIs should be considered. The same is true with different
high-resolution functional parcellation techniques (Sohn et al.,
2012; Igelström et al., 2015; Wang et al., 2015; Moher Alsady
et al., 2016). While these techniques can provide more regions
for analysis, the significance behind new network measures
calculated using these techniques might not be as evident. New
emerging techniques may provide a means for organizing these
parcellations (Power et al., 2011; Li and Wang, 2015; Yoo et al.,
2017).

CONCLUSION

In this study, we used a regional correlation based method
for node identification to discern detailed changes in
functional connectivity in AD. Specifically, we found that
while all connections within the DMN were affected in AD,
specific regions were more affected in certain measures.
The mapping of functional connectomes provides a
powerful tool for the mapping, tracking and prediction of
patterns of changes in connectivity with the progression
of brain disease. The unique way in which nodes and
ROIs are defined in this study allows for the use of
new descriptive features to analyze changes in functional
connectivity. We show that by using new measures, we
can contribute new information regarding changes in
connectivity that may reflect the underlying pathology and
mechanisms behind network deterioration in neurological
diseases.
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