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In this paper, we present a simultaneous and continuous kinematics estimation method

for multiple DoFs across shoulder and elbow joint. Although simultaneous and

continuous kinematics estimation from surface electromyography (EMG) is a feasible

way to achieve natural and intuitive human-machine interaction, few works investigated

multi-DoF estimation across the significant joints of upper limb, shoulder and elbow

joints. This paper evaluates the feasibility to estimate 4-DoF kinematics at shoulder

and elbow during coordinated arm movements. Considering the potential applications

of this method in exoskeleton, prosthetics and other arm rehabilitation techniques, the

estimation performance is presented with different muscle activity decomposition and

learning strategies. Principle component analysis (PCA) and independent component

analysis (ICA) are respectively employed for EMG mode decomposition with artificial

neural network (ANN) for learning the electromechanical association. Four joint angles

across shoulder and elbow are simultaneously and continuously estimated from EMG

in four coordinated arm movements. By using ICA (PCA) and single ANN, the average

estimation accuracy 91.12% (90.23%) is obtained in 70-s intra-cross validation and

87.00% (86.30%) is obtained in 2-min inter-cross validation. This result suggests it

is feasible and effective to use ICA (PCA) with single ANN for multi-joint kinematics

estimation in variant application conditions.

Keywords: principle component analysis (PCA), independent component analysis (ICA), artificial neural network

(ANN), simultaneous and continuous motion estimation, myoelectric control

1. INTRODUCTION

Surface Electromyography (EMG) signal represents ample electric information of muscle
contractions innervated by neural signals. It has been used as a viable and effective neural interface
in interpreting human’s movement intent into control command especially for various robotic
systems (Farina et al., 2014;Maciejasz et al., 2014). Traditionally, the predefinedmotion patterns are
classified from EMG features through the trained motion classifier (Kuiken et al., 2009; Chen et al.,
2013; Ju and Liu, 2014). As long as a predefined motion pattern is selected, the robot will be driven
along a predefined trajectory although the user would like change theirmovement intent. Formulti-
DoF coordinated motions, motion patterns of each DoF are respectively classified and sequentially
employed to drive the robot to achieve the intended coordinatedmovement. Suchmotion decoding
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style based on pattern-classification technology is different from
the natural neuromuscular control strategy where the human’s
intent (represented by EMG) is consecutively mapped to the
human’s motion (Farina et al., 2014). Therefore, simultaneous
and continuous motion estimation has been proposed as an
alternative manner to achieve natural and intuitive motor
control.

Comparing with the motion pattern classification, the
simultaneous and continuous motion estimation provides
concurrent motion information (such as joint angle, muscle
force) rather than motion trigger command together with the
EMG recording. With simultaneous and continuous motion
intent decoding method, the estimates of the motion information
can be simultaneously obtained which is more efficient especially
for coordinated motion estimation with multiple DoFs involved.
This procedure continuously proceeds with the persisted
recording and interpreting of the EMG signals. Although the
continuous motion estimation of one or two DoFs at one joint
(such as elbow Zhang et al., 2013; Han et al., 2015, wrist and/or
hand Jiang et al., 2012; Muceli and Farina, 2012 or finger Ngeo
et al., 2014; Pan et al., 2014) has drawn a lot of attention, there is
few research on continuous estimation of multiple DoFs across
shoulder and elbow joint (Au and Kirsch, 2000; Artemiadis
and Kyriakopoulos, 2010, 2011). Thus, the prosthetics (Miller
et al., 2008), exoskeletons (Kiguchi et al., 2008; Kiguchi and
Hayashi, 2012) and other assistive devices for upper limb
rehabilitation (Vogel et al., 2013; Jang et al., 2016) cannot benefit
from the continuous motion estimation technology. This paper
investigates the feasibility of the simultaneous and continuous
estimation of 4-DoF kinematics across shoulder and elbow from
EMG signals during coordinated arm movements.

Due to the nonlinearity of the mapping between the EMG
and the human motions as well as the non-stationarity of
the EMG signals over time, the performance of myoelectrical
control heavily depends on the accuracy and robustness of the
human motion estimation. To achieve this purpose, various
research efforts were placed on exploring the correlation between
EMG and kinematics or dynamics during different physiological
or application conditions as well as developing feasible and
effective EMG feature extraction and estimation methods to
obtain desired kinematic and/or dynamic information. However,
due to the structural and functional heterogeneity of muscles and
the inherent stochastic nature of EMG signals, methodologies of
motion estimation from EMG have been researched with various
kinematic or dynamic constraints (Staudenmann et al., 2010;
Zhang et al., 2011, 2013; Clancy et al., 2012; Li et al., 2014). Most
estimation methods are developed based on various machine
learning algorithms, such as linear-regression (LR), non-negative
matrix factorization (NMF) and artificial neural network (ANN).
In the context of multi-DoF estimation, a time-delayed artificial
neural network was applied to predict the shoulder and elbow
joint angles with average root-mean-square (RMS) errors of 20◦

on able-bodied subjects during 30-s arm movements (Au and
Kirsch, 2000). By using principle component analysis (PCA) for
both the EMG and motion data decomposition, the shoulder and
elbow motions were estimated in the low-dimensional space by
a state-space decoding model (Artemiadis and Kyriakopoulos,

2010, 2011). Although the estimation accuracy was not explicitly
reported, it was sufficient for the tele-operation of a robotic
arm in the 3-D Cartesian space (Artemiadis and Kyriakopoulos,
2010). However, the non-stationarity characteristics of the EMG
signals were still troublesome (Artemiadis, 2012), so that the
decoding model had to be switched in the course of motion
completion according to the muscle contraction states of each
muscle involved in order to compensate the motion estimation
deviation over time in 3-min arm movements (Artemiadis and
Kyriakopoulos, 2011).

Apart from the nonlinearity and non-stationarity, subject-
specific and crosstalk problems have always companied with the
application of EMG whose characteristics apt to be influenced
by both physiological and nonphysiological factors during
dynamic movements (Beck et al., 2006; Artemiadis, 2012).
Thus, it was difficult to find consistent patterns among subjects
regarding the motor control strategies (Beck et al., 2006). Even
for single subject, since the concentric and eccentric muscle
contractions adopted different motor control strategies, the
joint angle had different effects on related EMG signals (Qi et
al., 2011). Therefore, when shoulder and elbow coordinate to
generate large-range arm motions, the EMG-based simultaneous
and continuous estimation of the involved joint kinematics
is complicated. This paper attempts to simultaneously and
continuously estimate three shoulder angles and one elbow
angle without switching the motion estimation model, which is
validated with up to 2-min arm motions on six subjects.

This work proposes an alternative method to simultaneously
and continuously estimate the joint angles from EMG signals
during multi-joint coordinated arm movements. With respect to
the previous works, EMG-driven estimation of 4 DoFs across
2 joints (shoulder and elbow) is investigated in this work
during coordinated arm movements which are involved in daily
activities. The estimation performance was evaluated by multiple
motion repetitions up to 2min in order to evaluate the robustness
of the proposed methods to time-variant characteristics of EMG.
During all the estimation processes, only one estimation model is
learned and used for motion estimation for single subject without
the model switching during the course of motion completion.

2. METHODS

The coordinated upper limb movements, such as reaching,
pointing, exercising and manipulating, play important roles in
human daily life. Although the three main joints of upper
limb, shoulder, elbow and wrist, represent distinct kinematic
and dynamic properties, their coordination determines the
completion of human intended movement. Correspondingly,
each muscle activating these joints has different spatial and
temporal pattern. Wherein, the shoulder and elbow joints
confer the wide range of motion for upper limb, so the
coordination of the 3 DoFs at shoulder (flexion/extension,
abduction/adduction and pronation/supination) and 1 DoF at
elbow (flexion/extension) were investigated in this work with the
wrist joint being excluded for simplification as did in Artemiadis
and Kyriakopoulos (2010) and Artemiadis and Kyriakopoulos
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(2011). In our opinion, it is more meaningful to estimate
shoulder and elbow DoFs simultaneously and continuously as
there are more variabilities during a wide range of their motion
comparing with wrist. The pattern recognition-based human-
machine interface (HMI) cannot represent such instantaneous
variations except static and discrete motion pattern. This study
was approved by the local ethical committee of Huazhong
University of Science and Technology, and all subjects signed
informed consent forms.

2.1. Experiment Setup
Six able-bodied subjects (all male, 23 ± 1 year-old, 62 ± 4.5
kg) participated in this study. All of them are right-handed
dominant and have no reported neuromuscular disorders of their
upper limb. They were ever instructed to practise the intended
movements until they feel comfortable to the experimental setup.

2.1.1. EMG Recordings
Surface EMG signals were acquired by a commercial EMG
acquisition system (Me6000, Mega Electronics Ltd, Kuopio,
Finland). The configuration of the EMG recording is shown
in Figure 1. Eight predominant muscles activating the four
shoulder and elbow DoFs were selected to be the muscle of
test, that is, biceps, triceps, deltoid (anterior), pectoralis major
(clavicular head), deltoid (middle), deltoid (posterior), trapezius,
and teres major muscles. Eight channel of bipolar differential
amplifier were carefully placed on these muscles according to
both the anatomy and hand touch experience. The active EMG
electrodes of each channel were positioned at the muscle belly
along the muscle fiber direction with the reference electrode
orthogonal to themidline of the active electrodes according to the
recommendation of Me6000. The skin underneath the electrodes
was cleaned with alcohol patch to reduce the resistance between

FIGURE 1 | Illustration of the experiment setup. The configuration of the

EMG electrodes and reflective marker clusters is shown on the left plot with

the bony landmarks being removed. Correspondingly, the motion recording

marker clusters and EMG traces are respectively shown on the top right and

bottom right. (The subject in the present image provided written informed

consent for the publication of this image.)

the skin and the electrodes. The EMG signals were amplified
(gain 305) and sampled at 1 KHz.

2.1.2. Motion Recordings
A 6-camera motion capture system (Vicon F20-MX3, Vicon
Motion Systems Ltd, Oxford, UK) was used to record themotions
of the upper limb. The Euler angles were calculated from the
reflexible marker positions as proposed previously (Chen et al.,
2010). During the dynamic motion recording, only four marker
clusters were needed (as shown in Figure 1). The recording
marker clusters were attached respectively at the flat part of the
acromion, the lateral upper arm just below the insertion of the
deltoid, the dorsal surface of the distal forearm. The reference
marker cluster was located at the flat part of sternum close to the
jugular notch. Before the dynamic motion recording, seven bony
landmarks were added to specific positions together with the
marker clusters according to the recommendation on definitions
of joint coordinate systems (Wu et al., 2005). The position
relationship between the bony landmarks and themarker clusters
was established in a static recording trial. The position of the
bony landmarks could then be reconstructed by the marker
clusters and their relationship after the bony landmarks were
removed. The advantage of such process, reconstructing the
bony landmarks from the rigid marker clusters rather than
directly recording the bony landmark positions, is to eliminate
the recording errors due to the relative bone movement across
specific joints. The motion recording was sampled at 50 Hz
and synchronized with the EMG recording through the motion
capture system.

2.2. Experimental Protocol
During the experiment, the subjects were quietly seated in the
chair with their torso keeping upright and their right hand
keeping relaxing. Considering both the functional tasks of upper
limb (van Andel et al., 2008) and the present experimental
setup (for example, some movements having serious occlusion
problems of the reflexive markers during the course of movement
have to be excluded), four motions shown in Figure 2 were
designed to obtain sufficient range of motion of the right upper
limb. All the motions were initiated when the right arm was

M1 M2 M3 M4

FIGURE 2 | Illustration of the movements and their trajectories

involved in this study. All these movements were resulted from the

coordination of multiple muscles and multiple joints. Each movement was

initiated from the lowest position and returned to the initial position after the

completion of the movement.
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freely hanging and close to the torso. The traces in Figure 2

indicated the movement trajectory from the initial position to the
destination position in a single trip of each motion. Motion M1
simulated delivering water to drink. In motion M2, the subjects
were asked to touch their right shoulder with their right hand in
the sagittal plane. In motion M3 (M4), the subjects were asked
to lift their right arm in the sagittal (coronal) plane as they can.
After the completion of each movement, the right arm returned
to the initial position. As most daily-life movements of human
are quasi-rhythmic after sufficient learning and training except
when unexpected events happen (Churchland et al., 2012; Kandel
et al., 2012), these four arm movements are freely repeated
several times in order to capture both the commonality and the
variability of the EMG and motion properties.

In order to collect sufficient experimental data and catch most
variabilities during the experiments, we designed two separate
motion sessions with each session consisting of fifteen repetitions
of the motion (see Figure 3) for each motion of each subject.
The muscles were allowed to relax shortly (around 3 s) before
initiating the next motion repetition. Around 5-min rest was
allowed before the start of the second test session. All the
motions were performed naturally without any kinematic or
dynamic constraints of the right arm. The exact duration of the
single motion completion and the rest between adjacent motion
repetitions were controlled by the subjects themselves as they felt
comfortably. Such experimental setup without strict kinematic
constraints was also suitable to verify the feasibility of the
proposed joint angle estimation method in practical myoelectric
control scenario.

2.3. Data Processing
With the above EMG and motion recording strategies, both of
the EMG and motion data were saved in a computer and treated
off-line in Matlab (The MathWorks, Version 7.10.0.499, 64-bit,
2010). The purpose of data processing is to extract suitable signal
features, including EMG and motion features, for estimation

1 2 3 15

……

1 2 3

……

Session1 (Training2) Session2 (Testing2)

rest

1413 151413

Training1 Testing1

Intra-cross validation

Inter-cross validation

Repetition

FIGURE 3 | Description of the experimental protocol. Two separate

motion sessions with each session consisting of 15 repetitions of the motion

were designed to collect sufficient experimental data and catch most

variabilities during the movements. The muscles were allowed to relax

between the adjacent motion repetitions within each test session and between

two separate test sessions. When different data were used for training and

testing of the estimation procedure, the cross-validation procedure was

defined as intra-cross validation (training1, testing1) and inter-cross validation

(training2, testing2) respectively.

model learning. In addition, the test data used for cross validation
were also processed as did for the training data.

As we know, the muscle synergies and motion synergies
contribute to reducing the complexity of neural control in the
redundant human motor system. Mathematics techniques, such
as PCA, can be used to parse the complex data into a small
number of components, for example, only two synergies were
needed to account for more than 96% of the activation patterns of
eleven human armmuscles during free armmotions (Artemiadis
and Kyriakopoulos, 2011). Independent component analysis
(ICA) was also effective to extract statistically independent
muscle activity source signal from their combinations from
multi-channel EMG (Nakamura et al., 2004; Garcia et al., 2005)
and high-density EMG signals. ICA has been considered superior
to PCA in improving force estimation accuracy from EMG
(Staudenmann et al., 2007). Inspired by these previous works, two
mode decomposition methods, PCA and ICA, were respectively
conducted following band-pass filtering (6th Butterworth with
10–400 Hz cut-off frequency) of the EMG signals.

The multi-channel of EMG recordings are usually noisy
and have super-Gaussian or Gaussian distributions in different
activation levels (Nazarpour et al., 2013). PCA is selected to
process the EMG signals as it is especially efficient in dimension
reduction when the signals are highly correlated. With the
PCA processing, the recorded EMG signals can be on one
hand transformed to the low-dimensional principal components
(PCs) with noise free. On the other hand, the dependence
among different recording channels can be broken resulting
in uncorrelated signals. As for the ICA algorithm, it works
under the hypothesis that the original signals are linearly mixed
and have non-Gaussian distribution, so that it is reasonable to
perform PCA as a preprocessing for ICA to discard the irrelevant
structures among the EMG signals and satisfy the hypothesis
of ICA algorithm. From now on, whenever we mentioned ICA,
it means ICA was conducted after preprocessing of PCA while
PCA means only PCA was conducted. The detailed algorithm of
PCA and ICA can be found in Johnson and Wichern (2007) and
Hyvarinen et al. (2001).

Noth that, the feature vector obtained by the training data
with PCA was saved for the testing data to be projected
in the same low dimensional space as did on the training
data. With ICA, the estimation of unmixing matrix can be
obtained through different ways, such as the approximations of
negentropy, the minimization of mutual information and the
maximum likelihood estimation. We achieved the estimation
of unmixing matrix through negative entropy maximization
due to its advantages such as fast convergency and robustness
(Hyvarinen et al., 2001). Similarly, the unmixing matrix obtained
with the training data was kept for the testing data to be unmixed
in the same way as did on the training data.

After the PCs (ICs) of the recorded EMG signals were induced
from PCA (ICA), the EMG feature set, including mean absolute
value (MAV), root mean square, waveform length, zero crossing,
variance, median frequency and mean frequency were further
calculated in a 40 ms analysis window with 50% overlapping.
Although such feature set was applied or partly applied in
previous works (Artemiadis and Kyriakopoulos, 2011; Jiang et al.,
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2012), we did not find consistent improvement in estimation
quality when using the combined feature set comparing with
using only MAV feature. Therefore, we only present the analysis
and results by using only MAV as the EMG feature in the
following description.

For the motion data, 2-order butterworth filter with cutoff
frequency of 6 Hz was applied firstly to the recorded
reflective marker position data. The three joint angles at
shoulder and one joint angle at elbow were then calculated
from the marker position data according to the method
proposed previously (Chen et al., 2010). The 4 DoFs are
defined as shoulder abduction/adduction (SAA), shoulder
flexion/extension (SFE), shoulder pronation/supination (SPS)
and elbow flexion/extension (EFE). Although the joint motion
dimension can be reduced from original 4-fold into 2-fold
representing 98% of the total variance as did in Artemiadis
and Kyriakopoulos (2010), since we found this processing did
not contribute in reducing the complexity or improving the
estimation accuracy significantly, the original 4 joint angles
were directly used as the estimation target rather than the
low-dimensional 2 components. In Figure 4, the 4 DoFs are
respectively rectified and normalized by their maximum value to
represent in the same range of [0, 1]. As we expect, for the same
DoF, it differs over time during different movement repetitions.
Among all the DoFs, their correlation differs during different
movement repetitions as well, which reveals clear evidence of
redundancy in achieving the same movement with different
activating strategies of multiple DoFs. In addition, the behavior
of single DoF and the correlation among all the DoFs are both
different in different subjects for the same movement. Because
of these variabilities, simultaneous and continuous estimation of
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FIGURE 4 | Examples of 4 motion repetitions of M1 in two subjects. It is

clear to find evidence of redundancy in achieving the same movement with

different activating strategies of multiple DoFs in the same subject. The

behavior of single DoF and the correlation among all the DoFs are both

different in different subjects for the same movement.

the joint angles is important to interpret instantaneous neural
variations for natural and accurate myoelectric control.

Until now, we obtained both the EMG features and joint angle
features to be the input and output respectively of the motion
estimation model.

2.4. Joint Angle Estimation with ANN
Multi-layer perceptron (MLP), a feedforward ANN model,
was used to learn the mapping from the low-dimensional
EMG feature to the shoulder and elbow joint angles. The
multiple MLPs (mMLPs) has been popularly used for training
where one MLP outputs one joint angle in order to obtain
accurate estimation for each joint angle (Jiang et al., 2012;
Muceli and Farina, 2012). In addition to the separate MLP
training for each joint angle estimation, we attempted to use
single MLP (sMLP) for concurrent estimation of all the joint
angles. The sMLP was then assessed to see if it could be
used instead of mMLPs with comparable estimation accuracy
and compact training procedure. In each MLP training neural
network, there were three hidden layers with five neurons
in each layer. The neurons in the hidden layers and output
layer had a tangent sigmoid transfer function and a Linear
transfer function respectively. The MLP was trained through
the Leverberg-Marquardt back-propagation algorithm. All these
network training parameters were fixed during the training and
testing processes.

The training and testing of the sMLP strategy are illustrated in
Figure 5. In the training phase, the EMG features and joint angles
were fed into the MLP, the correlation between them was learned
and kept for the following testing phase. In the testing phase, the
trained MLP outputs the joint angle estimates in the presence of
new EMG feature data. The performance index R2 is calculated
from the measured and estimated joint angles through Equation
(1). Note that, in the feature extraction procedure, either PCA or
ICA was applied before the calculation of MAV of EMG.

FIGURE 5 | The illustration of joint angle estimation from EMG through

sMLP network. In the training phase, the MLP were learned by the

differences between the measured joint angles and the MLP output. In the

testing phase, the trained MLP outputs the joint angle estimates in the

presence of new EMG feature data. The performance index R2 is calculated

from the measured and estimated joint angles through Equation (1). In the

feature extraction, the raw EMG signals were sequentially processed with

band-pass filtering, PCA or ICA decomposition and MAV calculation.
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2.5. Performance Index
The estimation performance can be evaluated by different
indices, such as RMS error, correlation coefficient (CC) and
coefficient of determination R2. In order to compare the
performance of the proposed method with other works, global
R2 was calculated across all the joint angles as below:

R2 = 1−

∑D
i=1

∑N
t=0(ŷi(t)− yi(t))

2

∑D
i=1

∑N
t=0(yi(t)− yi(t))2

(1)

where yi(t), yi(t) and ŷi(t) are respectively the real joint angle
calculated frommotion capture system, its average over time and
its estimates from only EMG signals at time instant t for the ith
DoF. N is the number of samples of each joint angle. D is the
number of DoF involved in the study.

All the estimations were performed on the experimental data
recorded from six able-bodied subjects. In a word, the human
motion estimation process consists of two phases: training
and testing. In the traditional estimation method, k-fold cross
validation (k = 4 or 5) was popularly applied, where one out
of the k repetitions of each movement was used as testing set
and the rest repetitions as training set (Jiang et al., 2012; Muceli
and Farina, 2012). In comparison, we applied leave-p-out strategy
for the cross-validation where p motion repetitions were used
for testing with the rest for training. As the variabilities over
time likely deviate the estimation result, this strategy is helpful
to evaluate the possibility of the trained model in estimating
joint angle in continued movement repetitions. If the training
and testing data coming from the same test session, we call such
traditional cross-validation process as intra-cross validation. In
addition, we proposed to conduct inter-cross validation to reveal
more convincing results where the training and testing data were
coming from two test sessions for each motion in each subject
(see Figure 3). Comparing with the intra-cross validation, the
inter-cross validation is closer to the practical online condition
in myoelectric control, where the testing was performed online
following the offline training.

3. RESULTS

The purpose of the current work is to propose a simultaneous
and continuous joint angle estimation method for multi-joint
coordinated upper limb myoelectric control. In the course of
joint angle estimation, several factors, such as signal feature
extraction method, time-variant properties of EMG and MLP
training/testing strategy, may have unexpected influence on the
estimation accuracy. Any failure on the estimation course may
result in the failure or high error in the joint angle estimation.
Therefore, the estimation performance was evaluated in several
aspects.

1) EMG Mode Decomposition: The estimation performance
with ICA and PCA decomposition was compared, suggesting
their contribution and advantages for the estimation quality.
Original 8-channel raw signals were reduced to 3∼5-manifold
for different subjects representing 95% of the total variances
by PCA processing. When the ICA algorithm was conducted,

the uncorrelated principal components obtained by PCA was
treated as the mixed signals.

2) Training Strategy:We compared to training strategies in this
paper, that is, four joint angles were derived from four MLP
networks individually (mMLPs) or from one MLP together
(sMLP). Their feasibility and difference were presented and
compared by the statistic analysis of the estimation results.

3) EMG Non-stationarity: As nonstationary EMG property
was always a trouble in EMG relevant works, including
myoelectric control, the estimation performance of the
proposed methods was tested in short-term and middle-
term as well, suggesting its feasibility for middle-term
use. Either in the intra-cross validation or the inter-cross
validation, we divided the testing data into two equivalent
parts. The estimation of the first half was called short-term
estimationwith the last half corresponding to themiddle-term
estimation.

4) Cross-Validation: In the intra-cross validation procedure, all
the training and testing data were selected from the same
test session with half for training and the other half for
testing as shown in Figure 3. In this work, around seven
motion repetitions were used for testing which can catch
more variabilities during the experiments. In the inter-cross
validation, the data in session1 were used for training with
the data in session2 for testing. In total, there were fifteen
motion repetitions being used for testing. The estimation
accuracy was the average of the estimates of multiple motion
repetitions which was more practical and convincing to
represent the overall estimation quality of the proposed
methods.

3.1. Multi-DoF Motion Estimation during
Intra-Cross Validation
An example of the joint angle estimation during intra-cross
validation is presented in Figure 6. The blue lines indicate the
joint angles calculated from motion capture system which are
considered as the real joint angles. The red lines indicate the
joint angle estimates from the EMG and MLP (trained with
the training datasets). The estimation was obtained by sMLP
and the EMG was processed by ICA. The global estimation
accuracy is 94.6% represented by R2. In such arm movement,
multiple muscles and multiple joints were involved to achieve
the coordinated muscle contractions and joint movements.
Although the motion velocities and the trajectories are both
different among different motion repetitions as shown in
Figure 4, all the joint angles can be still estimated in the rest,
initial concentric and final eccentric motion phase, indicating
the feasibility and accuracy of the joint angle estimation
method from EMG even in the presence of some kinematic
variabilities.

Although the estimates of joint angles can be directly used as
the control commands for the robot control, the spacial trajectory
of the end-effector is also what we concern. The trajectory must
be natural and smooth, otherwise, the joint coordination may be
problematic in practice. Therefore, we evaluated the 4 joint angle
estimation performance not only by comparing the estimated
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FIGURE 6 | An example of the 4-DoF estimation on the subject shown

at the bottom in Figure 4. The motion M1 was selected to be shown here.

The sMLP network was trained after ICA processing of the EMG signals.

joint angles with the measured angles, but also by comparing the
trajectories of the end-effector driven by the estimated angles and
measured angles. The forward kinematics analysis was conducted
using the measured and estimated joint angles respectively to
compare the measured and estimated trajectories of the end-
effector. As the wrist joint was excluded in this work, the center
of the wrist joint was considered as the end-effector with the wrist
joint being fixed. Figure 7 shows the motion trajectory of the
end-effector constructed by the measured joint angles (blue) and
the estimated joint angles (red) in Figure 6. In order to show the
movement trajectory intuitively, the original coordinate is set at
(x0, y0, z0) as shown in Figure 1. In this motion (M1), both the
shoulder and elbow joint move in a large range of motion. The
determination of R2 of the trajectory matching is 94.58%. The
estimation error mainly exists at the beginning of the movement.
Comparatively, the midline and the destination of the trajectory
calculated from the estimated joint angles matches the recorded
quite well.

3.1.1. Performance Comparison with Different EMG

Features and Training Strategies
PCA and ICAwere both considered necessary and useful in EMG
mode decomposition and represented their suitability in EMG-
based joint angle or force estimation (Staudenmann et al., 2007;
Artemiadis and Kyriakopoulos, 2010). We intended to evaluate
their contribution to the motion estimation performance. Thus,
the motion estimation accuracies were calculated and compared
between PCA and ICA processing of the EMG signals in this
study. For the neural network training, previous works applied
mMLPs to yield one angle from eachMLP. To simply the training
strategy, we compared the estimation performance with sMLP
and mMLPs. Finally, sMLP and mMLPs grouping with PCA
and ICA algorithm respectively were used for neural network
training. All the estimation accuracies of each motion across
all the subjects were averaged and summarized in Figure 8. We

find that the sMLP is sufficient to yield comparable even better
estimation accuracy with respect to the mMLPs either with PCA
or ICA for EMG mode decomposition. In addition, the training
complexity and computation time is superior when training by
sMLP. For the comparison between ICA and PCA, both of
them can give high estimation accuracy for each motion. If we
average the estimation accuracies across all the motions, the four
combinations, that is, ICA+mMLPs, ICA+sMLP, PCA+mMLPs
and PCA+sMLP, have respectively yielded 89.23, 91.12, 88.7, and
90.23% estimation accuracy comparing with the measured joint
angles. By conducting two-way ANOVA test between the two
factors, EMG decomposition method (ICA/PCA) and training
strategy (sMLP/mMLPs), the p-values for the ICA/PCA, 0.5919,
the sMLP/mMLPs, 0.1409, and the interaction between the two
factors, 0.8225, indicating all these combinations get similar
motion estimation performance and no significant interactions
between the two factors. Considering the potential versatility
of the ICA and the simple configuration of the sMLP, in the
following study, if we did not explain especially, the EMG was
processed by ICA and the sMLP was chosen as the training
strategy.

3.1.2. Performance Comparison between Short-Term

and Middle-Term Estimation
Nonstationary properties of EMG is a troublesome effect for
myoelectric control. For example, the estimation accuracy
decreased from around 30 s without model switching strategy
in a free arm movement (Artemiadis and Kyriakopoulos,
2011). The inherent cause may come from the complex
electrochemical behaviors of the skeletal muscles. The robustness
of the estimation method to the time-related factors was
evaluated by comparing the estimation accuracies in the
short-term and middle-term application. If any stage of the
estimation process, including feature extraction and training,
can not overcome the effects of the time-variant factors, the
estimation quality may deteriorate over time. In Figure 9, the
estimation performance in short-term and middle-term was
summarized in the condition of intra-cross validation. The global
estimation accuracy is the averaged R2 when all the test data
were used for estimation. When the first half of the testing
data were estimated, the short-term accuracy was calculated,
whereas the last half of the testing data corresponding to
middle-term estimation. The performance across the estimation
duration was not statistically significant (p=0.9676), indicating
the estimation performance is similar during the 70-s arm
movements.

3.2. Multi-DoF Motion Estimation during
Inter-Cross Validation
In intra-cross validation, part of data from the same motion
session was used for training with the other part for testing.
In practice, when the training phase finished, a new motion
session starts and new EMG signals may result in corresponding
estimates. Therefore, we also tested the motion estimation
using EMG signals from two different sessions for training and
testing respectively, which was more practical from the muscle
states and estimation conduction procedure. An example of

Frontiers in Neuroscience | www.frontiersin.org 7 May 2017 | Volume 11 | Article 280

http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Neuroscience/archive


Zhang et al. Joint Angle Estimation from EMG

0

200

400

600

−200

0

200

400
−600

−400

−200

0

200

X (mm)Y (mm)

Z
 (
m
m
)

50 100 150 200 250 300 350 400 450
−150

−100

−50

0

50

100

150

200

250

300

X (mm)

Y
 (
m
m
)

50 100 150 200 250 300 350 400 450
−600

−500

−400

−300

−200

−100

0

100

200

Z
 (
m
m
)

X (mm)
−200 −100 0 100 200 300

−600

−500

−400

−300

−200

−100

0

100

200

Z
 (
m
m
)

Y (mm)

Estimated

Measured

FIGURE 7 | An example of the movement trajectory of the end-effector constructed by the measured joint angles (blue) and the joint angle estimates

(red). The motion M1 with seven repetitions, the same as shown in Figure 6, was shown here. The movement trajectory in 3-D space is shown on the left top with

the others being the movement trajectory projection in 2-D space. The initiation position of the movement is indicated by a black solid square.

M1 M2 M3 M4
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

R
2

ICA+mMLPs

ICA+sMLP

PCA+mMLPs

PCA+sMLP

Arm motion
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the joint angle estimation during the inter-cross validation is
shown in Figure 10. The estimation accuracy is 98.95% for the
motion M4 of this subject in the 2-min estimation. In this
motion, the subjects were asked to lift their right arm in the
coronal plane. Due to no kinematic or dynamic constraints
being exerted, the subject could perform this motion as they
felt comfortably. For example, they may flex their elbow to
compensate the uncomfortability during the motion. In this
motion, the 4 joint angles were ranged quite differently, while
the joint angle estimates were quite close to the measured angles.
The corresponding motion trajectory estimation accuracy is
91.38% (shown in Figure 11). Although the practical initiation
positions and trajectories (blue) in different motion repetitions

Global Short−term Middle−term
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FIGURE 9 | Performance comparison between short-term and

middle-term estimation in intra-cross validation with ICA processing.

The average estimation accuracy is respectively 91.12, 91.29, and 90.97 for

the global, short-term and middle-term estimation duration.

are scattering in each plane, the constructed estimate of the
motion trajectories (red) are still smooth and accurate in reaching
destination.

The estimation comparison between ICA and PCA in this
inter-cross validation is shown in Figure 12. The average
estimation accuracy with ICA and PCA of four motions across
six subjects is 87 and 86.3% respectively. The estimation
performance seems similar in total with ICA or PCA for
EMG mode decomposition in this inter-cross validation (p =

0.8531), except for the motion M2 where ICA presents apparent
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inter-cross validation. The motion M4 was selected to be shown here. The

sMLP was trained after ICA processing.
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FIGURE 11 | The movement trajectory of the end-effector constructed

by the joint angles in Figure 10. Motion M4 with seven motion repetitions

was estimated and demonstrated. The motion trajectory in 3-D space was

shown on the top left. The others were the projection of the trajectory in 2-D

space. The initiation position of the movement is indicated by a black solid

square.

advantages comparing with PCA. With respect to the intra-cross
validation where 91.12% (90.23%) estimation accuracies were
presented in Figure 8, the estimation in the inter-cross validation
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FIGURE 12 | Statistics results (R2) between ICA and PCA in inter-cross

validation. The results were averaged across six subjects.

is a little worse. However, considering the practical condition
of myoelectric control and the estimation accuracies of the
previous works as described in the introduction, this estimation
performance is quite satisfactory. Moreover, the proposed
method also works well during 2-min estimation process in
the inter-cross validation. The average estimation accuracy
was summarized in Figure 13 during middle-term estimation
with ICA. There are also no significant differences among the
global, short-term and middle-term estimation performance (p
= 0.8870).

4. DISCUSSION

This paper investigated the feasibility of simultaneous and
continuous motion estimation from EMG during arm
movements involving coordinated activation of four DoFs
across shoulder and elbow joints. In comparison to single joint
(such as wrist or elbow joint), the coordination of shoulder
and elbow joints offer more contribution for the upper limb to
reach objects in a large range of motion. Thus, the simultaneous
and continuous estimation of shoulder and elbow motion is
important and challenging due to the complex activation of
multiple muscles and multiple DoFs (Prilutsky et al., 2011).
Although only four arm motions were involved in this work, all
of them were functional movements popularly in daily life and
achieved by activating all the four DoFs under the condition of
no kinematic or dynamic constraints. It is especially meaningful
in rehabilitation robotics systems where functional movements
are practically important for the users (Takahashi et al., 2008).
Moreover, such rehabilitation robot is usually able to provide
functional but few movements due to the tradeoff between the
complexity of mechanical configuration and the complexity of
control system (Maciejasz et al., 2014).

Myoelectric control based on simultaneous and continuous
motion estimation has been considered superior to that based
on pattern recognition as it provides continuous motion (joint
angle) estimates as long as the EMG signals are available. In this
work, the proposed method either with PCA or ICA for EMG
mode decomposition yields accurate joint angle estimation of the
4DoFs at shoulder and elbow joints. The estimation performance
was not only evaluated by intra-cross validation and inter-cross
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validation, but also evaluated in short-term and middle-term
condition. In intra-cross validation, ICA and PCA with sMLP
training respectively gives 91.12 and 90.23% estimation accuracy
on average over four arm motions across six subjects. In inter-
cross validation, the corresponding estimation accuracy is 87.14
and 86.30% respectively. This estimation accuracy is high in the
context of simultaneous and continuous estimation of multiple
DoFs. In addition, the estimation model was not needed to be
switched even during 2-min movement, which is relatively stable
and efficient for online myoelectric control.

In this preliminary study, only able-bodied subjects were
involved. In this situation, the method can be directly used
for tele-operation of assistive robots as in Artemiadis and
Kyriakopoulos (2011) and any mechatronics device as long as we
would like to control it by our movement intent. This method
can be also applied for myoelectrical control of exoskeletons
of upper limb during the rehabilitation stage of muscle force
enhancement. Furthermore, this method is quite promising to
be applied for arm prosthetics control benefiting from more
motor information provided by targeted muscle reinnervation
(TMR) which has been proved able to use EMG decoding to
regain intuitive and simultaneous functional control (Miller et al.,
2008; Kuiken et al., 2009; Hargrove et al., 2013). In the proposed
method, PCA and ICA both provided satisfactory estimation
accuracies in the proposed simultaneous motion estimation,
while the latter is a little better due to its capacity in further
separating the sourcemuscle activities followingmuscle synergies
extraction in the surface EMG recording scenario.Moreover, ICA
is expected to be more advantageous comparing with PCA in
the presence of more muscle activity cross-talks through high-
density EMG recordings or multiple EMG recordings from the
targeted muscles after TMR surgery.

The accurate and stable estimation of multiple DoFs from
muscle activities can not only contribute to practical myoelectric
control in various robotic systems, but also reveal the inherent
correlation between the muscle activities and the coordinated
joints through suitable feature extraction and correlation
learning methods. Such correlation may be different among
different motion tasks, yet determinable for the samemotion task
evenmultiple joints andmultiplemuscles were involved to obtain
the coordinated motions.

5. CONCLUSIONS AND PERSPECTIVES

EMG signals have been popularly used to decode human motion
intent for myoelectric control. Traditional motion estimation
method uses pattern recognition to provide binary control
commands which can only move the robot in a predefined
pattern. Simultaneous and continuous motion estimation from
EMG has been proposed to provide more natural and accurate
motion control command with respect to pattern-recognition
based estimation. However, few works have achieved significant
progress in simultaneous and continuous estimation of multi-
joint coordinated motions. In this work, we proposed a
simultaneous and continuous estimation method which can
accurately estimate 4 joint angles across two joints for
coordinated upper limb motions only from multi-channel EMG
signals. EMG mode decomposition through PCA and ICA both
revealed their effectivities and feasibilities to obtain accurate joint
angle estimation with ICA a litter better. A sMLP network was
proposed to estimate the joint angles from the EMG signals
after short training. The experimental data from six able-bodied
subjects were used to train the neural network and validate the
joint angle estimation performance. By comparing the estimated
joint angles with the calculated joint angles from the motion
capture system, we can find the joint angle estimation accuracy is
quite high which indicates that the inherent correlation between
themuscle activities and joint angles during complex coordinated
motion tasks is feasible to be explored through the proposed
mode decomposition and training methods. As the application of
EMG decoding in the assistive robot teleoperation (Artemiadis,
2012) and the robotic leg control after a TMR surgery (Kuiken
et al., 2009; Hargrove et al., 2013), the accurate arm motion
estimation is promising to be applied to control the assistive
robot, prosthetic arm or any mechatronics system that we expect
to control by our movement intent. In the early future, the
proposed method will be further researched on myoelectric
control of an exoskeleton our team developed (Liu et al., 2013)
and increasing the motion of range of upper limb.
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