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We describe a low-cost system designed to document bodily movement and neural

activity and deliver rewards to monkeys behaving freely in their home cage. An important

application is to studying brain-machine interface (BMI) systems during free behavior,

since brain signals associated with natural movement can differ significantly from

those associated with more commonly used constrained conditions. Our approach

allows for short-latency (<500ms) reward delivery and behavior monitoring using

low-cost off-the-shelf components. This system interfaces existing untethered recording

equipment with a custom hub that controls a cage-mounted feeder. The behavior

monitoring system uses a depth camera to provide real-time, easy-to-analyze, gross

movement data streams. In a proof-of-concept experiment we demonstrate robust

learning of neural activity using the system over 14 behavioral sessions.

Keywords: brain machine interface, free behavior, operant conditioning, motion capture, wireless systems

INTRODUCTION

Neuroscience research has often used non-human primates as the best animal model for behavioral
and cognitive studies due to their similarities to humans (Anderson, 2008). Relationships between
neural activity and behavior can be studied in controlled environments to elucidate, for example,
how motor cortex neuron firing is related to muscle activity (Fetz and Finocchio, 1975) or how
populations of neurons relate to complex reach and grasp movements (Vargas-Irwin et al., 2010).
In these experiments the monkey typically sits in a specially designed chair or box used for restraint
and transport. The head of the monkey is normally fixed to protect the recording equipment and
reduce noise in the neural recordings. For studying behavior during neural recordings, experiments
use mechanical systems such as joysticks (Ifft et al., 2012) or torque-tracking devices (Moritz and
Fetz, 2011), implanted muscle activity recordings (Fetz and Finocchio, 1975; Griffin et al., 2008),
or video monitoring systems (Chen et al., 2009; Vargas-Irwin et al., 2010). These systems offer
the benefit of being heavily constrained, enabling precise documentation of controlled movements
and tasks. However, these systems limit the animal’s natural movement, restricting the types of
movements that can be studied and therefore the real-world relevance of the results.

The relationship between neural activity and natural behavior is important for the development
of brain-machine interfaces (BMIs). Many BMI studies have shown success in controlling external
devices, such as computer cursors (Santhanam et al., 2006) and robotic arms (Taylor et al., 2002)
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using constrained monkeys. BMI systems have been
implemented in humans, but they have been limited to patients
suffering from tetraplegia (Hochberg et al., 2012; Wang et al.,
2013) or during epilepsy treatments (Wander et al., 2013). These
systems may not be ideal models for BMI applications during
free behavior, as these populations do not exhibit full, natural
motor movement. Studies have shown that the correlations
between behavior and neural activity may differ when monkeys
are behaving naturally in their home environment (Caminiti
et al., 1990; Aflalo and Graziano, 2006; Jackson et al., 2007). To
develop BMI systems that account for these differences we need
to better understand the relationship between neural activity and
natural behavior during BMI control.

Traditionally, neural signals are recorded in constrained
animal via connecting wires to large, rack-mounted systems.
Recently, wireless hardware systems have been designed to record
neural signals while the monkey is freely behaving (Jackson
et al., 2006b; Miranda et al., 2010; Zanos et al., 2011; Fernandez-
Leon et al., 2015). These untethered systems can record multiple
channels of high quality neural data with limited impact on the
monkey’s natural movement. The Neurochip system (Jackson
et al., 2006b; Zanos et al., 2011) can record multiple channels of
neural data, perform online computations, and provide electrical
stimulation while a monkey is freely behaving in its cage.
This battery powered system operates autonomously and stores
data to a memory card. Untethered recording systems have
been used to study the long-term effects of stimulation on
neural plasticity (Jackson et al., 2006a), correlations between
motor neurons and muscle activity during sleep (Jackson and
Fetz, 2007), and the relationship between neural activity and
untethered treadmill walking (Fitzsimmons et al., 2009; Foster
et al., 2014). Behavioral monitoring and reward delivery are
two important components for closed-loop behavior studies
that are often absent in literature discussing wireless recording
techniques

Studying behavior in primate models utilizes a variety of
automated and manual methods. Joysticks and torque measuring
systems record overt motor movements and can be used to
trigger reward (Eaton et al., 2016) or to quantify behaviors related
to neural activity (Fetz and Baker, 1973). Adapting these systems
to a free behavior environment, such as the monkey’s cage, is
problematic. Some studies have elicited behaviors by manually
presenting food rewards and using offline syncing methods
to align the data (Jackson and Fetz, 2007; Fernandez-Leon
et al., 2015). This strategy may work for short-term studies, but
becomes unfeasible for long experimental sessions. Automated
behavior tracking with invasive muscle activity sensing (Jackson
and Fetz, 2007; Eaton et al., 2016) only provides information
on recorded muscles. Traditional video tracking (Fitzsimmons
et al., 2009; Foster et al., 2014; Schwarz et al., 2014) requires
manually processing video frames or placing markers on the
monkey (Vargas-Irwin et al., 2010) which typically deteriorate
over long, unrestrained sessions. Tracking free behavior presents
a trade-off between the quantity of information and the ability
to process the data in real time. New advances in single camera
depth tracking (Shotton et al., 2013) can provide easier, lower cost
solutions to tracking behaviors.

Here we describe a novel system to enhance free-behavior
experiments. Our approach allows for short-latency (<500 ms)
reward delivery and behavior monitoring using off-the-shelf,
low-cost components. Further, our method takes the first steps
toward fully describing a monkey’s natural behavior in its home
environment, through an automated motion capture system. We
have modified the Neurochip to wirelessly trigger a feeder to
provide short-latency rewards contingent on the monkey’s neural
activity. Additionally, we have developed novel algorithms for
monitoring the animal’s behavior using the Microsoft Kinect, a
motion tracking camera system. Finally we show examples of
the systems working in tandem in a novel operant conditioning
paradigm.

MATERIALS AND METHODS

Here we describe the individual components that allow
untethered natural reinforcement of neural signals and the
monitoring of associated behaviors. When a desired behavior
is detected, the Neurochip provides an event signal via
radio frequency (RF) transmission to a nearby RF receiver
attached to an Arduino Uno control hub (Figure 1). This
control hub relays this signal to an audio control unit, a
pellet dispenser, and a Windows PC (Figure 2). The PC
records data from a Microsoft Kinect sensor facing the
monkey’s cage. Software for the control units was written
using the Aruidno IDE, and the PC was programmed in
C#/Windows Presentation Format(WPF) using Visual Studio
2013. All software is available via a standard MIT License at
http://depts.washington.edu/fetzweb/frontiers.html.

Wireless Communication from Neurochip
to Control Hub
The Neurochip has multiple auxiliary ports for connecting low-
bit rate signals, such as an LED or small speaker. We connected
a small, low-cost, 433 MHz RF transmitter (Model XY-FST
FS1000A, JMoon Technologies) to this port allowing for wireless
transmission of simple signals to an RF receiver (Model XY-
MK-5V, JMoon Technologies) outside the cage. The Neurochip
can pulse the auxiliary port at fixed intervals or in response
to a detected event in the neural signal. Each transmission
event consists of 3 sets of 10 biphasic pulses of 1 ms pulse
width at 1000 pulses/s, repeated with a 20 ms delay between
each set (Figure 1[top onset]). This signal is received by the
RF receiver connected to an Arduino Uno, which processes
the signal for controlling the feedback systems. This paradigm
provides redundancy within the system, increasing security of
event detection. This system enabled us to achieve over 99%
efficiency, calculated by comparing recorded Neurochip events to
transmitted events received by the control hub; only 1 or 2 events
were missed during sessions lasting up to 10 h with hundreds of
events. In our application, the signal triggered a feeder system
attached to the side of the 3’ × 3’ × 3’ cage, so our required
range was less than five feet at all times, though the system could
feasibly work for up to 10 feet.
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FIGURE 1 | Free-behavior hardware setup. The overall system consists of off-the-shelf components and custom programmed control units. Top. Block Diagram

of primary hardware components. Wired/wireless connections are indicated by solid/dashed lines. Bidirectional USB communication is indicated by double ended

arrows. Wireless RF waveform is indicated by the top dashed inset. Bottom. In-cage system setup. The 3’ × 3’ × 3’ cage is made of metal. The front bars in the top

portion of the diagram have been removed to provide a clearer view of the monkey’s environment. The control hub, audio, and pellet dispensing units were mounted

on a stand next to the monkey’s cage. The Kinect and computer were mounted on a separate stand outside the monkey’s cage.

Reinforcement through Food Reward and
Audio Feedback
The RF receiver is connected to an Arduino microcontroller hub
(Control Hub), which sends control signals to three separate
systems when an RF pulse is received:

(1) A cage-mounted feeder that dispenses food pellets to the
monkey. The feeder is positioned on the side of the monkey’s
cage with the dispensing tube leading to a small trough
attached to the front of the cage.

(2) An audio control unit consisting of an additional
microcontroller to handle audio feedback. For each
detected event, the audio control unit produces 3 short
beeps to cue the animal that food reward is available and to
also provide a secondary reinforcer. Constant tones can be
used to distinguish between periods when food is available

and when it is not. In control experiments the audio control
unit can be configured to trigger additional long-term
audio feedback to distinguish between control epochs. For
example, a white noise can cue the monkey during rest
periods. The pulse width of the feedback beeps and all audio
frequencies can be easily configured with a minimum on
time of 50ms and a range of 10–4,000Hz.

(3) A connected computer to sync multiple streams of data.
This computer handles the behavioral monitoring data
streams and provides experiment updates via a Wi-Fi based
notification system.

Behavioral Monitoring
Our system combines event-triggered video and depth sensing
to create an automated record of the animal’s behavior during
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FIGURE 2 | Circuit for control hub and surrounding components. Two Arduinos control the acquisition of the reward event and the subsequent audio feedback

signal. Brown lines represent wiring between components. The black squares within the Arduinos represent individual connections to ports. Digital output ports (Dn)

were selected for physical convenience and could be interchanged depending on experiment needs. Both Arduinos contain an LED link to extend the embedded

Arduino LED feedback system from PIN 13 to increase visibility from further away. This LED was hidden from the monkey’s view during experimentation. All hardware

was packaged in a simple cardboard box.

an experiment. A Microsoft Kinect camera measures the
animal’s physical location through a combination of traditional
video and infrared depth sensing. The camera is controlled
through a computer and custom software. The software contains
controllers for the video and depth data streams, movement
calculations, data saving, and receiving input from the Arduino
control hub (Figure 3 Top). Both the video and depth streams
are visible in the User Interface (UI) during setup. The camera
and computer are placed on a stand ∼3 feet away from the
monkey’s cage. Precision placement of the system is not required,
as custom software can specify the camera’s field of view (Figure 3
Bottom). The top, bottom, right, and left margins of the analysis
area can be chosen such that the movement calculations occur
only within the set margins. This is primarily used to outline
the cage and exclude other cages and animals from the viewport.
The front and back depth field cutoffs can also be modified
directly, making values outside of these cutoffs fall to zero to
increase the depth specificity of the system. These controls limit
excess reflections from the back side of a cage and minimize
the effects of people passing between the cage and camera. The
system is further programmed to send automated experiment

updates via an SMTP email client for remote monitoring of
the experiment. Updates consist of a system status report, total
event counts, and the timestamp of the most recent event.
These metrics are useful in determining that the system is
still operational and whether the monkey is still engaged in
the task.

Gross Movement Measurements
For compact movement monitoring we developed an algorithm
that calculates an average movement value in user-specified
regions of the camera’s field of view. This “gross movement value”
(GMV) is based on the movement of voxel values attributed to
the animal; a high GMV indicates a large amount of movement.
The GMV provides behavioral data throughout the free behavior
experiment without any post-processing. This value primarily
indicates the net amount of animal movement, but does not
provide information on whether the animal was moving an arm
vs. a leg. To calculate the value, the software finds the subject’s
topmost, bottommost, rightmost, leftmost, closest, and furthest
voxels from the depth frame. It then compares these values to the
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FIGURE 3 | Kinect software setup. Top. Information flow block diagram. Behavioral data is collected using a combination of the Kinect data streams and the

control hub event triggers. The Kinect produces simultaneous color (bottom right) and depth value (bottom left) frames of the scene. Both frames are sent to the UI for

visualization of the scene to set margin and depth cutoff values. The depth frame is also passed to the calculation module of the main program. The color frame is

passed to a video buffering module which maintains a constant 8-s video. When the control hub sends an event trigger to the program, the video buffer is allowed to

run 4 additional seconds before saving the video. The event trigger also triggers a time stamp value to sync the movement calculation. The calculations and the videos

are saved to file in real time to prevent excess memory requirements. Bottom. The primary UI of the system displays key elements for setting up the behavior

monitoring system. The current GMV value, elapsed time and event count are displayed in the top left corner. The depth (left) and color (right) streams are displayed in

real time. Each margin and depth cutoff setting has its own slider for on-the-fly adjustments of the field of view for the GMV calculation. Clicking “SaveSettings” applies

the settings at the start of the next session. The feeder test button sends a test pulse to the control hub to trigger the feeder and the “Save Video Test” button triggers

the video saving functioning of the program.

previous frame to calculate a movement estimate (Figure 4).

GMV(1) = ||Top[1]− Top[0]|| + ||Bottom[1]− Bottom[0]||

+ ||Right[1]− Right[0]|| + ||Left[1]− Left[0]||

+ || Front[1]− Front[0]|| + ||Back[1]− Back[0]||

where 0 and 1 designate successive video frames. This value can
be further refined by separating the camera’s field of view into
smaller quadrants. This total value can often reduce noise created
by reflective elements in the camera’s field of view (Figure 4C).
The current GMV is displayed in the software UI in the top left

corner.

GMV_total = GMV1,1 + GMV1,2 + .....GMVn,n

where subscripts denote the horizontal and vertical index of the
quadrant.

The GMV has an inherent baseline that depends primarily on
lighting and reflections of the scene. This is caused by the creation
of the depth value frame which uses infrared light to illuminate
the scene. If there are highly reflective objects (such as cage bars)
the depth frame will flicker around those objects. This causes
a baseline GMV that will be non-zero for most cases. In many
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FIGURE 4 | GMV calculations. The gross movement value (GMV) is calculated by detecting changes in pixels between frames. In examples (A,B), the arrow

indicates the transition from frame 1 to 2; example C is split into two panels. The absolute differences between the rightmost, leftmost, top-most, bottom-most,

front-most, and back-most pixels are added together to calculate the final GMV. Example (B) is more complex than example (A): the GMV for the top left is higher as

more of the mass of the object has moved. Example (C) most closely mimics the calculation done while the monkey is in the cage environment. Each frame is broken

down into segments (here represented as 6 different quadrants). By calculating the GMV per quadrant, we can detect regions of higher movement activity. This is

useful in creating event-triggered averages of the GMV over the course of a full experimental session.

applications, it is thus appropriate to normalize this value within
a session. Reward events sent from the control hub are logged
within the software and used to sync the GMV with the neural
data offline.

Event-Triggered Videos
Using the camera’s color video feed, short video clips can
also be recorded automatically through communication with

the Arduino control hub. During an experiment the software
continuously updates a buffer with recent video frames,
configurable based on hardware. For our experiments we
processed and saved every 4th frame at 32 fps. When the
software receives a control signal from the hub, it triggers
the software to save the previous frames as well as a
set number of future frames, often totaling 4–8 s of video.
This video snippet is then tagged with the event number
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and saved. This procedure creates short, easy to review
videos during relevant time periods, such as reinforcement,
circumventing the manual review required by traditional video
monitoring.

Operant Conditioning of Motor Cortex
Field Potentials during Free Behavior
This study was carried out in accordance with the
recommendations of University of Washington Institutional
Animal Care and Use Committee and all relevant regulatory
standards. The protocol was approved by the University of
Washington. One macaca nemestrina (Monkey J) was implanted
(Eaton et al., 2016) with tungsten microwires (Jackson and Fetz,
2007) over the wrist area of motor cortex as part of a previous
study (Eaton et al., 2016). Monkey J had been pre-trained on
separate motor control tasks in both a traditional constrained
environment and an in-cage environment (Eaton et al., 2016).

Monkey J was trained to volitionally modulate beta-band local
field potentials (LFP) in the motor cortex while freely behaving in
its cage. The Neurochip-2 system recorded these signals (digital
bidirectional 3rd order bandpass 10–30Hz) and calculated signal
power from a running average of the rectified signal over a sliding
500 ms window. A threshold was determined using a 60-min
baseline session during which no reward was given. A target
threshold was set such that if the session had been a rewarded
session, the monkey would have received a chosen number of
rewards in the baseline period. This chosen reward number
was varied over time to encourage better task performance but
averaged around 1 reward per minute (1.02± 0.37, n= 14).

Increases in beta power above the target threshold caused the
Neurochip to wirelessly trigger the control hub to deliver a food
reward through the attached feeder. This was followed by a 5–
10 s lockout period to prevent multiple rewards. This lockout was
enforced by the Neurochip system. With each reward event the
control hub triggered themotion capture system to save the event
video and the audio feedback system to provide a reward tone.
Food reward was available in 2–5 min epochs (Reinforced [R]),
followed by 2–5 min non-rewarding epochs (Non-Reinforced
[NR]). R periods were cued by an audible feedback tone located
on the feeder (700 Hz) with each reward event triggering 3
beeps (1,200 Hz, 250 ms on, 250 ms off). Rewardable events
were counted by the Neurochip during NR epochs for analysis
purposes even though no food reward was delivered. The lockout
protocols were present during the NR epochs for accurate
comparisons.

Animal movement was characterized by the GMV. Since no
NR events were transmitted to the feeder, triggers for analyzing
GMV were not present during NR periods. This system allowed
for a direct comparison between periods of volitional control and
periods of rest, within the same experimental session. Control
experiments, in which the feeder and tone were unavailable
for long periods of time, and food was delivered at random
intervals were used to document superstitious behavior. Through
these experiments, we tested the efficacy of a totally wireless
system in training a monkey to volitionally control brain
activity.

RESULTS

Effect of System on Local Field Potential
Signals
The system has multiple effects on the recording of the monkey’s
cortical activity. The first, and most apparent, is the signal artifact
produced by the transmission of the RF signal (Figure 5 [left]).
This artifact lasts 100–150 ms, which is slightly longer than the
duration of the 60ms signal transmission period, but has no other
lasting effects on the underlying signal. Another important effect
of the feeder system on the neural signal relates to the animal’s
behavior. When the animal retrieved the pellet from the hopper
after delivery, there was a decrease in beta activity (Figure 5B).
The signal returns to baseline after 3–10 s. To accommodate this
pause a lock-out period was introduced in which no events could
be triggered within 10 s of a previous event.

GMV Correlates Negatively with Signal
Power
The Kinect behaviormonitoring system recorded event-triggered
videos and movement values as expected. Video represented
only relevant behavioral data, a much smaller amount of data
than continuous video. The GMV modulated greatly over the
course of an experiment, with a typical dynamic range of 100.
Baseline values varied slightly across experiments (±10 GMV) so
we normalized the values to the within-session GMV range. The
GMV correlated negatively with signal power (Figure 6). The
video footage and GMV both show decreases in gross movement
immediately prior to a reinforcement event. After the event,
the GMV peaks as the monkey reaches to retrieve the pellet.
This inverse correlation between movement and signal power
in the 10–30Hz range agrees with previous findings (Sanes and
Donoghue, 1993).

Volitional Control of Cortical Signals Is
Trainable during Free Behavior
Monkey J underwent 14 training sessions with LFP lasting
4.37 ± 0.64 h. Comparing the reward rate between R and NR
epochs shows that, over time, the monkey was able to distinguish
when reward was available and increase task performance
accordingly (Figure 7). It is important to note, however, that the
thresholds were not constant throughout these sessions, varying
with daily baseline rates and experimental design. In most
experiments, threshold was set to reward 1 event per minute,
while still maintaining a whole-number value to compare against
the integer-based power calculation. In session 4, however,
the threshold was set incorrectly, potentially leading to worse
behavior than would have occurred normally. A more rigorous
training regimen would likely produce more consistent increases
over time and a larger difference between R and NR periods. For
these reasons the data were not subjected to statistical analysis,
which would assume constant conditions over time.

Another important consideration is that the length of R and
NR epochs were modified throughout the course of these sessions
(Figure 8). Sessions 1 and 2 started with 2 min R: 2 min NR
ratio, which we hypothesized was too short an epoch to easily
acquire the task. Sessions 3–8 were therefore increased to a 5 min
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FIGURE 5 | Beta LFP signal response during control experiments. (A) This figure shows a single Radio Frequency transmitter artifact during a control

experiment where no food reward or feedback was delivered. Transmission events are represented by the bars (t = 0, 20, 40 ms). (B) The receipt of a food pellet

(black trace) causes a drop in overall beta power compared to a non-food event (gray trace).

R: 10min NR ratio to allow for a longer learning and longer rest
period. With the success of session 8, we returned the ratio to the
starting 2:2 ratio to provide a more even comparison.

The distribution of average rewardable events between R
and NR epochs further demonstrate the monkey’s ability to
discriminate when reward was available, but more importantly
indicates the lack of false positives that occurred during the NR
periods. This distinction may reflect volitional actions toward
retrieving the food pellets. Further insight into the difference
between the R and NR periods can be obtained by comparing the
average beta power around the triggered events (Figure 9). The
post-reward drop in beta during R (red trace) is absent during
NR (blue trace), when there is no pellet to retrieve.

At the beginning of each experiment, the threshold was set
based on a 30-min baseline session during which no rewards were
available. In all but one session, the rate of responding for both
R and NR epochs was higher than during the baseline sessions
(Figure 7). Though audio feedback was available, the high values
during NR may reflect superstitious behavior. The last session
(14) showed a clear difference between R and NR.

Event-Triggered Videos Show Relevant
Behaviors
The event-triggered video system worked reliably in all 14
experimental sessions, producing 4-s video snippets showing the
monkey’s behavior in a clear and concise manner. There was
no common pattern of monkey J’s location or posture prior
to a successful event. Some videos showed pacing behaviors
while others showed the monkey sitting on one side of the
cage. Almost all videos, however, show a slight pause in
movement immediately before each event. This is consistent with
the average GMV values which decreased prior to the event
trigger (Figure 6). For the purpose of these proof-of-concept
experiments, the event-triggered videos validate the GMV. In
other experimental setups, they could be used to study more
detailed nuances in behavior.

FIGURE 6 | GMV vs. LFP beta power. The inverse relationship between

signal power and the GMV is apparent during reward events. The filtered

(10–30 Hz) and rectified neural signals and the GMV were averaged over 287

reward events while the animal was freely behaving in its cage. GMV is

normalized to the maximum and minimum values from the entire session.

DISCUSSION

Implications for BMIs
We present a novel system for studying operant conditioning
paradigms and BMI systems in an untethered environment. We
show an example of the system in use with an unrestricted
monkey controlling specific brain signals to acquire rewards over
multiple unsupervised hours. This, to our knowledge, is the first
demonstration of a freely behaving BMI task with a purposeful
end effector and behavioral monitoring. This implementation is
significantly different from treadmill models that require specific
behaviors, since our system allowed the animal to perform any
behavior to accomplish the task.

Frontiers in Neuroscience | www.frontiersin.org 8 May 2017 | Volume 11 | Article 265

http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Neuroscience/archive


Libey and Fetz Free-Behavior Monitoring and Reward System

FIGURE 7 | LFP conditioning results in free behavior. During early

sessions reinforceable events during R and NR remained close to baseline

responding. Events during R and NR increased above baseline by session 6

and fluctuated over the subsequent sessions. Training was not performed

daily, as emphasis was given to system design and refinement.

FIGURE 8 | Normalized performance across varying reinforced epoch

ratios during LFP conditioning. Performance, as measured by R events per

minute minus NR events per minute, normalized to the maximum value, was

directly affected at each epoch ratio transition, but returned to higher levels

over time.

This type of system has advantages for many novel
experiments. Operant conditioning studies are possible over
longer sessions while the animal is freely behaving, allowing
ample time and freedom to discover the reinforced operant.
Applications toward novel BMI control paradigms can be
more easily explored in an automated way as these systems
require limited personnel to operate. They can be adapted
to run in parallel for multiple subjects. New on-chip signal
processing algorithms and alternative neural signals and sites
can be tested quickly, enabling the best solutions to be
prioritized for further evaluation in human studies. Prime

FIGURE 9 | LFP power differences between R and NR reward events in

free behavior conditioning. Band-passed (10–30Hz) and rectified LFP

signals were averaged across events occurring during R (red trace) and NR

(blue trace) epochs.

targets for this type of exploration include volitional control
of prefrontal cortex neural signals(Kobayashi et al., 2010)
and the use of new signal processing techniques (Bryan
et al., 2013).The system removes traditional task and booth
training from the experiment timeline These advantages will
make it easier to study many new BMI systems under free
conditions.

Comparison to Other Systems
This paper presents an integrated system consisting of (1)
an autonomous head-fixed brain-computer interface that
wirelessly delivers activity-dependent feeder commands, (2)
a cage-mounted feeder system with audio feedback, and (3) a
behavior monitoring system. A range of commercial products are
available that perform components of our overall system, but we
are unaware of any single product that includes all of them. Each
of these components can be interchanged with relevant available
systems. Wireless recording systems, such as the Hermes line
(Miranda et al., 2010) and others, could be outfitted with an
RF transmitter. Commercial systems for wireless multichannel
data transmission are available from various vendors, including
Triangle Biosystems (http://www.trianglebiosystems.com),
AD instruments (cdn.adinstruments.com), Ripple (http://
rippleneuro.com), NeuraLynx (http://neuralynx.com) and
Alpha Omega (https://alphaomega-eng.com). These could
transmit data to an external computer programmed to detect
neural activity of interest and deliver contingent feeder
commands.

Several alternatives for reward systems exist. Commercial
sources for feeders include Med Associates [http://www.med-
associates.com], Lafayette Instrument Company [http://
lafayetteneuroscience.com], Crist Instruments [http://
www.cristinstrument.com]. The feeder system could be
modified to provide additional secondary reinforcers, such
as lights or audio feedback, using the Arduino system’s open
architecture.

For behavioral monitoring, investigational systems, such as
the treadmill model (Foster et al., 2014), and commercial systems
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such as Clever Sys Inc.’s PrimateScan utilize multiple cameras
spaced around the behavioral arena. These systems offer greater
resolution for documenting behavior than our system. However,
they require additional resources to operate that may increase the
barrier to entry. Our system uses off-the-shelf components that
are easy to acquire. Further, many of these systems require clear
lines of sight to the subject, limiting their use in cages with bars
between subject and cameras. The removal of cage bars clearly
allows for better study of the monkey’s behavior, but may not be
feasible in many research environments. Behavioral monitoring
with our system is useful for applications where precise
monitoring of individual joint angles is not critical. Further, the
GMV provides an immediately available behavioral data stream
without manual processing of video frames. While frame-by-
frame analysis can yield higher resolution, it may not be feasible
for prolonged experiments. Our described system is ideal for
preliminary studies where a gross movement measurement could
be used to justify and inform further study with more expensive
equipment.

System Costs
The system we have described is highly modular. Any given
component could be replaced by a similar piece of hardware,
depending on the needs of a specific experiment. With the
exception of the Neurochip and pellet dispenser system,
the total build cost was ∼$250 (Table 1). Neurochips can
be made available for purchase upon request to author E.
Fetz. The latest version of the Neurochip includes 16 (dual
input) or 32 (single-ended input) recording channels (Intan
amplifier), 3-axis accelerometer, programmable Altera CycloneV
FPGA and Atmel SAM4 CPU, 6 high-compliance stimulating
channels and 64–128 GB on-board data storage. The cost
of this “Neurochip3” system is about $5,000, depending on
configuration. The cost of commercial products performing
these functions depends on specific system specs, but the
total will exceed that of the overall system described here.
For details on particular commercial options the reader is
referred to the vendors’ websites, where current prices can be
requested.

Reward Latency
The delay between reward event and pellet delivery was difficult
to measure accurately but was less than 500 ms. This was
estimated by watching an LED on the Neurochip turn on after
a successful reward event and hearing the pellet drop into the

TABLE 1 | Approximate hardware costs.

2 x Arduino Uno $80 Arduino

Kinect $120 Microsoft

RF transmitter (XY-FST FS1000A) and

RF receiver (XY-MK-5V) package

$5 JMoon Technologies

Stand equipment (PVC pipe, plastic

sheeting, Zip ties)

$30 Home Depot

8 Ohm speaker (CLS0261MAE-L152) $5 Digi-Key

Wire, resistors, transistors $10 (est.) In-house

pellet retrieval trough. A more robust quantification would be
possible with additional sensors, such as an infrared interrupter
switch attached to the Arduino control hub. This latency is
primarily the time required for the pellet to travel down the
dispensing tube and could be reduced by making the dispensing
path shorter. The larger reward latency comes from the monkey
retrieving the pellet from the pellet trough, which was placed
on the outside of the cage to prevent damage; future iterations
could place this trough inside the cage to shorten retrieval
time.

External Distractions
One of the main drawbacks to this system, and free-behavior
systems in general, is the lack of control over the exterior
environment. In our setup, the animal was returned to its cage
in a room with other monkey cages. Activity of other monkeys
or personnel may be a distraction that affects the “natural”
behavior of the animal. Overall, these effects were minor in
our testing, but should be considered when planning behavioral
experiments.

Improvements
Further improvements to the transmission and receiving
protocols could increase the range and efficiency of the system.
RF transmission is cheaper than Bluetooth and smaller than
most Wi-Fi modules, but lacks the range and efficiency of
these alternatives. Our transmission and receiving protocols
produce very few dropped events; however dropped events
could increase in some circumstances, such as when the
animal was hunched over away from the receiver. This could
be remedied by placing multiple receivers around the cage,
at the cost of increased setup complexity. Additionally, the
current protocols need to be modified if multiple systems are
operating in the same room. Adding a unique ID code to
the RF transmission signal could provide one solution, but
could also decrease the chance of detecting an event. New,
low-cost options in Bluetooth and Wi-Fi could address these
issues.

Improvements in motion tracking could aid in creating a
more precise movement value that can categorize different
types of movements. The second generation of Kinect can
provide more accurate readings of the depth values at higher
resolutions. This should allow more accurate documentation
of kinematics in real time, including joint angles and monkey
orientation.

CONCLUSIONS

We have developed the first comprehensive system for
rewarding untethered monkeys during free behavior through
a cage-mounted feeder system. This system was controlled
wirelessly through a small adapter to the Neurochip 2 system,
enabling wireless reinforcement of neural modulations.
The system was paired with a novel motion capture
system that documented relevant behavioral data and
event-related video snippets. The system exhibits reward
delivery latencies (<500 ms) comparable to training-booth
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food-delivery systems. Initial experiments conducted with
the feeder have shown promising behavioral results in
training a monkey to modulate LFP during free behavior.
Future refinements to the radio frequency communications
protocol and microcontroller programming will enable greater
transmission distances and simultaneous operation of multiple
systems.
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