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Chronic stressors can often lead to the development of psychological disorders, such as

depression and anxiety. The locus coeruleus (LC) is a stress sensitive brain region located

in the pons, with noradrenergic neurons that project to the hypothalamus, especially

the paraventricular nucleus (PVN) of the hypothalamus. The purpose of this paper is

to better understand how alpha 2A-adrenoceptors (α2A-ARs) and LC-hypothalamus

noradrenergic system participate in the pathophysiological mechanism of depression.

In vivo norepinephrine (NE) release in the PVN triggered by electrical stimulation in the

LC was detected with carbon fiber electrodes in depression model of rats induced

by chronic unpredictable mild stress (CUMS). Also, the extracellular level of NE in the

PVN was measured by microdialysis in vivo without any stimulation in the LC. The

alpha 2-adrenoceptor (α2-AR) antagonist yohimbine and α2A-ARs antagonist BRL-44408

maleate were systemically administered to rats to determine the effects of α2A-ARs on

NE release in the PVN. The peak value of elicited NE release signals in the PVN induced

by electrical stimulation in the LC in the CUMS rats were lower than that in the control

rats. The extracellular levels of NE in the PVN of the CUMS rats were significantly less

than that of the control rats. Intraperitoneal injection of yohimbine or BRL-44408 maleate

significantly potentiated NE release in the PVN of the CUMS rats. The CUMS significantly

increased protein expression levels of α2A-AR in the hypothalamus, and BRL-44408

maleate significantly reversed the increase of α2A-AR protein expression levels in the

CUMS rats. Our results suggest that the CUMS could significantly facilitate the effect of

α2-adrenoceptor-mediated presynaptic inhibition and decrease the release of NE in the

PVN from LC. Blockade of the inhibitory action of excessive α2A-adrenergic receptors

in the CUMS rats could increase the level of NE in the PVN, which is effective in the

treatment of depressive disorders.
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INTRODUCTION

Depression, a widespread mental disorder, influences over
10% of the world’s population with profound social and
economic consequences at any given time (Ferrari et al.,
2014). Even though stress and monoamine neurotransmitter
deficiency have been studied as two major causes of depression
(Andrus et al., 2012) and researchers over the last 50 years
have provided considerable evidence that the dysfunction of
monoamine neurons is an important underlying pathology
in major depressive disorder (Hamon and Blier, 2013), the
detailed mechanisms related to its pathogenesis are still elusive.
As a result, a number of patients fail to recover from
chronic depression even though lots of medications have been
applied to clinical treatment for depressive disorders, including
NE reuptake inhibitors (NRIs), selective serotonin reuptake
inhibitors (SSRIs), monoamine oxidase inhibitors (MAOIs),
tricyclic antidepressants (TCAs), and antidepressants on DNA
methylation patterns, etc. (Baudry et al., 2010; Massart et al.,
2012; Kato and Chang, 2013).

Stress response is a risk factor that can develop anxiety,
depression, posttraumatic stress disorder, and other affective or
mental disorders, which is characterized by the activation of
the locus coeruleus-norepinephrine (LC-NE) system (Altman
et al., 1999; Ding et al., 2014). Stress can trigger the firing
activity of noradrenergic neurons in the LC and subsequently
widespread of NE transmission in the hypothalamus, prefrontal
cortex, brainstem, cerebellum and amygdala (Liddell et al., 2005).
The dysregulation of the paraventricular nucleus (PVN) of

the hypothalamus contributes to behavioral and physiological
alterations caused by chronic stress, and NE plays a prominent
role in the PVN activation (Herman et al., 2008; Flak et al.,
2014). Adrenergic receptors are located widely in the central
nervous system and can be activated by NE. Three known alpha
2-adrenoceptor (α2-AR) subtypes, α2A-AR, α2B-AR and α2C-
AR, are distributed in mammalian brain tissues (Bylund et al.,
1994; Alexander et al., 2015), of which α2A-AR was identified as
the predominant inhibitory autoreceptor in adrenergic neurons
(Trendelenburg et al., 1993). Existing studies also demonstrate
that both α2A-AR and α2C-AR subtypes play a role as presynaptic
inhibitory receptors regulating neurotransmitter release, and
α2A-AR subtype contributes more to presynaptic negative
feedback inhibition of NE release in mice (Altman et al., 1999;
Bücheler et al., 2002; Gyires et al., 2009). Lacking the α2A-AR
in mice, presynaptic autoinhibition mediated by endogenous NE
or α2-receptor agonists was significantly blunted but not absent
(Altman et al., 1999).

We hypothesized that LC noradrenergic neurons projecting
to the hypothalamus (PVN) may functionally participate in the
pathogenesis of depression and the α2A-AR plays a principal
role by modulating NE release. To confirm the hypothesis, we
measured the NE release signal in the PVN evoked by electrical
stimulation in LC through amperometric detection with carbon
fiber electrode. We also detected the extracellular level of NE
in the PVN by microdialysis in vivo. Western blot analysis was
carried out to evaluate the expression level of α2A-AR in the
hypothalamus.

MATERIALS AND METHODS

Animals
Male Wistar rats weighing 180–200 g (purchased from Animal
center of Nanjing Qinglongshan and the Animal Experimental
Center of Dalian Medical University) were used in our research.
Animals were housed at the conventional dwelling unit under
standard conditions (5 per cage, room temperature of 24◦C,
relative humidity of 45–65%, 12 h light/dark cycle), ad libitum.
All experiments were carried out under the guidelines of the
National Institutes of Health Guide for the Care and Use of
Laboratory Animals.

Chronic Unpredictable Mild Stress Model
Rats were divided into chronic unpredictable mild stresses
(CUMS: rats exposed chronically to a variety of mild
unpredictable stressors for 4 weeks) group (n = 20) and
control group (n = 20) randomly (Willner et al., 1987). Each
rat which belonged to the CUMS group was housed in one cage
and subjected to one stressor one time a day (stressors included:
water deprivation (15-h), cage tilt at a 45 degree angle (2-h),
housing in mild damp sawdust (20-h), horizontal vibration
(5-min), food deprivation (15-h), forced swim in water at 21◦C
(30-min) and intermittent white noise (85 dB, 3-h). All stressors
lasted for 4-w and were applied at different points of time every
week to avoid habituation and to provide an unanticipated
feature to the stressors as described in detail previously (Shao
et al., 2010; Wang et al., 2015). The control rats were housed in
bigger cages (5 rats per cage) and they remained socially active.

Behavioral Tests
Behavioral tests included sucrose consumption test and open-
field test. Sucrose consumption test was carried out as follows:
two bottles of 1% sucrose water were randomly located in every
cage at the first 2 days, which were turned into two bottles of
tap water at the third day. Following with 15-h deprivation of
food and water intake, a bottle of tap water and a bottle of 1%
sucrose water were given to the rats. The consumption amount
of 1% sucrose and total water were measured in the next 2-
h. The sucrose preference percentage was calculated according
to the following formula: Sucrose preference = sucrose intake
(g)/[(sucrose intake (g)+water intake (g)] (Cui et al., 2014).

Open-field test was carried out to all the rats. Each rat was
placed in the center of a white square box (length, 55 cm; width,
39 cm; height, 20 cm) for a 5-min observation. During the 5-
min observation, horizontal and vertical exploratory locomotor
activities were scored for the test.

Amperometric Detection of NE Signals
with Carbon Fiber Electrode
Amperometric detection of NE signals with carbon fiber
electrode was performed according to our previously described
method (Gong et al., 2015). Rats were anesthetized with
pentobarbital (50 mg/kg, i.p.), and fixed at the stereotaxic
instrument (Life Technology Co. Ltd. of Shenzhen City). A
bipolar stainless steel electrode (diameter: 1.0 mm) sent electrical
stimulation (Isolated Pulse Stimulatormodel 2100; A-M Systems)
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into LC (A: − 10.0 mm; L: ± 1.4 mm; V: − 7.5 mm)
according to the rat brain atlas (Paxinos and Watson, 1986).
The amperometry working electrode was a cylindrical carbon-
fiber electrode insulated by a glass capillary. The detecting
carbon fiber electrode was inserted into the PVN (A: − 1.5
mm; L: ± 0.4 mm; V: − 8.5 mm). The reference electrode
was a silver wire coated with AgCl and connected to the
neck muscle tissue. A patch-clamp amplifier (PC-2B, INBIO,
Wuhan, China) was applied under voltage-clamp mode, with
the gain of 0.5 mV/pA and a CFE voltage of a constant +

700 mV for amperometry. All data were low pass filtered
at 20 Hz and acquired by a data acquisition system with a
digital interface and software (iPDA-0.1; INBIO,Wuhan, China).
Norepinephrine release signals evoked by electrical stimulation
(1.0 mA, 100 Hz, 100 pulses) in LC in vivo were analyzed.
After recording stable NE signal, yohimbine (Sigma–Aldrich, 3
mg/kg, intraperitoneal injection) (Paalzow and Paalzow, 1983;
McAllister, 2001) was administered to the rat and NE release
signal was recorded again 30 min later to assess the function of
α2-AR. The rats were euthanized with isoflurane and the whole
brains were fixed in 10% formalin solution to verify the brain
region.

In vivo Microdialysis
In vivo microdialysis was carried out according to a previously
describedmethod (Niwa et al., 2007). Rats were anesthetized with
pentobarbital (50 mg/kg, i.p.) and were fixed in a stereotactic
instrument (Life Technology Co. Ltd. of Shenzhen City). The
intracerebral guide cannula (MBR-10, BASI, West Lafayette, IN
47906, USA) was implanted 1 mm above the PVN (A: − 1.5
mm, L: ± 0.4 mm; V: − 8.5 mm) and was secured onto the
skull by stainless screws and dental acrylic cement. After 24
h, a microdialysis probe (MBR-1-10, 1 mm membrane length,
BASI) was embedded into the guide cannula, and the ACSF was
continuously perfused into the PVN through the probe. During
the microdialysis experiments, dialysates were collected in 1-h
increments at a velocity of 1 µL/min, and then 50 µL aliquots
were used to measure NE levels with an ELISA kit (CSB-E07022r,
CUSABIO, Wuhan, China). BRL-44408 maleate (Sigma-Aldrich,
3 mg/kg, i.p.) was administered to rats and NE dialysates were
collected again to assess the function of α2A-AR (Miksa et al.,
2009).

Western Blot Studies
The protein from the hypothalamus (the hypothalamic tissue
was dissected as the center between gray nodules and optic
chiasma prechiasmal border as prozone, back of corpus albicans
as posterior and bitemporal groove on both sides; about 4
mm width, 2 mm depth and 4 mm length) was extracted
by using an extraction kit (Keygen Biotech, China), and the
protein content was measured by a BCA protein assay (Keygen
Biotech, China). For Western Blotting, the proteins (20 µg)
for each sample were loaded into a 10% SDS-polyacrylamide
gel for electrophoresis. Then, the protein components were
transferred to polyvinylidene difluoride (PVDF) membranes,
and then blocked with 5% BSA in TBST (TBS+0.1% Tween-
20) for 1 h, and then immunoblotted overnight at 4◦C with

primary antibody for α2A-AR (#14266-1-AP, Proteintech, USA).
Subsequently, membranes were washed three times in TBST and
incubated with a horseradish peroxidase-conjugated secondary
antibody (anti-rabbit, 1:5,000, ZSJQ-BIO Company, Beijing,
China) for 1 h at room temperature. The infrared band signals
were detected using BIO-RAD (Hercules, CA, USA) gel analysis
software. The blots were then washed with TBST, blocked
for 1 h and incubated with the primary antibody β-actin
(ab6276, Abcam), for loading control. TheDensitometric analysis
of immunoreactivity was conducted using the NIH Image J
software and normalized to the immunoreactivity of the control
rats.

Statistical Analyses
The data were analyzed using GraphPad Prism (GraphPad
Software Inc.) and SPSS 21.0, expressed as mean ± SEM.,
and statistical analyses were performed using a paired t-test or
an unpaired Student’s t-test for two-sample comparison, two-
way ANOVA was used to evaluate the effects of antagonists
between groups (Figures 2C, 3B, 4B), and the microdialysis data
summarized in Figure 3A were assessed by repeated-measures
ANOVA. Significance was set at p < 0.05.

RESULTS

Rat-Specific Depressive Behavior Induced
by CUMS
After 4 weeks of CUMS, rats in the model showed a significant
reduction in body weight compared to that in the control rats
(p < 0.01, n = 20, respectively). Sucrose preference is frequently
used as a measure of anhedonia in rodents (Gilsbach et al., 2009).
Significant reductions of sucrose intake (p < 0.01) and sucrose
preference (p < 0.05) were detected in the CUMS rats. The rats
of CUMS group showed a significant reduction in the horizontal
(p < 0.01) and vertical (p < 0.05) exploratory locomotor activity
(Table 1).

In our experiment, the CUMS rats showed significantly lower
body weight, less locomotor activity in the open field test and
lower sucrose preference ratio in the sucrose consumption test
than that of the control rats after CUMS, which meant the CUMS
induced depression successfully.

The LC-PVN Noradrenergic System
Participated in the Depression Induced by
CUMS
Norepinephrine is the main neurotransmitter in noradrenergic
system. Elicited NE release from noradrenergic nerve fibers in
the PVN induced by electrical stimulation in LC was detected
with carbon fiber electrode. The data showed that chronic stresses
significantly decreased the peak value of elicited NE release
signal. There were statistical differences between the CUMS
group and control group (179.1 ± 13.5 pA vs. 367.1 ± 26.2 pA,
n = 9, p < 0.01. Figures 1A,B). This result demonstrated that
the LC-PVN noradrenergic system participated in the CUMS-
induced depression.
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TABLE 1 | The body weight, open-field test and sucrose consumption test in the two groups rats after modeling (n = 20, mean ± SEM).

Body weight (g) Open field test Sucrose consumption

Horizontal score Vertical score Total score Sucrose (g) Total (g) Sucrose preference (%)

Control 306.34 ± 7.2 37.3 ± 3.96 14.5 ± 2.03 51.8 ± 5.47 9.2 ± 0.87 12.74 ± 0.99 71.9 ± 2.6

CUMS 268.86 ± 4.88** 16.9 ± 1.35** 7.9 ± 1.32* 24.8 ± 1.50** 5.6 ± 0.40** 8.76 ± 0.68** 64.1 ± 2.2*

CUMS produced a significant decrease in the body weight, horizontal and vertical exploratory locomotor activity, sucrose intake and sucrose preference in the CUMS rats compared to

that in the control rats (*p < 0.05, **p < 0.01).

FIGURE 1 | CUMS significantly decreased the peak value of elicited NE release signal (A) Representative raw data of typical NE release signals recorded in

the control and CUMS group rats. The peak value was labeled in figure. (B) The peak value of NE signal in the PVN was significantly decreased in the CUMS rats.

**p < 0.01 vs. the control group rats.

The α2-AR Participated in Pathophysiology
of Depression Induced by the CUMS
Yohimbine is one of the α2-AR antagonists. Intraperitoneal
administration of yohimbine (3 mg/kg, i.p.), potentiated the peak
value of NE release signal in the PVN of each group of rats evoked
by electrical stimulation in LC [for CUMS group, 351.9± 31.2 pA
vs. 179.1 ± 13.5 pA, n = 9, p < 0.01; for control group, 401.8 ±
28.2 pA vs. 367.1 ± 26.2 pA, n = 9, p > 0.05. F(3, 32) = 15.76.
Figures 2A–C]. The ratio of increase in the peak value of NE
release signal in the CUMS rats was significantly amplified after
the yohimbine administration compared to that in the control
rats (104.3± 22.5% vs. 99%± 3.5%, n= 9, p < 0.01. Figure 2D).
These results confirmed that α2-AR acted to inhibit NE release
and participated in the pathophysiology of depression induced
by the CUMS.

Effects of BRL-44408 Maleate on the
Extracellular Level of NE in the PVN
The dialysate concentration of NE was significantly decreased
in the first (3.7 ± 0.4 vs. 5.3 ± 0.4, p < 0.05, n = 5) and
the third hour (3.5 ± 0.3 vs. 5.2 ± 0.4, p < 0.05, n = 5)
in the CUMS rats compared to that in the control rats, no
significant difference was observed in the second and forth
hour (Figure 3A). Repeated-measures ANOVA demonstrated a
significant group × time interaction for NE [F(1.995, 7.982) =

4.996, p = 0.039], but no significance within-subjects effects (for
time). Mean concentrations of NE in the PVN of the CUMS rats

were less than that of the control rats [3.1± 0.3 vs. 4.3± 0.4, p <

0.05, n= 5. F(3, 16) = 5.973. Figure 3B].
The alpha 2A-adrenoceptors antagonist BRL-44408 maleate

significantly amplified the ratio of increase [(after-before)/before
BRL-44408 maleate] of NE in the CUMS rats compared to that
of the control rats (22.8 ± 7.4% vs. 2.7 ± 1.4%, n = 5, p < 0.05.
Figure 3C). These results suggest the inhibitory action of α2-AR
on LC-PVN noradrenergic systemmaybe partly through α2A-AR

subtype in the CUMS rats.

Western Blot Studies
The protein expression levels of α2A-AR (observed at 51 kDa)
was significantly increased in the hypothalamus of the CUMS
rats compared to that of the control rats (0.87 ± 0.05 vs. 0.61 ±

0.04, p< 0.05, n= 5). BRL-44408 maleate significantly decreased
the α2A-AR protein level in the CUMS rats (0.63 ± 0.05 vs. 0.87
± 0.05, p < 0.05, n = 5), but no significance was observed in
the control rats (0.48 ± 0.05 vs. 0.61 ± 0.04, p > 0.05, n = 5).
[F(3, 16) = 12.18, Figure 4]. The results demonstrated that CUMS
increased α2A-AR level in the hypothalamus and the increased
quantity of α2A-AR contributes to decreased NE release in the
hypothalamus.

DISCUSSION

The CUMS model was developed based upon the hypothesis of
depression induced by stress. Antidepressants agents can reverse
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FIGURE 2 | Intraperitoneal injection of yohimbine potentiated elicited NE release signal in the CUMS rats. (A) Representative raw data of typical NE release

signals recorded in the control rats before and after yohimbine. (B) Representative raw data of typical NE release signals recorded in the CUMS rats before and after

yohimbine. (C) Yohimbine significantly increased the peak value of NE in the PVN of the CUMS rats, but no significant difference was observed in the control rats. (D)

The ratio of increase in the peak value of NE signal was significantly amplified after administration of yohimbine in the CUMS rats compared to that in the control rats.

The ratio: [(after-before)/before yohimbine]. **p < 0.01 vs. the control rats, ##p < 0.01 vs. before yohimbine administration in the CUMS group. NS represents no

significance.

most effects of CUMS, illustrating a strong predictive validity of
this model for depression. However, the mechanisms underlying
the CUMS are still not understood completely. Our results
showed that the CUMS significantly decreased the peak value of
elicited NE release in the PVN evoked by electrical stimulation in
LC, which illustrated that the secretion of NE from LC projecting
to the PVN nerve fiber endings were decreased in the CUMS rats
compared to that in the control rats.

Stressors can damage LC (Samuels and Szabadi, 2008).
Moreover, damage or loss of LC noradrenergic neurons could
result in the decrease of NE in the central nervous system
(Marien et al., 2004; Rommelfanger and Weinshenker, 2007;
Weinshenker, 2008). In our study, we found yohimbine, α2-
AR antagonist (Makau et al., 2016), significantly increased the
peak value of elicited NE release from noradrenergic nerve
fibers in the PVN evoked by electrical stimulation in LC
in the CUMS rats. It is generally recognized that the α2-
adrenergic receptors are coupled with the inhibitory guanosine
triphosphate (GTP)-binding protein, which may be involved in
the receptor-mediated transmembrane signaling by regulating
adenylate cyclase activity (Tsuda et al., 2003). This further
weakens the calcium current mediated by voltage-gated calcium
channels and the potassium current reliant on the calcium ions,
then causes a decrease in the concentration of cytoplasm Ca2+,
in turn inhibits the synthesis and release of NE (Abdulla and

Smith, 1997). Yohimbine increases the release of NE in the
PVN by inhibiting the signaling pathway of α2-AR, suggesting
that the functional change of the presynaptic membrane α2
receptor has a connection with the targets for the treatment of
depression.

We used microdialysis to estimate the extracellular level of
NE in the PVN in order to confirm the decreased NE level
in the PVN of the CUMS rats and eliminate the interference
of 5-HT and dopamine in the amperometric detection of NE.
The results showed that the CUMS significantly decreased the
levels of NE in the PVN, and selective α2A-ARs antagonist BRL-
44408 maleate significantly increased the levels of NE in the
PVN of the CUMS rats compared to that in the control rats.
Our data suggest that blockade of α2A-adrenergic receptor can
increase the level of NE in the PVN. In vivo dialysate measured by
microdialysis showed α2A-adrenergic receptor agonist clonidine
decreased the level of NE in the prefrontal cortex (Doucet et al.,
2013), LC and cingulate cortex (Mateo et al., 2001), which also
indicate that NE release might be highly dependent on the α2A-
adrenergic receptors. Hence, the anomaly of α2A-ARs maybe
a physiopathology mechanism to trigger depressive disorder
through direct or indirect effects to the secretion of NE in the
PVN and the firing of LC noradrenergic neurons (Aoki et al.,
1994; Nörenberg et al., 1997; Lee et al., 1998; Guiard et al., 2008;
Wang et al., 2009).
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The results showed that the expression levels of α2A-AR in
the hypothalamus were significantly increased in the CUMS rats
compared to that in the control rats, and the up-regulated effects
of α2A-ARwere significantly reversed by the acute administration
of BRL-44408maleate. These findings suggest that the CUMS up-
regulates the quantity of α2A-AR and the α2A-ARs antagonist,
BRL-44408 maleate, may block the activities of α2A-ARs. Post
mortem studies in prefrontal cortex, hippocampus and LC of
depressed patients revealing up-regulation of α2A-ARs, and

FIGURE 3 | Intraperitoneal injection of BRL-44408 maleate can reverse

the decrease of NE release induced by CUMS. (A) The dialysate

concentration of NE were less in the first and third hour in the CUMS rats than

that in the control rats, intraperitoneal injection of BRL-44408 maleate

increased extracellular level of NE in both group of rats, but no significance

was observed between the two groups. (B) The CUMS significantly decreased

the mean levels of extracellular NE in the PVN of the CUMS rats compared to

that in the control rats, but no significance was observed between the two

groups after BRL-44408 maleate. (C) The ratio of increase in the NE release

was significantly amplified after administration of BRL-44408 maleate in the

CUMS rats compared to that in the control rats. The ratio: [(after-before)/before

BRL-44408 maleate]. 1: BRL-44408 maleate administration (3 mg/kg, i.p.).

*p < 0.05 vs. the control rats. NS represents no significance.

elevated α2A-ARs RNA expression in the glutamatergic neurons
induced by chronic stress (Flügge et al., 2003). However, α2A-
AR knockout mice showed depressive-like behavior that was
not responsive to imipramine, and therefore was concluded
that α2A-AR has antidepressive effects (Schramm et al., 2001).
This reminds us that the increase in α2A-AR expression in
the CUMS rats might be regarded as a compensatory rebound
effect, possibly because of decreased amounts of NE primarily
at sites distant from the LC. Excessive expression of α2A-
AR may suppress adrenaline-induced (cAMP)i increase and
exocytosis (Harada et al., 2015). Since α2A-ARs are generally
coupled with Gαi/o proteins, the overexpression of α2A-AR
can promote Gi function, resulting in the inhibition of cAMP
production and a series of intracellular signal transmission,
eventually leading to inhibition of neuron activity and NE
secretion. In our study, the increased expression levels of α2A-
AR in the CUMS rats may have induced the inhibition of the
secretion of NE through activation of Gi protein signal pathway
(Wu and Saggau, 1997; Brown and Sihra, 2008). The alpha
2A-adrenoceptors antagonist BRL-44408 maleate blocked the
excessive α2A-AR and down-regulated the quantity of α2A-AR,
which could weaken or eliminate its inhibitory effect to NE
release.

However, although α2A-ARs contributes the significantly
inhibitory effect on NE release, other subtypes of α2-AR,
such as α2B-AR and α2C-AR may have less effect on NE
release, indicating that α2-adrenoceptors antagonists might
be better drugs for the treatment of depression. It also
cannot be ignored that yohimbine also augmented anxiety
both in human and rodents (Davis et al., 1979; Morgan
et al., 1993; Altobelli et al., 2001), and the enhanced central
noradrenergic activity is associated with the activation of fear
and anxiety circuitries. This paradox may precisely result from
the increase of NE by yohimbine, which may induce the
activation of stimulatory α1- and of β-adrenergic receptor,
the latter may mediate the enhancement of neuronal activity
and further induce the activation of anxiety (Montoya et al.,
2016). Hence, the dose and duration of α2-adrenoceptor
antagonists for the treatment of depression require future
research.

FIGURE 4 | Intraperitoneal injection of BRL-44408 maleate can reverse the increase of α2A-AR induced by CUMS in the hypothalamus of the CUMS

rats. (A.B) The protein expression levels of α2A-AR was significantly increased in the hypothalamus of the CUMS rats, peripheral administration of BRL-44408

maleate significantly decreased the expression levels of α2A-AR in the CUMS rats. *p < 0.05 vs. the control rats. #p < 0.05 vs. before BRL-44408 maleate in the

CUMS group. NS represents no significance.

Frontiers in Neuroscience | www.frontiersin.org 6 May 2017 | Volume 11 | Article 243

http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Neuroscience/archive


Wang et al. Effects of α2A-Adrenoceptors on NE

CONCLUSION

Our results suggest that the CUMS could significantly facilitate
the effect of α2-adrenoceptors-mediated presynaptic inhibition
and decrease the release of NE in the PVN from LC.
Blockade of the inhibitory action of the excessive α2A-adrenergic
receptor in the CUMS rats could increase the level of NE
in the PVN, which is effective in the treatment of depressive
disorders.
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