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In the last two decades the anterior cingulate cortex (ACC) has become one of the most
investigated areas of the brain. Extensive neuroimaging evidence suggests countless
functions for this region, ranging from conflict and error coding, to social cognition, pain
and effortful control. In response to this burgeoning amount of data, a proliferation of
computational models has tried to characterize the neurocognitive architecture of ACC.
Early seminal models provided a computational explanation for a relatively circumscribed
set of empirical findings, mainly accounting for EEG and fMRI evidence. More recent
models have focused on ACC’s contribution to effortful control. In parallel to these
developments, several proposals attempted to explain within a single computational
framework a wider variety of empirical findings that span different cognitive processes
and experimental modalities. Here we critically evaluate these modeling attempts,
highlighting the continued need to reconcile the array of disparate ACC observations
within a coherent, unifying framework.

Keywords: anterior cingulate cortex (ACC), effort, prediction error, computational models of ACC, computational
modeling, effortful control

INTRODUCTION

Humans and other animals continually adapt their behavior in response to a rapidly changing
environment, which requires speed and flexibility in evaluating environmental feedback. Research
over the past two decades has identified anterior cingulate cortex (ACC) as a major neural hub for
these computations (Rushworth et al., 2011), but the empirical evidence spans a wide variety of
cognitive, affective and social functions (Bush et al., 2000; Nee et al., 2011; Gasquoine, 2013).

ACC s implicated in a lengthy list of processes (Shackman et al., 2011), including error detection
(Gehring et al., 1993), conflict monitoring (Barch et al., 2001; van Veen and Carter, 2002), response
selection (Holroyd and Coles, 2002), error likelihood (Brown and Braver, 2005), attention and
task preparation (Luks et al., 2002; Aarts et al., 2008; Aarts and Roelofs, 2010), integration of
outcome uncertainty and action values (Khamassi et al., 2015), reward prediction and prediction
errors (Jessup et al., 2010; Silvetti et al., 2013; Vassena et al., 2014a), reward prediction errors
experienced by others (Apps and Ramnani, 2014; Apps et al., 2016), prediction of effort required
by the task (Vassena et al., 2014b; Chong et al., 2017), and perception of pain (Vogt, 2005; Fuchs
et al., 2014). An automated machine-learning technique applied to a large data base also found
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ACC involvement in most tasks (Yarkoni et al., 2011). The
diversity of contexts in which ACC activity has been observed has
led to the ironic conclusion that ACC is involved in everything
(Ebitz and Hayden, 2016), and that the search for a “unimodal”
characterization may be unobtainable (Bush, 2009), a position
that favors the possibility of a multitude of separate signals
mapped to different areas in ACC (Bush et al., 2000; Kolling et al.,
2016a,b). This ubiquitous ACC activation has stimulated a search
for an overarching theoretical framework that can account for
all of the data while complying with principles of parsimony,
falsifiability, and neurobiological plausibility (Alexander and
Brown, 2010Db).

This paper reviews the history of computational models
of ACC function, highlights the current state-of-the art,
and discusses future directions. First, we summarize early
seminal models that addressed single phenomena or relatively
circumscribed sets of findings. These attempts mainly aimed at
explaining fMRI and EEG data related to conflict and prediction
errors. Second, we describe more recent models that account
for growing evidence that ACC is implicated in effortful control
(Walton et al,, 2003, 2007; Vassena et al., 2014b; Holroyd
and Umemoto, 2016; Klein-Fliigge et al,, 2016). Third, we
describe models that broaden the explanatory scope to include
lesion data and single-cell recordings under a shared underlying
computational principle, none of which are comprehensive
(see Table1 for a schematic comparison across all models).
Finally, we discuss current and future attempts to bridge the
remaining gaps.

EARLY SEMINAL MODELS

The first computational accounts of ACC function underscored
its involvement in different task settings and cognitive processes.
Perhaps the most influential of these is the conflict-monitoring
model (Botvinick et al., 2001), which identified ACC as a conflict
monitor that increases in activation as a function of conflict
between available response options. On this account, stimuli
that are incompatible on two (or more) stimulus dimensions
(such as word meaning and ink color in the Stroop task) can
activate competing response channels (e.g., left and right button
presses); conflict is defined as the multiple of the activity of
these channels, signaling a need for increased top-down control.
Although conflict-related activity has reliably been measured
in ACC with fMRI and EEG (Botvinick et al., 1999; Yeung
et al, 2004; Carter and van Veen, 2007; Roberts and Hall,
2008), findings in patients and non-human animal literature
are controversial (Yeung, 2013). In particular, ACC lesions do
not consistently impair the cognitive control adjustments that,
according to the theory, should follow conflict detection (Swick
and Jovanovic, 2002; Fellows and Farah, 2005; di Pellegrino
et al., 2007; Sheth et al, 2012), and scant neurophysiological
evidence from monkey single-cell recordings is highly debated
(Nakamura et al., 2005; Cole et al., 2009; Ebitz and Platt,
2015). Subsequently, several groups reported neurophysiological
and neuroimaging findings inconsistent with the conflict
monitoring proposal (Amiez et al., 2006; Burle et al., 2008;

Woodward et al., 2008; Hyafil et al., 2009; Kouneiher et al.,
2009).

Brown and Braver (2005) later proposed the error likelihood
model. According to this account, ACC associates errors with
the stimulus context in which they occur, providing a means to
predict the context-dependent likelihood of error commission.
This model provided an early overarching attempt that explained
both error and conflict activity. Subsequent experiments verified
critical aspects of the model: as predicted, stimulus features
associated with higher likelihood of errors, but not with conflict,
elicited greater ACC activity (Brown, 2009). Failures to replicate
the error likelihood effect (Nieuwenhuis et al., 2007) have
been attributed to individual differences in risk-aversion (with
more risk-averse subjects showing larger error-likelihood effects,
Brown and Braver, 2007, 2008). One important limitation of this
proposal was the inability to simulate the effect of unexpected
errors (errors committed in contexts with low error likelihood
elicit greater activity than errors in high error likelihood contexts,
Brown and Braver, 2005).

An account by Holroyd and Coles (2002, 2008) proposed that
ACC acts as a “motor control filter” that decides which action
policy should be selected for a particular task. On this view, the
value of action policies are learned via reward prediction error
signals carried to ACC by midbrain dopamine system. These
signals are proposed to encode discrepancies between expected
and actual rewards that underlie the production of the error-
related negativity (ERN) component of the event-related potential
(ERP). Notably, this reinforcement learning model of the ERN
(RL-ERN theory) shifts the role of ACC from the evaluative domain
(i.e., detecting response conflict or error likelihood) to the action
selection domain, explaining how ACC signals affect behavior.
Aspects of the RL-ERN theory have received strong empirical
support (Walsh and Anderson, 2012; Sambrook and Goslin, 2015;
Holroyd and Umemoto, 2016) and are compatible with evidence
of ACC encoding action values in uncertain environments (e.g.,
during foraging, Kolling et al, 2012, 2016b). However, the
explanatory scope of this proposal was mainly limited to EEG
data, and is not easily translated to fMRI (cf. Holroyd et al.,
2004; Nieuwenhuis et al., 2005; Becker et al., 2014; Ferdinand
and Opitz, 2014). Furthermore, this model proposed a general
role for ACC as a motor control filter, describing a high-level
hierarchical mechanism for action selection, but did not make
specific predictions about how reward and error signals regulate
behavior.

Finally, Behrens et al. (2007) proposed that ACC is sensitive
to the volatility of environmental outcomes. This proposal holds
ACC responsible for detecting how rapidly reward contingencies
change over time. The model provides a mechanism by which
organisms can flexibly adapt their learning rate (i.e., the speed
at which current knowledge of the world is updated with new
information). The volatility measure computed by ACC is used to
adjust this learning rate in order to optimize subsequent decision-
making. Furthermore, according to the authors the volatility
signal is dissociable from prediction errors signals, thus implicitly
postulating co-existence of difference signals within ACC. One
limitation of this proposal is that while the volatility signal is
proposed to influence learning rate at the time of feedback,
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TABLE 1 | Schematic comparison of all discussed models.

Model Publication Model type Effects Data type Species
EARLY MODELS
Conflict monitoring Botvinick et al., 2001; Yeung Connectionist Conflict, errors fMRI, EEG Humans
etal., 2004
Error likelihood Brown and Braver, 2005 Rate-coded neurons Conflict, errors fMRI Humans
Motor control filter Holroyd and Coles, 2002, Reinforcement Errors, prediction, reward prediction EEG Humans
2008 learning error
Volatility Behrens et al., 2007 Bayesian Volatility fMRI Humans
RECENT EFFORT MODELS
Choice difficulty Botvinick, 2007; Shenhav Connectionist Choice difficulty in decision-making fMRI Humans
etal., 2014
Adaptive effort Verguts et al., 2015 Reinforcement Physical and cognitive effort and fMRI, single-cell, lesion Humans,
allocation learning cost-benefit trade off rodents,
monkeys
Expected value of Shenhav et al., 2013 Conceptual Cognitive control and cost-benefit fMRI Humans
control trade off in decision-making
Synchronization by ~ Verguts, 2017a Rate-coded neurons Cognitive control driven by theta (Intra-cranial) EEG Humans
oscillations oscillations
RECENT UNIFYING MODELS
PRO Alexander and Brown, 2011 Rate-coded neurons; Prediction and prediction error, fMRI, EEG, single-cell Humans,
reinforcement learning conflict, error, pain rodents,
monkeys
PRO-Effort Vassena et al., in press = PRO = PRO + effort = PRO Humans
PRO-Control Brown and Alexander, 2017 =PRO = PRO + foraging, choice difficulty = PRO + lesion Humans,
monkeys
RVPM Silvetti et al., 2011 Rate-coded neurons; Reward prediction and prediction fMRI, EEG, single-cell, lesion Humans,
reinforcement learning error, conflict, error, volatility monkeys
HRL-ACC Holroyd and McClure, 2015 Reinforcement Effort, task switching, hierarchical Lesion Rodents
learning behaviors
RNN-ACC Shahnazian and Holroyd, Connectionist Distributed coding of extended action Singe-cell, fMRI, EEG Rodents,
2017 sequences, conflict, prediction errors humans
HER Alexander and Brown, 2015 Predictive coding as PRO, + dIPFC fMRI, EEG, lesion, single-cell  Humans,
monkeys
ACC-LPFC Khamassi et al., 2011 Rate-coded neurons; Reward prediction error, salience, Single cell, fMRI Humans,
reinforcement learning exploration-exploitation trade-off monkeys

For every model (early models, recent models effort models, and recent unifying models), the table provides first publication reference, model type (implementation), data type (data
that the model was conceived to explain), and species to which this data belongs. Within model type, connectionist refers to the Parallel Distributed Processing approach (McClelland
et al., 1987); reinforcement-learning refers to the approach described in Sutton and Barto (1998); rate-coded neurons refers to the approach described in Dayan and Abbot (2001).

this model does not address how ACC contributes to action
selection.

Although these computational models provided the first steps
toward a mechanistic understanding of ACC function, they share
a limitation in having been mainly conceived to explain one
type of experimental data. This aspect is perhaps particularly
problematic when based on fMRI data: BOLD measurements
provide an indirect and possibly biased means for assessing
neuronal activity (Logothetis, 2002, 2008), and further, increases
in activity in ACC may reflect synaptic activity from projecting
regions rather than firing by local neurons in ACC.

RECENT MODELS RELATED TO EFFORT
AND DIFFICULTY

Recent findings have drawn attention to the central role of ACC
in control processes requiring effort. Generally, ACC seems to

be more active when subjects prepare for difficult or effortful
tasks, even in absence of error, conflict, and choice (Mulert et al.,
2005; Aarts et al., 2008; Vassena et al., 2014b). ACC lesions impair
decisions that evaluate trade-offs between effort expenditure and
reward value in non-human animals (Walton et al., 2002, 2003,
2007), and are associated with motivational impairments and
apathy in humans (e.g., Devinsky et al., 1995; Holroyd and
Umemoto, 2016).

Botvinick (2007) anticipated this line of research with a
simple model proposing that the conflict signal may drive effort
avoidance, thus linking the conflict monitoring theory with
decision-making. This idea was later extended to the proposal
that ACC codes for choice difficulty (i.e., conflict between
choice options), based on the observation that BOLD-fMRI
ACC activity during decision-making negatively correlates with
value differences between available options (Pochon et al., 2008;
Shenhav et al., 2014). While not explicitly modeling effort, this
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proposal is one of the first to point to a role of ACC in coding
difficulty.

The adaptive effort allocation model by Verguts et al.
(2015) addresses the role of ACC in effortful control explicitly,
accounting for the empirical finding that expectation of effort in
absence of choice or conflict is associated with increased ACC
activity (Vassena et al, 2014b). On this account, ACC units
implement a “boosting” mechanism, biasing behavior toward
more effortful options when it is worth it (ie., when they
are predicted to procure a large enough reward). The model
predicts that boosting increases the signal-to-noise ratio in task-
related brain areas, thereby ensuring successful task completion.
Although carrying a cost that increases linearly as a function
of task difficulty, the boosting mechanism ensures sufficient
cognitive or physical effort is deployed to obtain the reward at
stake. This model effectively implements an “effort module” that
can influence other cortical regions as appropriate to the task at
hand.

In line with the adaptive effort allocation model, the
expected value of control framework (EVC) proposes that ACC
computes the value of exerting cognitive control (Shenhav
et al.,, 2013), integrating a variety of signals (including conflict,
reward, costs, effort, choice difficulty, and so on) in order
to determine the degree of control worth applying over task
performance. The EVC theory hypothesizes a role for ACC
in calculating the “value of control” based on a combination
of multiple different signals, some of which have also been
ascribed to ACC; the EVC framework thus postulates calculations
of the expected value of control as an additional role of
ACC rather than a single mechanism explaining the variety
of signals observed within the region. This framework has
recently contributed to a lively and ongoing debate on the
neural mechanisms of foraging, with a series of experiments
inspired by the ecology literature pointing to a critical role
for ACC: according to this proposal, ACC activity reflects the
relative value of foraging, i.e., of leaving a known environment
in order to explore a new environmental patch, which is
associated with higher uncertainty but also potentially higher
rewards (Kolling et al., 2012, 2016b). Whereas Shenhav and
colleagues suggested that such a foraging signal reflects choice
difficulty in a foraging context (Shenhav et al., 2014), Kolling
and colleagues proposed that choice difficulty and foraging
are dissociable and coded in segregated sub-regions of ACC.
Opverall, this proposal would appear to be consistent with Shenav
and colleague’s EVC account, assuming an additional signal in
ACC that codes for foraging and inputs to the calculation of
the value of exerting control. While providing a theoretical
framework with potentially wide explanatory scope, the EVC
theory has yet to be translated to a detailed computational
framework with testable (viz. falsifiable) predictions. Although
developed by a different group of investigators, one could
consider the Adaptive Effort Allocation model (Verguts et al.,
2015) as a possible computational instantiation of the EVC
framework.

Another recent model has specified a role for ACC in
synchronizing neural oscillations across brain areas (Verguts,
2017a). This complementary perspective suggests that ACC

exerts top-down control with bursts of activity in the theta
frequency band that synchronize task-related areas throughout
cortex, resulting in more efficient cortical communication. This
proposal aligns with evidence that theta oscillations originating
in ACC reflect effortful control (Holroyd, 2016; Holroyd and
Umemoto, 2016), and is unique in describing the role of ACC in
cognitive control in terms of synchronizing neural oscillations.

Opverall, these recent proposals complement their predecessors
in so far as they account for effort and control effects, which
were only partially explained by previous models. However,
the explanatory scope remains limited to the domain of
effort-based behavior, and mostly neglects to account for
data across different experimental models within a single
framework.

RECENT UNIFYING TRENDS

In parallel with the development of ACC models of effort
processing, several computational models have tried to account
for a wider array of empirical findings within a single,
overarching theoretical framework. In particular, whereas many
previous theories focused on explaining functional neuroimaging
data, recent models have widened their scope to include
lesion and neurophysiological data. An early step in this
direction was the Predicted Response Outcome (PRO) model
(Alexander and Brown, 2011), which assigns to ACC the role
of a stimulus-action-outcome predictor. In this account, ACC
predicts the likelihood of upcoming actions and outcomes
based on stimulus input from the environment; the predictions
are then compared with actually experienced outcomes to
produce a prediction error when an expected outcome and an
actual outcome do not match. This error signal informs the
prediction units, updating the predictions for future reference.
Therefore, ACC is mainly sensitive to the (un)predictability
of outcomes, regardless of their affective valence, as well as
the unpredicted non-occurrence of these outcomes. Under this
simple computational principle, the PRO model is able to
simulate a wide variety of empirical findings, including sensitivity
of ACC to conflict, errors, reward prediction errors and pain,
for both neuroimaging and single-cell data (Alexander and
Brown, 2014; Jahn et al,, 2014, 2016). Simply put, the proposed
mechanism for monitoring the (un)predictability of outcomes
and their deviations from expectation provides a unifying
framework for understanding such a diverse array of empirical
findings.

A similar framework, the Reward Value and Prediction
Model (RVPM), independently proposed by Silvetti et al. (2011),
implements a comparable prediction mechanism in ACC, with
one major difference: according to the RVPM, ACC predicts
the value of future outcomes, but only when reward is at stake.
By contrast, according to the PRO model, ACC predicts the
likelihood of any outcomes (even for events that have no intrinsic
value; Alexander and Brown, 2014). Like the PRO model, the
RVPM successfully explains a wide range of data based on the
principle of prediction and prediction errors (Silvetti et al., 2013).
However, while both models have the potential to be extended to
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the domain of effortful control, a translation to the effort domain
has been recently proposed only for the PRO model (Vassena
et al,, in press).

While neuroimaging studies have suggested a critical
role for ACC in performance monitoring and control,
neuropsychological reports on patients with ACC lesions
do not show the dramatic impairments one would expect
based on these findings (Yeung, 2013). Partly for this reason,
Holroyd and Yeung (2012) proposed that ACC selects and
maintains extended, goal-directed action sequences, rather than
instigate moment-to-moment changes in behavior following
conflicts and errors. On this view, ACC impairments would
impact complex high-level goal-pursuit rather than individual,
low-level actions. These ideas were implemented by Holroyd
and McClure (2015) in a 3-level, hierarchical reinforcement
learning (HRL) model of rodent behavior (HRL-ACC model).
Here a mid-level module associated with a caudal region of
ACC selects tasks for execution and, in line with the literature
on ACC involvement in effortful control, applies a control
signal that attenuates effort-related costs incurred by a low-
level action selection mechanism, ensuring that the task is
completed successfully. Likewise, a high-level module located
in rostral ACC selects the “meta-task” for execution and applies
a control signal over caudal ACC that attenuates effortful costs
incurred in task switching, facilitating shifts between different
task strategies. The control levels are regulated according to
tonic dopamine levels in cortex, which are assumed to code for
average reward rate. On this view, the role of ACC in foraging
relates to increased control by caudal ACC for exploiting a
current patch, vs. increased control by rostral ACC for switching
to alternative patches. Crucially, the model accounts for the
effects of ACC lesions on rodent behavior and is broadly
compatible with comparable observations in humans with ACC
lesions.

Although the HRL-ACC model implements some of the key
aspects of the proposal that ACC is responsible for selecting and
motivating the execution of extended behaviors (Holroyd and
Yeung, 2012), it does not directly account for neuroimaging and
single-cell evidence in ACC. To address this gap, Shahnazian and
Holroyd (2017) simulated the role of ACC in the production of
goal-directed action sequences using a recurrent neural network
(RNN) approach that had been previously used to simulate
the production of hierarchical action sequences (Botvinick and
Plaut, 2004). This RNN-ACC model predicts each successive
event in the sequence and, like the PRO (Alexander and
Brown, 2011) and RVPM (Silvetti et al., 2011) models, generates
prediction errors when the events are unexpected, as observed
in functional neuroimaging and EEG data (Botvinick et al,
2001; Alexander and Brown, 2010a; Wessel et al., 2012). Further,
unique to this model, the predictions are hypothesized to be
encoded as highly distributed representations across ensembles
of neurons in ACC, as observed in studies of non-human
animals (e.g., Ma et al., 2014a,b). Nevertheless, although this
model is inspired by the broader theoretical framework of the
HRL-ACC theory (Holroyd and Yeung, 2012), it has yet to be
integrated with the HRL-ACC model (Holroyd and McClure,
2015).

DISCUSSION

Modeling ACC function faces the challenge of accounting for
a multitude of empirical findings within a single coherent
framework. Although progress has been made over the last
two decades in explaining a wider array of empirical findings
associated with different experimental techniques (Verguts,
2017b), the debate about underlying computational principles
remains lively. We see several outstanding conceptual issues
that remain to be resolved, many of which lie at the crossroads
between predictive mechanisms and effortful control.

A first issue is that effortful control has been addressed
with dedicated mechanisms that are constrained in scope. For
example, the adaptive effort allocation model (Verguts et al., 2015)
does not account for ACC activity related to predictions and
prediction errors. Although the proposed mechanism could be
implemented with separate ACC units, with an RVPM or PRO-
like module computing prediction error signals and a boosting
module driving adaptive effort exertion, this potential integration
remains speculative. Conversely, we have recently proposed a
possible translation of the PRO model to the effort domain
(Vassena et al.,, in press). This model explains effort-related
effects in terms of outcome prediction and error signaling, where
required effort is considered as an outcome of the choice to
engage in the task. As such, the PRO model explains increased
ACC activity following a choice to engage in an effortful task as
deriving from the “surprise” of choosing a high-effort trial. The
model reconciles effort-related neuroimaging data in ACC with
the variety of findings already explained by the PRO model under
the unifying principles of prediction and prediction error (Jahn
et al., 2014, 2016).

The ACC-HRL theory is characterized by similar tensions
between different sources of evidence (Holroyd and Yeung,
2012). On the one hand, the ACC-HRL model accounts for
the effects of ACC damage on rodent behavior (Holroyd and
McClure, 2015) and is compatible with both neuroimaging data
related to effort and control, and electrophysiological evidence
of ACC reward prediction errors (Holroyd and Umemoto, 2016;
Umemoto et al., 2017). On the other hand, it does not explicitly
address the conflict and surprise signals commonly observed
in ACC, nor any ACC single-cell data in non-human animals.
Conversely, the ACC-RNN model accounts for surprise and
error signals while simultaneously describing single-cell activity
as arising from distributed representations of ensembles of
ACC cells while animals execute goal-directed action sequences
(Shahnazian and Holroyd, 2017). However, this architecture does
not fully exploit hierarchical representations, nor utilizes reward
signals for regulating control levels. A natural next step would be
to integrate these approaches in line with recent examples (e.g.,
Cooper et al., 2014), using a more biologically-realistic network
that incorporates finer temporal dynamics into the unit activity
(Sussillo, 2014).

A related issue concerns the neurobiological plausibility of
the proposed accounts across species. Some proposals are based
on (or at least compatible with) neurophysiological and lesion
findings in non-human primates and/or rodents, while others
are mainly based on human EEG or fMRI findings (see Table 1).
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A comprehensive account of ACC function should bridge
apparent inconsistencies across experimental modalities, linking
the indirect results of neuroimaging with single-neuron activity
(as attempted for example by the PRO, RVPM, and ACC-RNN
models).

Second, an important challenge in modeling ACC function
is to account not only for the monitoring processes in which
ACC is involved (such as conflict and error detection), but
also how these computations modulate subsequent behavior. A
recent proposal extended the PRO model in this direction (PRO-
Control, Brown and Alexander, 2017), suggesting how prediction
and error signals computed in ACC can serve as the basis for
proactive and reactive control. While the PRO-Control assigns
the same computations to ACC as in previous iterations of
the model (Alexander and Brown, 2011, 2014; Alexander et al.,
2015), it is able to account for additional behavioral and imaging
effects related to deploying control, including effects of foraging
value and choice difficulty (cf. the controversy mentioned above,
Kolling et al., 2016b; Shenhav et al., 2016). Another modeling
approach that may explain how ACC signals drive behavior
is the meta-learning perspective. For example, Verguts and
Notebaert (2008, 2009) proposed that control may emerge as
a result of Hebbian learning, while Khamassi et al. (2013)
proposed that ACC monitoring function determines learning
rate, thus informing exploration-exploitation trade-offs in other
brain regions.

A further challenge is to account not only for the function of
ACC during normal behavior, but also in circumstances in which
behavior and ACC function is impaired, as in the case of lesions
to ACC (e.g., Devinsky et al., 1995; Fellows and Farah, 2005;
Kennerley et al., 2006; Walton and Mars, 2007; Camille et al.,
2011; Tsuchida and Fellows, 2013) or in clinical disorders such as,
e.g., substance dependence, depression, or obsessive-compulsive
disorder (Rive et al., 2013; Gowin et al., 2014; Barch et al,,
2016). Initial work has attempted to link existing computational
accounts of ACC to behavioral dysfunction (Alexander et al.,
2015; Holroyd and Umemoto, 2016; Vassena et al., in press),
and additional efforts in this direction may further refine
understanding of the role of ACC during both normal and
abnormal behavior.

Finally, a larger objective is to develop theories that integrate
ACC function into the broader network of brain areas involved in
control and decision-making. While the interaction of ACC with
additional brain regions, including dorsolateral prefrontal cortex
(dIPFC) and basal ganglia, was incorporated into early models of
ACC (Botvinick et al., 2001; Holroyd and Coles, 2002; Kerns et al.,
2004), the nature of this interaction has remained mostly an issue
of secondary concern. Although the basal ganglia are recognized
as a hub for interaction of motor, cognitive and motivational
processes, modeling efforts to describe interactions between these
areas and ACC are surprisingly scarce (but see, e.g., Hikosaka
and Isoda, 2010; Cockburn and Frank, 2011). The ACC-HRL
theory takes a step in remediating this deficit by proposing how
ACC interacts with dorsolateral prefrontal cortex, orbitofrontal

cortex, the striatum, and other brain areas (Holroyd and Yeung,
2012; Holroyd and McClure, 2015; Holroyd and Umemoto,
2016). Likewise, the Hierarchical Error Representation model
(HER, Alexander and Brown, 2015) examines the interaction
of ACC and dIPFC through a hierarchical predictive coding
framework, which replicates the PRO model at hierarchical levels
that map onto a putative rostrocaudal gradient of abstraction
in prefrontal cortex (Badre and D’Esposito, 2007; Taren et al.,
2011; Nee and D’Esposito, 2016), and that sub-serve different
higher-order cognitive functions. The HER model explains the
function of large regions of PFC as primarily concerning the
computation, representation, and manipulation of quantities
derived from prediction error. Khamassi et al. (2011) have also
proposed a computational account that simulates cellular activity
in both ACC and LPFC, predicting that feedback-related signals
in ACC modulate exploration-exploitation trade-off in LPFC
during decision-making. This proposal implements dopamine
input to ACC not only during feedback-related reward prediction
errors, but also at the occurrence of any salient event, reconciling
previous proposals based on dopaminergic input (cf. Holroyd
and Coles, 2002, 2008) with neurophysiological evidence that
dopamine also responds to salient but non-rewarding events
(Horvitz, 2000).

These modeling attempts highlight important objectives for
future models of ACC. As a first goal, existing ACC models
with relatively wide explanatory power should be extended
to other domains, especially effortful control, that heretofore
have been the target of more constrained models. As a
second goal, models of ACC should be integrated into more
comprehensive accounts that explain how the ACC interacts
with other brain regions. The benefits of such an approach
are two-fold. First, the wider scope of empirical data predicted
by the models would provide means for their falsification.
In much the same way that the failure to observe single
neurons encoding conflict signals paved the way for new
models that could account for single-unit activity as well as
for the activity of neural ensembles, the possible failure of
current models to account for effortful decision-making may
point the direction toward even more comprehensive accounts.
Second, in the event that existing models can be extended to
account for motivational effects in ACC, they provide a basis
for understanding interactions with additional brain regions,
providing insights into the function of the brain beyond cingulate
cortex alone.
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