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In order to harmonize robotic devices with human beings, the robots should be able

to perceive important psychosomatic impact triggered by emotional states such as

frustration or boredom. This paper presents a new type of biocooperative control

architecture, which acts toward improving the challenge/skill relation perceived by the

user when interacting with a robotic multimodal interface in a cooperative scenario. In the

first part of the paper, open-loop experiments revealed which physiological signals were

optimal for inclusion in the feedback loop. These were heart rate, skin conductance level,

and skin conductance response frequency. In the second part of the paper, the proposed

controller, consisting of a biocooperative architecture with two degrees of freedom,

simultaneously modulating game difficulty and haptic assistance through performance

and psychophysiological feedback, is presented.With this setup, the perceived challenge

can be modulated by means of the game difficulty and the perceived skill by means

of the haptic assistance. A new metric (FlowIndex) is proposed to numerically quantify

and visualize the challenge/skill relation. The results are contrasted with comparable

previously published work and show that the new method afforded a higher FlowIndex

(i.e., a superior challenge/skill relation) and an improved balance between augmented

performance and user satisfaction (higher level of valence, i.e., a more enjoyable and

satisfactory experience).
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INTRODUCTION

Human–Robot Interaction
In recent years, human–robot interaction (HRI) research has
mostly focused on a master–slave relationship. However, as
a natural step forward, robotics designers have found new
and exciting frontiers to expand the existing research toward
human-centered fields. Robots are now physically interacting
with humans, especially in the medical domain (Colombo et al.,
2001; Hochberg et al., 2012; Bonatti et al., 2014). This whole
new field of robotics is evolving toward closing the gap between
mechatronic systems and humans. In particular, robots have
proved to be an excellent research tool in areas of neuroscience
such as humanmotor control (Reinkensmeyer et al., 2004; Huang
and Krakauer, 2009) and neurorehabilitation (Daly andWolpaw,
2008; Hidler and Sainburg, 2011). Besides robots, other emerging
technologies, such as virtual reality (Lewis and Rosie, 2012)
and haptics (Okamura, 2009), are nowadays in the spotlight of
neuroscientists. These new tools allow hacking and augmenting
the human visual, auditory, or vibrotactile systems in a controlled
way, thus opening up new routes for groundbreaking research.

Patient-Cooperative Control
In neurorehabilitation, there are many examples of mechatronic
systems designed for human–robot cooperative tasks. The main
idea behind these systems is to assist the subject in completing
a given task (e.g., reaching or grasping), typically by using a
haptic controlled robotic device to deliver the forces needed for
the correct completion of the objective (Liu et al., 2006; Nef
et al., 2009; Song et al., 2013; Squeri et al., 2014; Pignolo et al.,
2016). The intended output of these therapeutic robots is to
promote engagement, human effort, and intention of movement
and, therefore, to accelerate motor learning and induce neural
plasticity (Reinkensmeyer et al., 2004; Edgerton et al., 2008;
Huang and Krakauer, 2009; Pennycott et al., 2012). The control
strategies of interactive robotic devices are typically designed
based on the paradigm “assistance-as-needed,” where human
and robot cooperate to successfully complete a task, minimizing
the intervention from the robotic device and maximizing that
of the human. This patient-cooperative control is mostly based
on performance measures such as kinematics, kinetics, muscle
activity, etc.

Yet, in spite of human–robot cooperative tasks being
“performed” accurately and successfully through these patient-
cooperative control paradigms, patient outcome and recovery did
not improve significantly with the introduction of “patient-in-
charge” robotic rehabilitation devices. Issues such as emotional
and cognitive stress, excessive physical work demand, discomfort,
pain, boringness, and lack of motivation are rarely taken into
account, yet play a key role in humanmotor control performance
(Guadagnoli and Lee, 2004). For example, emotions such as
anxiety, frustration, or stress can have a large impact on motor
performance, speed, and variability (Coombes et al., 2006). As
early as 1908, Yerkes and Dodson (1908) showed that human
performance changes in relation to the level of arousal depending
on the difficulty of the task: for a difficult task, high levels of
arousal can be counterproductive, but if the task lies within

the subject’s capabilities, high levels of arousal can be beneficial
instead (Yerkes and Dodson, 1908; Diamond et al., 2007).

According to Mihály Csíkszentmihályi (1992), cognitive states
(e.g., focused, bored, motivated) can also change in relation to
the challenge and skill level perceived by a given subject. These
cognitive states can either increase or decrease performance
accordingly. For instance, a state of boredomwill tend to decrease
performance, while a focused cognitive state will lead to better
results by promoting mental engagement (Guadagnoli and Lee,
2004; Holden, 2005).

Assessment of Emotion
Emotions are accompanied by a set of somatic responses
associated with autonomic nervous system (ANS) activity. For
a specific emotional state, there exists a probable set of somatic
and ANS outputs, although it remains unclear which kind of
emotion is associated with which exact autonomic signature
(Kreibig, 2010). Nevertheless, psychophysiology has been used to
indirectly measure ANS-related responses to external stimuli that
affect a person’s mood and engagement in a variety of interactive
scenarios (Kreibig, 2010). Autonomic responses of emotion are
present in parameters such as heart rate (HR), skin temperature
(SKT), galvanic skin response (GSR), and respiration rate (RR).
A complete overview of these parameters has been summarized
in a tag cloud based on 134 publications and explained in detail
in Kreibig (2010).

Biocooperative Control
In an attempt to harmonize existing mechatronic systems with
human beings, physiological computing has appeared as an
enabling technology to give machines exteroceptive capabilities
to measure and record physiological data on the emotional state
of the user, allowing proactive and implicit adaptations of HRI
in real time (Fairclough, 2009, 2011). This concept includes the
human in the control loop and gives birth to a whole new set
of possible biomechatronic devices capable of “biocooperative
adaptation” (Pope et al., 1995; Prinzel et al., 2000).

In 2008–2009, the first ideas of using ANS-related signals
as feedback information to close a biocooperative control loop
took shape (Bonarini et al., 2008; Mihelj et al., 2009; Novak
et al., 2009; Riener et al., 2009; Rodriguez Guerrero et al.,
2009). In 2010, Novak et al. (2010a,b) attempted to determine
which psychophysiological responses provide the most reliable
information about the subject’s psychological state during an
upper-limb virtual reality (VR) task with the HapticMaster robot
in healthy subjects (Novak et al., 2010a) and stroke patients
(Novak et al., 2010b; Goljar et al., 2011). Koenig et al. (2010,
2011b) took this research a step further and determined the
most suitable psychophysiological parameters to estimate the
psychological state of subjects and neurological patients during
walking in a driven gait orthosis Lokomat while completing a
cognitively demanding VR task (Koenig et al., 2010, 2011e).
Also in 2010, Rodriguez Guerrero et al. (2010) presented a
step forward toward a working prototype of a biocooperative
closed loop that included HR feedback to modulate a set of
assistive forces in a robotic-aided neurorehabilitation scenario.
Soon after, Novak et al. (2011a,b), Koenig et al. (2011a), Badesa
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et al. (2012, 2014), and Morales et al. (2014) implemented a more
complex closed-loop system that included feedback parameters
related to HR, RR, GSR, and SKT (Novak et al., 2011a,b; Koenig
et al., 2011b; Badesa et al., 2012, 2014; Morales et al., 2014).
These studies aimed to change the difficulty level of the VR
task depending on the emotional and cognitive load experienced
by the subjects (Koenig et al., 2011b; Novak et al., 2011a,b;
Badesa et al., 2012, 2014; Morales et al., 2014). In a previous
work, Rodriguez Guerrero et al. (2013) developed a closed
biocooperative loop with an auto-tuning fuzzy logic classifier to
modulate the haptic assistance given to subjects using HR and
GSR feedback. Notice that in contrast with the work by Koenig
and Novak (Koenig et al., 2011b; Novak et al., 2011a,b), the
goal was not to adapt the game difficulty and thus the perceived
challenge level, but to adapt the level of assistance given, thereby
attempting to affect the perceived skill level instead. Although
the conclusions of Rodriguez Guerrero et al. have suggested
that psychophysiological feedback alone can help improve the
user experience, independent of whether there exists contextual
information about the performance or not, they also suggested
that the biocooperative system could be further improved by
blending the haptic modulation together with adaptations in
game difficulty (Rodriguez Guerrero et al., 2013).

Article Contribution
The Yerkes and Dodson model (Yerkes and Dodson, 1908;
Diamond et al., 2007) suggests that arousal levels have a strong
impact on performance. It also suggests that high levels of
arousal can be counterproductive, especially when the presented
task becomes overwhelming to the subject. In contrast, if the task
lies within the subject’s capabilities, high levels of arousal can be
beneficial instead. The contribution of this work expands upon
this logic and improves the biocooperative architecture presented
by Rodriguez Guerrero et al. (2013) by augmenting the system
with contextual performance information that, when blended
with the individual’s psychophysiological feedback, provides a
superior and more individualized continuous adaptation of the
system to keep the task difficulty within its user’s capabilities,
improving subject performance and more importantly the
overall user experience. Moreover, as there is still controversy
on which psychophysiological parameters are eligible for use in
biocooperative enhanced systems, the present study will also
take into consideration, as was previously done by Novak et al.
(2010a) and Knaepen et al. (2015), which psychophysiological
parameters are the most suited for use in a closed biocooperative
loop. Finally, a new metric (i.e., FlowIndex) is proposed
to numerically quantify and visualize the challenge/skill
relation.

MATERIALS AND METHODS

Subjects
Eleven subjects participated in this study involving an open-
loop and a closed-loop experiment. The subjects had no clinical
records of neural or motor deficiencies. Six subjects [five males
and one female, mean age 30.5 years (SD = 3.83)] participated
in the open-loop experiment and 11 subjects [eight males and

three females, mean age 35 years (SD = 7.34)] participated in
the closed-loop experiment. All experimental procedures were
performed according to the standards set by the Declaration
of Helsinki for medical research involving human subjects.
Upon arrival in the lab, subjects signed a written informed
consent form. This research was approved by the medical ethics
committee of Fundación CARTIF.

Instrumentation
Virtual Reality Game
The virtual scenario was based on a popular “catch the falling
droplet” reaching game (see Rodriguez Guerrero et al., 2013
for more details), which has also been used by other robotic
rehabilitation platforms such as Armeo (Merians et al., 2009;
Schwickert et al., 2011; Wittmann et al., 2016). The game
interface and its mechanics are very simple and demand basically
no explanation or extra human intervention. Droplets were
spawned one at a time at a given velocity, vdroplet, defined in
pixels/sec. Only one droplet was rendered at a time, to avoid
pre-emptive maneuvers from the subject and maintain focus on
the actual target. The subject was expected to catch the falling
droplet by moving the PHYSIOBOT end effector, which was
represented by a cup in the VR environment. Movements of the
robot were projected back to the screen, thereby acting as a visual
feedback. The initial positions of the droplets were predefined
and generated in advance as an array of 100 positions. This array
size is sufficiently large to prevent subjects from memorizing the
positions, therefore avoiding habituation issues. The difficulty
level of the task could be changed by altering either the distance
between droplets or the falling speed. However, by keeping the
same initial positions, the total amount of power needed for
the task to be successfully completed in a certain amount of
time was homogeneous among sessions with a defined velocity
(i.e., experiments in the open loop). Therefore, the difficulty
modulation was reduced to make changes in the velocity of the
falling droplets only. The faster the droplets fall, the greater the
amount of power needed to catch them in time, due to the
permanent velocity-dependent force field rendered by the haptic
device.

Haptic Assistance
The PHYSIOBOT is capable of rendering a wide range of 3D
forces and primitives such as haptic walls, dampers, springs,
textures, or a combination thereof (Rodriguez Guerrero et al.,
2009). In this setup, a viscoelastic force tunnel was rendered so
that it created resistive forces in the sagittal and vertical axes.
On the task axis (i.e., transverse axis), a constant-viscosity force
field (150 Ns/m) was rendered, such that velocity-dependent
resistive forces made the physical task of moving the virtual cup
a demanding exercise without the appropriate haptic assistance.
The robot could also help the subject by applying assistive forces
in the task direction. Forces could be modulated, placed, or
removed online at any time.

Optimally, haptic assistance should be computed as the
force needed for the robot to take the subject to the target
with minimum intervention, and simultaneously promote
engagement and self-initiated movements. Therefore, the
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assistive forces were designed along the task axis, as a critically
damped second-order system. A critically damped response
allows the system to marginally get to the target in time with
the minimum amount of assistance needed to complete the
task (see Rodriguez Guerrero et al., 2013 for further details
of this calculation). Besides the actuation strategy in terms
of magnitude, the timing of the assistive forces needed to
be determined. Most of the existing physical human–robot
cooperative systems, such as those in rehabilitation robotics,
render assistive forces to correct erroneous movements with the
help of virtual springs. The problem with this method is that it
creates the feeling of being helped rather than the feeling of being
more capable/in control of moving the virtual object. The haptic
assistance in PHYSIOBOT enhances, rather than corrects, the
subject’s movements by only giving assistance when the subject
has initiated the movement in the target direction. The goal is to
“hide” the sensation of being helped and to promote the feeling
of being more skillful and capable, a very important feature
achieved in this design.

Biocooperative Control
In a biocooperative control loop, the human plays a key central
role. Figure 1A shows the human as a plant in a classical control
scheme. The human block is where the final action lies, and also
where the primary feedback is taken from. Figure 1B shows a
greatly simplified human control system that only involves some
specific portions of the nervous system directly affected by the
multimodal interface: the audiovisual stimuli coming from the
virtual environment and the interaction forces coming from the
physical human–robot interaction with the PHYSIOBOT.

The biocooperative high-level controller used was a Takagi–
Sugeno-type fuzzy inference system (FIS) synthesizing several
fuzzy rules (see Appendix A in Supplementary material for a
complete list of the rules used). Fuzzy logic has already been
used in psychophysiological and emotion modeling (Mandryk
and Atkins, 2007; Badesa et al., 2012, 2014; Rodriguez Guerrero
et al., 2013; Lledo et al., 2015). This system combines data
fusion, classification, and control in one simple and well-
known framework. The system has four inputs and two outputs
(Figure 2).

The results from the open-loop experiments suggested
(Section Open-Loop Results: Open-Loop Results) that the most
useful signals to use as inputs for the controller were HR and
the tonic (i.e., skin conductance level, SCL) and phasic (i.e., skin
conductance response frequency, SCR frequency) components of
the GSR signal. Performance was the fourth input of the high-
level controller. The outputs were the haptic assistance and the
changes in game difficulty (i.e., changes in the speed at which the
droplets fell). The haptic assistance output was a value between
0 and 1, where 0 represents no assistance and 1 represents full
critical assistance. This allows the system to act accordingly
when either of the two undesired situations (i.e., under- or
overchallenge) occurs for the subject. For instance, if the overall
state of the subject indicates that he/she is underchallenged,
the assistance will cease, and the difficulty of the task will be
augmented accordingly. If, on the other hand, the overall state of
the subject indicates that he/she is overchallenged, the assistance

will be computed and delivered according to his/her ANS activity,
and the game difficulty may be reduced as well.

An intrinsic problem in biocooperative controller design is
the inter-/intrasubject variability. In Badesa et al. (2012), fuzzy
logic was used but no adaptation algorithm was implemented
to deal with this effect. This is important as any consumed
substance such as β-blockers, antidepressants, coffee, or sugar
may drastically impact baseline ANS readings. In order to deal
with the problem of the inter-/intrasubject variability, the FIS
was tuned to adapt to the immediate state of each subject. Every
FIS has two basic tunable sets of parameters, the rules base, and
the membership functions (MFs) for each I/O. The MFs were
automatically calibrated after an open-loop “calibration task”
designed primarily for that purpose. In the 3-min non-haptic-
assisted VR calibration task, the difficulty level was adapted
such that every time the subject caught a droplet, the system
augmented the falling speed by 2 pixels/s; on the contrary, if
the subject missed a droplet, the system reduced the speed by
the same amount. The idea behind the calibration task was
that the subject’s score would steadily increase over time until
the challenge level started to approach his/her skill level. After
reaching this tipping point, the subject typically started to get
drastically aroused as their skill limit was constantly being
challenged by the difficulty of the game. The data obtained at
the end of the calibration task can be used to tune the MF of the
HR, SCL, and SCR frequency. We refer the reader to Rodriguez
Guerrero et al. (2013) for more details regardingMF auto-tuning.
Besides these two parameters, the rules base and the MFs, a
performance parameter (i.e., based on the subject’s performance
during the VR game) was used in the high-level controller of the
biocooperative feedback loop.

The algorithm shown in Figure 3 was used to compute the
“performance” input to the fuzzy controller based on the trend of
the global score. The idea behind this design was that, no matter
how well subjects were performing globally (i.e., their total game
score), small sustained changes in performance would always
influence their emotions. A “trend” or winning/losing streak
will often boost or deteriorate our confidence (i.e., dominance
value). Therefore, if two droplets were caught/missed in a row,
the performance sign changed accordingly in order to take
preemptive actions in the controller logic to avoid frustration.

The fuzzy controller worked at a sample rate of 100 Hz,
although both of its outputs (i.e., haptic assistance and game
difficulty) were updated every epoch (n; the period between two
consecutive droplets). Thus, the output of an epoch (n) was the
result of the average of the calculations made in the epoch (n−1).
As such, the calculations and effects of the inputs that manage
the signals were synchronized with the performance input, which
was updated every epoch (n). This averaging contributes to
filtering the outputs, especially the haptic assistance, so that
the subject does not feel as though it is changing continuously,
thereby producing a more natural, less noisy feeling of the haptic
assistance and avoiding a constantly varying droplet speed.

Experimental Design
Upon arrival in the lab, the purpose and procedure of the
experiment were explained and the subjects signed the written
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FIGURE 1 | (A) Macro view of the biocooperative control loop. Three different interacting blocks can be distinguished. From left to right, the red block represents the

high-level controller, which makes decisions based on the overall state of the system, including the subject, and sends actions regarding the difficulty of the game and

the level of haptic assistance to the multimodal environment represented by the central blue block. The yellow block represents the human, whose responses to the

audiovisual and haptic feedback generate ANS responses and interaction forces, which are, in turn, used to close the biocooperative loop. (B) Effects of the

multimodal interface (i.e., PHYSIOBOT and VR) on the human control system. External stimuli are captured by the afferent neurons in the peripheral nervous system

(PNS) and distributed over different cortical and subcortical levels to the CNS: the thalamus, the limbic system, and the cortex. All external sensory input is received by

the thalamus, which sends information simultaneously to the cortex for higher-level processing, and directly to the limbic system (LeDoux, 1995). Part of the

information goes to the hypothalamus, which secretes neurohormones that either stimulate or inhibit the secretion of the pituitary hormones that modulate the

behavior of the ANS. Simultaneously, the external stimuli make their way to the sensorimotor cortex, which modulates ongoing movements and motor effort, and the

prefrontal cortex, which controls the subject’s psychophysiological state and turns it into a conscious state and thus a mood or feeling. ANS signals are then fed to the

high-level controller and the interaction forces are fed to the multimodal environment as “human in the loop” feedback signals.

informed consent form and were equipped with the Biopac
MP150 data acquisition system for measuring ANS responses
(i.e., ECG, GSR, and SKT). Next, subjects participated in two
different experiments involving a VR task of catching falling
droplets by manipulating the PHYSIOBOT end effector (see

Rodriguez Guerrero et al., 2013 for a picture of the experimental
setup). During each session, electrophysiological data, game
performance, and physical performance were measured, and
immediately following each session, the emotional status of the
subject was registered.
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FIGURE 2 | High-level controller driving the interaction between the subject and the multimodal environment.

Open-Loop Experiment
The first experiment was an open-loop experiment (n = 6)
consisting of a warm-up of 3 min followed by four game sessions
of 5 min each. The 3-min warmup time (i.e., no physical or
mental exercises were performed) was used to stabilize the sensor
readings to a baseline. The four experimental sessions contained
four different levels of difficulty ranging from very easy to very
hard, starting with difficulty level 3, then difficulty 4, followed by
difficulty 2, and finally difficulty level 6 (Table 1). All difficulty
levels were chosen in advance, prior to the experiment.

Closed-Loop Experiment
The second experiment was a closed-loop experiment (n = 11)
consisting of a control task of 5 min (i.e., the calibration task,
hereafter referred to as CT), followed by a 5-min resting period
and a 5-min closed-loop trial (hereafter referred to as haptic
and difficulty modulation (HDM) controller). The obtained data
were compared to the results obtained in Rodriguez Guerrero
et al. (2013), where a haptic-assisted-only controller was used
(hereafter referred to as HAO).

Data Acquisition and Analysis
VR Score
The score on the VR task was calculated based on the
game score, which added one point for each droplet
caught and subtracted one point if a droplet was missed.
The score mean value with standard deviation (SD) is
presented for each open- and closed-loop experiment in the
results.

Physical Performance
Physical performance was computed by measuring the
interaction force with the PHYSIOBOT haptic device

by means of a force sensor mounted between the end
effector and the human. The mean absolute force (MAF)
expressed in newtons (N) with SD was used as an
indicator of physical performance and was computed by
extracting the mean of the absolute value of all of the
forces over the task axis during a session, sampled at a
rate of 1 kHz.

Electrophysiological Assessment
For the physiological signal recording, the Biopac MP150 data
acquisition system1 with three amplifiers, ECG100c2, GSR100c3,
and SKT100c4, was used. All recordings were collected online
during the game time through UDP/IP at a frequency of 100
Hz. All physiological measurements were recorded through non-
invasive, ambulatory sensors, using simple, and fast Velcro
attachment electrodes for GSR and SKT and sticky disposable
electrodes for the ECG. The mean values for the 5-min
experimental sessions (i.e., open- and closed-loop experiments)
were calculated. From the ECG, the intervals between two
heartbeats (NN intervals) were extracted in order to calculate the
mean HR value with SD. Two components were extracted from
the GSR signal: SCL and SCR frequency. The mean SCL with SD,
which is the baseline level of skin conductance, was calculated
for each game difficulty level. The SCR frequency represents
increases in skin conductance followed by a return to the tonic
level. Themean SCR frequency with SD as well as mean SKTwith
SD are presented in the results.

1http://www.biopac.com/data-acquisition-system-mp150-system-glp-win.
2http://www.biopac.com/ecg-electrocardiogram-amplifier.
3http://www.biopac.com/gsr-eda-galvanic-skin-response-amplifier-

electrodermalactivity.
4http://www.biopac.com/skin-temperature-amplifier.
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Emotion Assessment
To subjectively assess emotion, the self-assessment manikin
(SAM) test was used (Posner et al., 2005, 2009) (see Appendix
A in Supplementary Material). We implemented a computer

FIGURE 3 | Schematic overview of the logic for calculating the

performance trend in the VR game.

TABLE 1 | The four levels of task difficulty in the open-loop experiment

(n = 6).

Difficulty

level

Description Presentation

order

2 Very easy: This task is meant as a baseline period. It

maintains the subject’s focus and helps to reduce

psychophysiological responses elicited by random

mental thoughts or memories.

3rd

3 Normal: This task makes a good transition between

the baseline period and the following trials.

1st

4 Challenging: This is a more demanding task than

level 3, but in general, it fits better with the average

subject preferences.

2nd

6 Very hard: Although this level can be quite hard, it is

not designed to be frustrating but demanding

instead. It is meant to force the subject into an

aroused state.

4th

program that presented the SAM test at the end of each session in
an automated way, such that the subjects were able to select their
choice without any external human intervention that might have
otherwise biased their answers. The three emotional dimensions
used were arousal, valence (i.e., pleasure), and dominance (i.e.,
sense of control of the situation). Each dimension was rated on a
nine-point scale (i.e., 1–9). For each dimension, the mean value
with SD is presented.

Vector Representation, FlowIndex, and FlowDir
In this article, a new and simple set of tools is proposed
for analyzing, visualizing, and comparing the impact of a
biocooperative controller based on arousal and dominance
scores: the vector representation, FlowIndex, and FlowDir. These
vectors are tools to graphically and numerically evaluate the
results of a given control strategy designed to act on the
challenge/skill perception of a particular task.

The vector representation (Figure 4) is a visual way to present
the challenge/skill ratio and compare the [dominance, arousal]
results (i.e., from the SAM questionnaire or as a result of the
output of an automatic classifier) of one or more tasks (i.e., vector
A) relative to the maximal/optimal challenge/skill ratio (i.e.,
reference vector F). This metric is a mathematical representation
inspired by a theory used in psychology termed “Flow statem,”
where an optimal experience motivates people to further learn or
stay committed to a task (Csikszentmihalyi and LeFevre, 1989;
Engeser and Rheinberg, 2008). The challenge level relates to the
arousal domain and can be modulated by means of the game
difficulty level, and the skill level is related to the dominance
domain and can be modulated by means of the haptic assistance;
see Equation (Hochberg et al., 2012). Therefore, the equivalence

FIGURE 4 | Vector F is the reference with components [dominance,

arousal] = [9,9] and vector A is used as an example of a given output

obtained within a session with coordinates [8,5]. The vector

representation affords a quick glance into the performance of a given session.

In this example, the results point toward the relaxation/boredom zone of the

figure and therefore it is unlikely that the experience was enjoyable or engaging

but rather boring instead.
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for their ratios can be defined as:

Challenge

Skill
∼=

Arousal

Dominance
(1)

Since this relation has two components, it can be expressed and
plotted as a vector (Figure 4).

FlowIndex uses the obtained pair A[dominance, arousal]
represented in vector form, and quantifies how alike vector
A (blue) and the ideal vector F (solid black) are (Figure 4).
This form of vector similarity first uses the normalized scalar
projection (NSP) (Equation 2) of A projected onto F. The result
of this calculation is a scalar bounded between 0 and 1 that
gives information on how A projects onto F. Then, the angular
similarity (AS) (Equation 3) is used to calculate the similarity
between the two vector angles and gives again a value bounded
between 0 and 1 (i.e., where 0 is completely orthogonal and
1 is perfectly parallel). By multiplying the two obtained results
(Equation 4), the AS penalizes vectors that are diverging from F

(i.e., the angle between them is >0). Notice that both NSP and
AS are bounded between 0 and 1 and, therefore, the FlowIndex
results will always be bounded in the same way. The FlowIndex is
then a scalar value that represents how alike A and F are in terms
of both angle and magnitude.

The higher the FlowIndex value is, the closer we are to being
within the flow channel (i.e., the dotted lines delimiting the ideal
range of challenge/skill ratio in Figure 4) and, therefore, themore
pleasant and exciting the experience will be.

NSP =
A.F̂

||F||
(2)

AS = cos θ =

(

A.F

||A||||F||

)

(3)

FlowIndex = NSP ∗ AS (4)

Since FlowIndex is always positive and bounded between 0 and 1,
this metric alone cannot reveal if the resulting vector is pointing
toward the frustration or relaxation zone. Nevertheless, the
direction of the FlowIndex can be calculated. This computation
is straightforward and can be performed as follows:

FlowDir =







Frustration sign
(

Ay − Ax

)

= 1

Flow sign
(

Ay − Ax

)

= 0

Relaxation sign
(

Ay − Ax

)

= −1

(5)

Equation (5) gives a value of 0 whenever vectors A and F are
parallel (i.e., flow), 1 whenever vector A is pointing toward the
frustration zone, and −1 whenever it is pointing toward the
relaxation zone. For this given example, the FlowIndex of A =

[8,5] is 0.65 with FlowDir = Relaxation.

Statistical Analysis
Statistical analysis was performed using the Statistical Package
for Social Sciences 24.0 for Windows statistical software (SPSS
Inc., Chicago, IL, USA). Data are presented as mean with SD.
Statistical significance was accepted at p < 0.05. As n = 6, non-
parametric statistics were applied and effect sizes were calculated.

Eight variables were extracted from all recorded data: valence,
dominance, and arousal were extracted from the SAM; MAF
from the haptic device; and SKT, HR, SCL, and SCR frequency
were derived from physiological recordings. To assess differences
between the four difficulty levels in the open-loop experiment
(n = 6), a Friedman’s analysis of variance (i.e., ANOVA) was
used. As an estimate of effect size, Kendall’s W coefficient was
calculated, where a value ofW = 0 indicates no relationship and
a value of W = 1 indicates a perfect relationship (Tomczak and
Tomczak, 2014). The following null hypothesis was tested, for
which µi is the mean of the observed variable for each difficulty
level (i.e., subindex i corresponds to difficulty levels 2, 3, 4, and 6):
no significant differences between the four difficulty levels, H0:µ2

= µ3 = µ4 = µ6.
Furthermore, Spearman’s rank correlation coefficient was

used to measure the strength of the association between the
subjective data from the SAM questionnaire and objective data
such as HR, SCL, SCR, SKT, and MAF.

RESULTS

Open-Loop Experiment
Figure 5 shows the mean values for all of the eight measured
variables (n = 6) in the order of difficulty i.e., 2, 3, 4, and 6
(note that the difficulty levels were presented to the subjects
in a different order; see Table 1). Table 2 shows the outcome
of all eight variables for the tested hypothesis (H0) with the
corresponding effect size. Significant differences (p < 0.05) and
large effect sizes between all four difficulty levels were found
for arousal, dominance, MAF, SCR frequency, HR, and SCL
(Figure 5 and Table 2).

The results of the Spearman’s rank correlation analysis
between the subjective variables of arousal, dominance, and
valence, on the one hand, and objective psychophysiological
responses (i.e., HR, SCL, SCR, SKT) and physical effort (i.e.,
MAF), on the other hand, can be found in Table 3.

Closed-Loop Experiment
Table 4 shows the mean values with SD for the total game score,
MAF, HR, SCL, SCR frequency, arousal, dominance, and valence
during the 5-min calibration task and the 5-min closed-loop
task. The percentage change between the results of the closed-
loop experiment and the baseline, i.e., the calibration task, are
presented in Figure 6.

DISCUSSION

Open-Loop Results
For a psychophysiological signal to be useful as feedback
information for control purposes, it has to change considerably
and coherently in relation to the task difficulty. From the results
shown in Table 2, we can infer that arousal, dominance, MAF,
SCR frequency, HR, and SCL changed significantly across the
four difficulty levels (i.e., p < 0.05). These results are coherent
with previous studies on psychophysiological changes during
mixed physical/psychological HRI tasks (Rodriguez Guerrero
et al., 2010; Novak et al., 2010a,b, 2011a,b; Koenig et al., 2011a,c;
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FIGURE 5 | Boxplots with mean values of HR, SCL, SCR frequency, SKT, MAF, arousal, dominance, and valence for the four levels of game difficulty (n

= 6). The shaded boxes represent the range in which 50% of the data fell (i.e., interquartile range). The “I” shaped whiskers represent all of the data that fell within 3

SD of the mean (i.e., the black horizontal bars). The open (◦) and closed (•) circles above the whiskers represent outliers (i.e., individual scores very different from the

overall scores in the shaded box). Difficulty is presented in ascending order, although the presentation order in the experiments was 3, 4, 2, 6 (see Table 1).
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TABLE 2 | Significant differences and effect sizes between game difficulty

levels for the eight measured variables.

H0 Effect size W

Arousal p = 0.001* W = 0.883

Dominance p = 0.002* W = 0.818

Valence p = 0.125 W = 0.319

MAF p < 0.001* W = 1.00

SCR frequency p = 0.006* W = 0.698

HR p = 0.002* W = 0.833

SKT p = 0.642 W = 0.093

SCL p = 0.008* W = 0.656

*Significant difference, p < 0.05.

TABLE 3 | Correlations between subjective and objective measurements.

HR SCL SCR SKT MAF

Arousal p = 0.221 p = 0.003* p = 0.011* p = 0.110 p < 0.001*

r = 0.259 r = 0.572 r = 0.512 r= −0.334 r = 0.708

Dominance p = 0.807 p = 0.001* p < 0.001* p = 0.414 p = 0.004*

r = −0.053 r = −0.620 r = −0.681 r = 0.175 r = −0.560

Valence p = 0.525 p = 0.044* p = 0.061 p = 0.706 p = 0.044*

r = −0.136 r = 0.415 r = 0.388 r = −0.081 r = 0.415

*Significant correlation, p < 0.05.

Badesa et al., 2012, 2014; Morales et al., 2014) and show that,
in this experiment, HR, SCL, and SCR were the most sensitive
physiological parameters to discriminate between the difficulty
levels of the VR task. For HR, the observations made went
further and showed that this variable exhibited a considerable
inertia when preceded by a higher level of physical activity, as
can be seen in Figure 5 (i.e., delayed effect of task presentation
order, see Table 1; more specifically, a continued effect of level
4 on level 2 can be seen). This delay in HR decrease during
recovery from a higher level of physical effort is a well-known
effect (Shetler et al., 2001; Vijayalakshmi et al., 2014). In healthy
subjects, a decrease of 15–20 beats per minute in the first minute
of recovery has been shown to be typical (Shetler et al., 2001).
This slower vagal reactivation may have to be taken into account
in future research, as such inertial effects may become important
when the subject is exposed to a wider range of physical loads
over an extended period of time. In such cases, adding an
appropriate corrective factor to the HR might be beneficial. The
SCL and SCR behaved similarly to HR and increased significantly
with increasing level of game difficulty. This is comparable to
what has been found in other studies (Novak et al., 2010a;
Badesa et al., 2012, 2014; Morales et al., 2014; Knaepen et al.,
2015). The SKT was the only physiological variable that did not
differ significantly between the four difficulty levels. Although
decreases in SKT have been put forward as a marker to detect
changes in mental workload (Ohsuga et al., 2001; Koenig et al.,
2011e), other studies have found no significant differences for
SKT with changes in mental workload (Novak et al., 2010a;

Badesa et al., 2012; Knaepen et al., 2015) or found that variations
depended on the test subject (Morales et al., 2014). Novak et al.
(2010a) proposed that a certain threshold of mental workload
should probably be exceeded before the SKT starts to decrease
significantly (Novak et al., 2010a). The hardest level (i.e., level
6, see Table 1) in this study was designed to be demanding but
not frustrating, and as such this threshold might not have been
exceeded, which could explain why the SKT did not change
significantly. Moreover, the slow response of the SKT, as also
shown by Novak et al. (2010a), makes it difficult to use it
in a closed-loop biocooperative scenario. Therefore, we have
discarded SKT as a possible feedback signal for the proposed
closed-loop controller. As a result, HR, SCR, and SCL proved to
be the most useful indicators of psychophysiological activity in a
mixed physical/psychological load scenario.

To date, it remains unclear which kinds of emotion are
associated with which kinds of objective autonomic signature
(Kreibig, 2010). Therefore, objectively measuring emotion
through physiological signals remains challenging. In our
study, a subjective SAM test was used in order to afford a
numerical measurement of perceived emotion. However, it is
difficult to integrate a subjective measure of emotion into the
control loop of assistive robotic devices. Therefore, we also
performed correlations between SAM scores and the other
psychophysiological and physical parameters. Results from the
Spearman correlation analysis (Table 3) showed that, while
HR did not correlate with any of the subjective emotional
scores, arousal was positively correlated (r > 0, p < 0.05)
with SCL and SCR. Dominance, on the other hand, was
negatively correlated with SCL and SCR (r < 0, p < 0.05), while
valence was only positively correlated with SCL (r > 0, p <

0.05). These few significant correlations show that it remains
difficult to achieve mapping between physiological signals and
the emotional state of a subject based on a few physiological
measures. The significant correlations between MAF, on the
one hand, and arousal, valence, and dominance, on the other
hand, further confirm that additional contextual information
and probably more physiological parameters are necessary to
accurately predict the emotional states of subjects during HRI.
This corresponds to what Kreibig (2010) pointed out: as emotions
consist of an integrated variety of physiological responses, it is
important to select a sufficient number of response measures
to allow for the response pattern and its variations to be
accurately identified (Kreibig, 2010). Further research will have
to carefully consider which additional physiological parameters
should be included in the biocooperative controller in order
to correctly identify and influence emotional states of the
subjects.

Biocooperative Closed-Loop Control
Results from the SAM questionnaires and FlowIndex suggest that
the user satisfaction and challenge/skill relation were effectively
improved in this work, where haptic and difficulty modulation
(HDM) was implemented, compared to the calibration task
(CT) and the haptic-assisted-only (HAO) results presented in
Rodriguez Guerrero et al. (2013). We invite the reader to take
a look at Supplementary Figure 1 (i.e., the SAM scale) in
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TABLE 4 | Mean values with SD for the eight measured variables during the 5-min calibration and 5-min closed-loop tasks for the HDM and HAO

controller.

Variable Unit CT_HDM HDM CT_HAO HAO

Total game score Points 29.72 ± 2.68 56.72 ± 9.43 30.09 ± 2.11 62.63 ± 18.53

MAF N 34.45 ± 5.92 25.27 ± 5.45 34.27 ± 5.85 27.82 ± 5.48

HR BPM 88.99 ± 5.24 80.55 ± 5.01 87.75 ± 5.91 86.57 ± 5.73

SCL µS 6.56 ± 1.11 5.96 ± 0.81 6.4 ± 1.17 6.52 ± 1.32

SCR frequency Counts per task 67.27 ± 8.24 49 ± 9.51 67.27 ± 9.88 58 ± 10.16

Arousal N/A 8.45 ± 0.52 6.72 ± 0.9 8.36 ± 0.67 7.45 ± 0.68

Dominance N/A 3.72 ± 1.1 8.09 ± 0.7 3.90 ± 1.70 7 ± 0.77

Valence N/A 4.09 ± 1.37 8.18 ± 0.75 4.54 ± 1.63 6.27 ± 1.34

CT_HDM, calibration task in HDM experiment; HDM, experiment with haptic and difficulty modulation controller described in this paper; CT_HAO, calibration task in HAO experiment;

HAO, haptic-assistance-only experiment from 2013 (Rodriguez Guerrero et al., 2013); MAF, mean absolute force; HR, heart rate; SCL, skin conductance level.

Appendix A, to provide visual support during the upcoming
discussion.

User Satisfaction
The dominance value obtained for HDM (8.09) was superior
compared to those obtained for CT (3.72) and for the HAO
controller (Hidler and Sainburg, 2011; Table 4). An improved
dominance values translates into an improved “perceived
skill.” Besides dominance, the valence scores showed the most
interesting and desired improvements. The HDM controller
scored 8.18 on the valence scale, while values of 4.09 and
6.27 were obtained for the CT and the HAO, respectively. The
differences in standard deviation between HAO and HDM for
both dominance and valence can be neglected (i.e., 0.07 and 0.59,
respectively). The combination of high dominance (i.e., feeling
under control of the situation) and high valence (i.e., pleasure)
while still being challenged is likely to influence motivation and,
thus, to promote future practice and total duration of training,
which, in turn, might influence the success of motor learning
(Shetler et al., 2001; Guadagnoli and Lee, 2004; Vijayalakshmi
et al., 2014).

User Performance
The results for the total game score obtained with HDM (56.72)
were greatly improved compared with the scores obtained for
the CT (29.72). However, when compared to the total game
score for HAO (62.63), the results ended up being lower by a
mean of six points per session. Score variability was expected,
as not only the skill but also the assistance given to each
subject was different. The assistance given depended entirely on
the subject’s individual performance and ANS activity, which,
of course, is highly dependent on how each subject reacts to
pleasant/unpleasant situations. As the spawn frequency of the
droplets was also being controlled by the game difficulty, the
maximum possible number of points varied with each subject’s
skill. The more skillful a user was, the more challenging the
session would likely be and the more droplets would be rendered.
Nevertheless, as the HAO difficulty was not controlled, HDM
might be better suited for longer training sessions, as it can
provide larger/faster adaptation steps and preemptive maneuvers

when fatigue starts to appear, by using the extra information from
the performance input.

Vector Representation, FlowIndex, and FlowDir
Within the framework of this article, a new set of tools was
proposed based on arousal and dominance scores, to indirectly
evaluate the impact of a biocooperative controller: the vector
representation, FlowIndex, and FlowDir. These tools allow the
graphical and numerical evaluation of the results of a given
control strategy designed to improve the perception of a given
task. An optimal flow level, or optimal challenge/skill ratio,
results in the high commitment of a person to a given task
(Engeser and Rheinberg, 2008) and also stimulates motor
learning (Guadagnoli and Lee, 2004). Previous studies have
shown that, for optimal motor learning, the motor task should
challenge, arouse, and excite the subject, while not being too
stressful or boring (Maclean and Pound, 2000; Guadagnoli and
Lee, 2004; Koenig et al., 2011d; Rodriguez Guerrero et al., 2013).
The arousal results for HDM (6.72) decreased compared to
those for the CT (8.45) and HAO (7.45). Since HDM is able
to control the game difficulty (i.e., challenge), arousal can also
be greatly influenced by its actions. The decrease in arousal
obtained by the HDM controller seems to have played a favorable
role for this controller, keeping the FlowDir in the relaxation
zone (Figure 7). This is in contrast with the FlowDir for HAO,
which was located in the frustration zone (Figure 7). HDM also
performed better on the FlowIndex (i.e., 0.82 vs. 0.80 obtained
for the HAO controller; see Table 5), meaning that it was closer
to the optimal challenge/skill ratio. Although this difference in
FlowIndex between HAO and HDM is small, HDM also afforded
considerably higher values for valence (Figure 6). It seems that
when subjects are close to the flow zone, they perform better
under the relaxation zone rather than under the frustration zone
(Figure 7). While the evidence for the previous statements is
yet to be fully proved, the assumptions are supported by the
Yerkes and Dodson model (Yerkes and Dodson, 1908; Diamond
et al., 2007), as high levels of arousal (such as those triggered
by frustration) can be counterproductive, and the fact that this
controller setup led to a more enjoyable experience. Not only
did the biocooperative controller presented in this work perform
better, it also added greater flexibility to tune the system with
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FIGURE 6 | (A) Percentage change between baseline (i.e., calibration task) and the closed-loop experiments for the eight measured variables. (B) The corresponding

standard deviations. Light gray bars represent the data obtained for the HDM controller described in this article, and dark gray bars represent data from the HAO

controller published in Rodriguez Guerrero et al. (2013). In both cases the sample sizes were n = 11.

an extra degree of freedom by controlling the difficulty of the
game. This allows modulation of the challenge/skill relation,
with challenge being controlled by the game difficulty and skill
by the haptic assistance. This could certainly be exploited in
order to fine-tune the system rules and, thus, to maximize
the FlowIndex and obtain a FlowDir closer to the optimal
flow zone.

Study Limitations
The sample size used here, especially for the open-loop setup (n
= 6), was small. Therefore, caution should be taken in attempting
to generalize the statistical results. The significant differences
and large effect sizes indicate an interesting effect that should be
confirmed in future studies with a larger sample size and thus

a higher statistical power. Although, the difficulty settings for
the open-loop trials were satisfactory for the subjects who tested
them prior to the experiments, it seems that we could have added
another higher level of game difficulty. In this study, we visualized
more the effects of the low difficulty range (i.e., game difficulty
levels 2, 3, and 4). Only one level of higher game difficulty
was present (level 6). The addition of another session with an
even higher level of difficulty would have allowed us to more
thoroughly explore the effects of the biocooperative controller,
as with the difficulty levels used the subjects never really became
frustrated and their dominance levels therefore started to decay
only at level 6. It would have been useful to explore these effects
over longer periods of time to better understand the signal
dynamics and compensate for phenomena such as signal inertia.
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FIGURE 7 | Vector representation of the challenge/skill relation for the

CT _HDM (solid blue line) and HDM (solid red line) tasks. The data for

CT_HAO (solid purple) and HAO (solid green) tasks are also shown. The

dotted lines delimit the flow channel, i.e., the range reflecting an ideal

challenge/skill ratio, and the solid black line represents the maximal

challenge/skill ratio F = [9,9]. The presented data is taken from Table 5.

It would also have been useful to investigate and compare the
HAO controller to the HDM controller over longer sessions. It is
probable that the improved HDM adaptation could have clearer
benefits (i.e., higher scores for FlowIndex and valence) over
longer sessions, where fatigue, boredom, or frustration would be
more frequent.

CONCLUSION

User satisfaction and augmented human performance are the
most important features that any human–machine interface
can achieve. The architecture and control strategies presented
in this work effectively delivered a well-balanced tradeoff
between these key design points. For a human-cooperative
controlled interface such as the one presented in this work,
augmenting human performance could be as easy as delivering
the needed assistance to complete the task. However, this
lacks the engagement component that drives motivation and,
therefore, it always coincides with the tradeoff of deteriorating
user satisfaction. Consequently, a biocooperative interface
should ideally deliver individually tailored adaptation based
on the user’s psychophysiological state and (if available)
contextual performance information. Augmenting the system
with contextual performance information together with the
individual’s psychophysiological feedback provides a superior
and more individualized adaptation of the system to maintain
the task difficulty within its user’s capabilities, improving subject
performance and more importantly the overall user experience.

TABLE 5 | FlowIndex and FlowDir for the 5-min calibration and 5-min

closed-loop tasks for the HDM and HAO controllers.

CT_HDM HDM CT_HAO HAO

FlowIndex 0.63 0.82 0.64 0.8

FlowDir Frustration Relaxation Frustration Frustration

CT_HDM, calibration task in HDM experiment; HDM, experiment with haptic and

difficulty modulation controller described in this paper; CT_HAO, calibration task in HAO

experiment; HAO, haptic-assistance-only experiment from 2013 (Novak et al., 2011b).

By modulating both haptic assistance and game difficulty,
designers have greater potential to control dominance and
arousal levels. This has a direct impact on the capabilities to
control the challenge/skill relation of a given task.

Psychophysiological activity under physically demanding
scenarios can be measured by using ANS-related signals such
as those used in this work. However, the direct mapping against
subjective emotional scales like arousal, valence, and dominance
seems to remain a challenge that could soon be possible to achieve
with modern deep-learning algorithms. Nevertheless, by using
psychophysiological feedback in conjunction with additional
contextual information (i.e., performance), an overall estimation
of the emotional state of a subject can still be made and exploited
for control purposes with good results.

Although the given inputs for FlowIndex and FlowDir are
based on the SAM scale, future work needs to be carried out to
achieve mapping between arousal and dominance, on the one
hand, and psychophysiological signals, on the other hand, so that
the calculations can be performed online in real time. This could
allow using the index for control or optimization purposes, taking
actions based on minimizing the error between the expected
output (i.e., flow vector) and the given desired input and, thus,
maintaining an optimal flow level.
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