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The “therapeutic chelation” approach to treating Alzheimer’s disease (AD) evolved from

the metals hypothesis, with the premise that small molecules can be designed to prevent

transition metal-induced amyloid deposition and oxidative stress within the AD brain.

Over more than 20 years, countless in vitro studies have been devoted to characterizing

metal binding, its effect on Aβ aggregation, ROS production, and in vitro toxicity. Despite

a lack of evidence for any clinical benefit, the conjecture that therapeutic chelation is

an effective approach for treating AD remains widespread. Here, the author plays the

devil’s advocate, questioning the experimental evidence, the dogma, and the value of

therapeutic chelation, with a major focus on copper ions.
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INTRODUCTION

The “amyloid cascade hypothesis” of Alzheimer’s disease (AD) proposes disease is caused by
accumulation of the β-amyloid (Aβ) peptide (typically up to 42 residues in length) that is
proteolytically derived from the amyloid precursor protein (APP; Hardy andHiggins, 1992;Masters
and Selkoe, 2012). Consistent with the structure of the plaque core and congophilic angiopathy
observed in post-mortem AD brain, synthetic Aβ1−x (x = 28–43) peptides have a propensity to
adopt β-sheet structure in aqueous solution in the pH range 4–7 (Barrow and Zagorski, 1991).
Aβ1−x elicits both neurotrophic and neurotoxic actions (Whitson et al., 1989; Yankner et al.,
1990; Collins et al., 2015). Despite some potential experimental artifacts (Watt et al., 2013; Welzel
et al., 2014) and some good arguments that the link between Aβ and AD is indirect (Herrup,
2015), soluble Aβ oligomers are widely viewed as toxic intermediates responsible for AD pathology
(McLean et al., 1999; Selkoe, 2008) and sporadic AD has been associated with an inefficient
clearance of Aβ from the central nervous system (Mawuenyega et al., 2010).

The “metals hypothesis of AD” argues that accumulation of Aβ is insufficient to explain the onset
of AD and that dysregulation of the brain’s intrinsic supply of metal ions, notably copper, zinc, and
iron, creates a “rogue” form of Aβ that promotes aggregation and, in the case of copper and iron,
generates reactive oxygen species (ROS) that drive disease (Bush et al., 1994a; Bush, 2000, 2003,
2008; Bush and Tanzi, 2008; Duce et al., 2011).

From the perspective of the bioinorganic chemist, the past decade has led to a reasonable
consensus regarding the coordination chemistry, thermodynamic stability and in vitromechanism
of ROS production by copper and Aβ (Drew and Barnham, 2011; Faller et al., 2014; Reybier et al.,
2016). Despite this detailed knowledge, no therapeutic has been designed that specifically takes
advantage of this structural information, although a large number of chelators and oligopeptides
have been proposed (reviewed in Telpoukhovskaia and Orvig, 2013). Perhaps, then, it is not
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Drew Abandoning Therapeutic Chelation in AD

surprising that clinical trials of metal chelators have suffered
the same set-backs as anti-amyloid therapies. While this may
reflect an inappropriate choice of chelator, it also raises the
question as to the validity of the underlying hypothesis, especially
given the number of controversial findings over the past 20
years. Some examples include the assertions that: Aβ possesses a
superoxide dismutase-like di-copper binding site (Curtain et al.,
2001; Tickler et al., 2005; Smith et al., 2006); Aβ generates ROS
in the absence of metal ions (Hensley et al., 1994; Turnbull
et al., 2001); Met35 reduces Cu2+(Aβ) to an air-stable Cu+(Aβ)
complex (Barnham et al., 2003a; Ciccotosto et al., 2004); Cu2+

cannot displace Zn2+ from Aβ1−40 (Bush et al., 1994b); the
affinity of Aβ1−42 for Cu2+ is 10 attomolar, seven orders of
magnitude higher than that of Aβ1−40 (Atwood et al., 2000);
rat and mouse Aβ bind Cu2+ much less avidly than human Aβ

(Bush et al., 1994a; Atwood et al., 1998; Eury et al., 2011); Aβ

does not aggregate in the absence of metal ions (Atwood et al.,
2000; Bush and Tanzi, 2002); Aβ plaques are “galvanized” (Bush
and Tanzi, 2002);1 and that a 22-residue domain within APP has
biological ferroxidase activity modulated by Zn2+ binding (Duce
et al., 2010; Ebrahimi et al., 2012, 2013).

The above examples aside, there has also been a change in
focus in recent years from metal ion interaction with Aβ as
a driver of aggregation and toxicity to a more general picture
of global metal ion dysregulation, in which direct metal-Aβ

interactions play a secondary or even inconsequential role (White
et al., 2006; James et al., 2012; Singh et al., 2013). In other
instances, there has been a synthesis of the two schools of
thought, whereby an accumulation of metal ions in amyloid
plaques is proposed to be responsible for the loss of normal metal
ion balance (Hung et al., 2011; Ceccom et al., 2012; Roberts
et al., 2012; Ayton et al., 2013). With respect to copper ions,
some propose that AD is a disease of dietary copper deficiency
(Klevay, 2008), while others propose it is caused by excess
inorganic copper in the diet that can be treated using zinc
therapy (Hoogenraad, 2011; Brewer, 2014) or a low-copper diet
(Squitti et al., 2014b). Soluble, monomeric Aβ1−x has even been
proposed to possess a normal function in metal export, whereby
metal-enrichment within plaques is associated with a loss of
function (Kepp, 2016). Other potential physiological functions
of Aβ1−40/42 have been proposed, as an antimicrobial peptide
(Soscia et al., 2010; Kumar et al., 2016) and as a cerebrovascular
sealant (Atwood et al., 2003), although any role for copper ions
in these contexts remains to be established.

IS BIOLOGICAL Aβ METAL BINDING

FEASIBLE?

Four common arguments made in favor of the biological/disease
relevance of metal-Aβ interactions are (i) the release of “high”
concentrations of copper and zinc ions in the synaptic cleft
upon depolarization, 15–250µM in the case copper (Kardos
et al., 1989; Hartter and Barnea, 1998); (ii) Zn2+, Cu2+, and

1Whilst making for a memorable title, “The galvanization of β-amyloid...”, implies

a non-physiological two-electron reduction of Zn2+(aq) to Zn(s) (E0 = −0.76 V

vs. SHE).

Fe3+-induced aggregation of synthetic Aβ (Atwood et al., 1998;
Cherny et al., 1999), (iii) elevated concentrations of Aβ within
the AD cortex as compared with unaffected individuals (Lue
et al., 1999); and (iv) a “high” affinity of human Aβ for Cu2+.
The apparent dissociation constant of Aβ1−x (x ≥ 16) at pH 7 is
∼0.1 nM (Alies et al., 2013; Young et al., 2014) and thus better
described as “moderate,” since other metal-binding species with
comparable (or higher) capacity to bind Cu2+ are also present
in the central nervous system (CNS). For example, glutamate
also reaches transiently high local concentration during synaptic
signaling (Danbolt, 2001), making it competitive at relevant
physiological concentrations (Frączyk et al., 2016), while other
neurotransmitters such as histamine (HA) have even higher Cu2+

affinity than glutamate (Dawson et al., 1990). Aside from one
study concluding Aβ1−42 oligomers have an enhanced affinity
(Kd < 3 pM in HEPES pH 7.4; Jiang et al., 2013) that enables
them to compete with human serum albumin (HSA), the latter
has also been proposed as a major competitor with Aβ for
copper ions within the CNS (Rózga and Bal, 2010), effectively
competing for 99.9% of Cu2+ (Perrone et al., 2010) and binding
Cu+ stronger than Aβ (Lu et al., 2015). Metallothioneins (MTs)
are likely competitors for extracellular Cu2+ in the CNS (Meloni
et al., 2008; Chung et al., 2010). Moreover, the endoproteolytic
cleavage product Aβ4−x, which is also present in healthy cortex
(see below), has very high affinity (Mital et al., 2015) and can even
retain Cu2+ in competition with MTs (Wezynfeld et al., 2016).

The pecking order, even among this limited selection of
Cu2+ binding species, is therefore likely Aβ4−x ≥ MTs > HSA
> Glu, HA > Aβ1−x. To explain why Aβ1−x interacts with
synaptic Cu2+ only in disease, one must therefore argue that
there exists an underlying imbalance that creates abnormalities
in the regulation of metal-binding amino acids, peptides and
proteins. For example, the concept of the “labile copper pool”
has been introduced (James et al., 2012). This places metal-Aβ1−x

interactions downstream of an underlying pathology, making
this modest-affinity, non-specific binding non-central to disease
pathogenesis. The non-specificity argues that a range of other
proteins and peptides could also adopt unwanted, modest-affinity
(and potentially redox-active) Cu2+ coordination, making the
strong focus on Aβ1−x unwarranted.

In vitro evidence for the ability of Aβ1−x to generate ROS in
the presence of Cu2+ and biological reducing agents was quickly
established (Huang et al., 1999; Opazo et al., 2002) although
continues to be debated (Mayes et al., 2014; Pedersen et al., 2016;
Reybier et al., 2016), while the underlying coordination chemistry
has largely been unraveled (Drew and Barnham, 2011; Faller et al.,
2014). A greater degree of H2O2 production was reported for
Cu2+ and Fe3+ in the presence of human Aβ1−x vs. rat/mouse
Aβ1−x (Huang et al., 1999; Barnham et al., 2003a), which was
concluded to be consistent with an absence of amyloid pathology
in these animals. Although the latter is a common argument
made in support of the metals hypothesis (Bush et al., 1994b;
Atwood et al., 1998; Huang et al., 1999; Barnham et al., 2003a),
aged rats can exhibit neuritic plaques (Vaughan and Peters,
1981) and a number of AD-related functional, morphological
and behavioral changes are observed in wild type rats and mice
if clearance of murine Aβ is impaired by the pharmacological
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inhibition or genetic ablation of Aβ degrading/clearing enzymes
such as neprilysin (NEP) and ATP-binding cassette C1 (Iwata
et al., 2000; Madani et al., 2006; Krohn et al., 2015). Since human
and murine Aβ adopt rather different Cu2+ coordination (Eury
et al., 2011), this argues against a specific role for direct Cu-
Aβ interaction and instead reinforces the importance of Aβ

clearance.
While exogenous application of Aβ to cultured cells appears

capable of causing oxidative damage that can be prevented
by metal chelators or antioxidants (Behl et al., 1992, 1994;
Manelli and Puttfarcken, 1995; Rosales-Corral et al., 2012),
distinguishing direct metal-Aβ redox cycling from downstream
oxidative damage and cell dysfunction is not straightforward.
Similar caveats apply to reports that metal chelators inhibit β-
amyloid accumulation in transgenic mice (Cherny et al., 1999),
since the chelator may bind metal ions released downstream of
cellular events triggered by the apo-peptide. To “potentiate” the
toxicity of Aβ, it is common to co-administer Cu2+ with Aβ to
cultured cells (Smith et al., 2006; Sarell et al., 2010), frequently at
relatively high steady-state concentrations up to 40µM (Meloni
et al., 2008; Chung et al., 2010; Perrone et al., 2010). Despite the
corresponding Cu2+ alone being generally tolerable in such cell
culture systems, a “double insult” cannot be ruled out, whereby
Cu2+ compounds upstream stress caused by Aβ in isolation. The
non-specific nature of this mechanism of “potentiating” toxicity
of Aβ is demonstrated by the fact that similar results can be
achieved by co-administering Fe3+ and Aβ to cultured neurons
(Schubert and Chevion, 1995; Rottkamp et al., 2001), yet Aβ has
an extremely low affinity for Fe3+ (Valensin et al., 2011), making
Fe(Aβ) redox cycling unlikely.

In order to demonstrate direct binding of Cu2+ to Aβ within
senile plaque cores, brain amyloid extractions (Selkoe et al., 1986;
DeWitt et al., 1998) have been subjected to Raman spectroscopic
analysis (Dong et al., 2003). Using prior Raman investigations
of metal binding to synthetic Aβ (Miura et al., 2000) as a guide,
Dong et al. (2003) concluded that Cu2+ (and Zn2+) were directly
bound to Aβ in plaques, based upon intensity changes assigned
to metal ion coordination to His side chains. Whilst highly
suggestive of direct Cu2+-Aβ binding, the actual composition
of those senile plaque extracts is not known, nor is the true
origin of metal ions they contain. Purity of amyloid cores was
estimated as >90% based upon Congo red birefringence (Dong
et al., 2003), with further evidence of purity including the inability
to observe a Raman band due to Trp (Aβ contains no Trp).
Given the possibility of up to 10% impurities and the fact that
Trp is the lowest frequency amino acid observed in vertebrates,
one simple explanation for the Cu2+-His Raman bands is that
they derive from non-amyloid components. Regardless of the
limitations in final purity by this method (Rostagno and Ghiso,
2009), disruption of native metal binding sites, for example by
treatment of crude brain homogenates by denaturation at 97◦C
and 3mM sodium azide (DeWitt et al., 1998; Dong et al., 2003),
may still lead to the release of metal ions from themany hundreds
of proteins that are also found within senile plaques (Drummond
et al., 2017), ultimately resulting in adventitious binding to Aβ

prior to pelleting and subsequent fractionation.
As mentioned above, N-truncation of Aβ can greatly enhance

its Cu2+ binding affinity. Following the seminal sequencing of

brain amyloid (Glenner and Wong, 1984), subsequent studies
identified a large degree of heterogeneity at the N-terminus,
with a predominance of the Aβ4−x isoform in amyloid derived
from subjects with AD, Down Syndrome and cerebral amyloid
angiopathy (Masters et al., 1985a,b). Nevertheless, most effort has
been invested inmeasuring andmodulating levels of Aβ1−40/42 in
the CNS as AD biomarkers (Blennow et al., 2015) and therapies
(Wisniewski and Goñi, 2014; Ingelsson and Lannfelt, 2016),
respectively. With hindsight, the field’s dismissal of the “ragged”
N-termini appears to stem from a perception that this was, at
least for Aβ4−x, an artifact of pepsin digestion during the plaque
extraction (Masters and Selkoe, 2012). A number of observations
argue against this, however; Aβ4−x is also detected in collagenase
digests of senile plaque cores (Miller et al., 1993), in undigested
amyloid extractions (Näslund et al., 1994; Sergeant et al., 2003),
and in Aβ immunoprecipitated from post mortem brain (Lewis
et al., 2006; Portelius et al., 2010). Since the initial report of>60%
Aβ4−x in the amyloid plaque cores within the cortex of selected
AD brain samples (Masters et al., 1985b), others surveyed Aβ4−x

levels in larger cohorts. Näslund et al. (1994) reported lower
levels of Aβ4−x as compared with Aβ1−x and pyrogluamate
Aβ11−x, but Aβ4−x remained consistently detected in both AD
and unaffected individuals. Sergeant et al. (2003) also concluded
amino-truncated isoforms represented more than 60% of all Aβ

species in advanced AD and in non-demented individuals with
amyloid, with comparable Aβ1−x and Aβ4−x levels. Lewis et al.
(2006) reported that Aβ4−42 was the most dominant peak inmass
spectrometry analyses of AD and vascular dementia samples.
Mass spectrometry analyses of Portelius et al. (2010) supported
this conclusion and further reported that Aβ4−42 and Aβ1−42 are
dominant isoforms in the hippocampus and cortex of sporadic
AD patients, as well as in the cortex of healthy controls. In fact,
cortical Aβ4−42 levels are comparable in AD and healthy control
and are much greater in the hippocampus in AD vs. control
(Portelius et al., 2010).

Of the Zn-dependent endopeptidases so far identified as Aβ

degrading enzymes (Saido and Leissring, 2012; Jha et al., 2015),
neprilysin (NEP; Howell et al., 1995; Kanemitsu et al., 2003)
and insulin degrading enzyme (IDE; Morelli et al., 2004; Grasso
et al., 2011) appear capable of cleaving the Glu3-Phe4 bond
to generate Aβ4−x in vitro. An inverse correlation has been
established between NEP levels and/or activity with brain Aβ

levels in aging (Russo et al., 2005) and AD (Yasojima et al., 2001;
Mohajeri et al., 2002; Hellström-Lindahl et al., 2008; Zhou et al.,
2013). The apparent increase of Aβ4−42 in the hippocampus of
AD subjects might be attributed to reduced endoproteolysis at C-
terminal locations within Aβ, leading to aggregates of Aβ1−x in
which only the amino-terminal Glu3-Phe4 bond is accessible to
NEP/IDE.

Synthetic Aβ4−40 and Aβ4−42 were concluded to be as toxic
to cultured primary neurons as Aβ1−42 (Bouter et al., 2013) and
mice subjected to intracerebroventricular injection of Aβ4−42

exhibited memory deficits that could be rescued by passive
immunotherapy using antibodies targeting the N-terminus of
Aβ4−x (Antonios et al., 2015). Transgenic animals expressing
human APP do not accumulate the N-truncated Aβ found in
human brain (Kalback et al., 2002; Schieb et al., 2011). Transgenic
mice specifically expressing and releasing extracellular Aβ4−42

Frontiers in Neuroscience | www.frontiersin.org 3 June 2017 | Volume 11 | Article 317

http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Neuroscience/archive


Drew Abandoning Therapeutic Chelation in AD

displayed spatial memory deficits and marked hippocampal
neuron loss. However, both of the in vivo models of Aβ4−42

toxicity bypass the physiological pathways of Aβ4−42 production
(i.e., the Aβ4−42 is not endoproteolytically cleaved from APP-
derived human Aβ1−42). Thus, the models only represent a
pathological state induced by overproduction of Aβ4−42 and do
not permit the study of any possible function Aβ4−x.

The reports of Aβ4−x as a major isoform in the AD brain
and in the cortex of unaffected individuals have some profound
consequences for the metals hypothesis. The N-terminal FRH–
sequence of Aβ4−x endows it with the amino-terminal Cu and
Ni (ATCUN) motif that creates a Cu2+ binding site with an
affinity (Kd = 30 fM at pH 7.4 was measured for Aβ4−16) that is
comparable to functional cuproproteins (Mital et al., 2015). This
makes it more stable than Cu(Aβ1−x) by more than three orders
of magnitude and around 100 times higher than the reported
enhancement of Cu2+ binding affinity by Aβ1−42 aggregates
(Kd < 3 pM; Jiang et al., 2013). Moreover, Cu2+ coordinated to
the high affinity binding site of Aβ4−x does not appear to undergo
any physiologically accessible Cu+/Cu2+ redox cycle (Mital et al.,
2015; Wiloch et al., 2016). These properties suggest a functional
role for Aβ4−x that is arguably more plausible than any other
proposed for Aβ1−x and copper. With this knowledge in hand,
one can look to other ATCUN motifs within the Aβ sequence,
since these should also possess high affinity Cu2+ binding sites.
The Aβ11−x fragment, created by β′ cleavage, contains His in
the third position that, if left unmodified, could bind Cu2+

with comparable affinity to Aβ4−x (Barritt and Viles, 2015). It
will probably not do so in vivo, however, since its N-terminus
is cyclized to the pyroglutamate form (Näslund et al., 1994)
that destroys the ATCUN motif. Another ATCUN sequence
is present in Aβ12−x, which was identified in neurofibrillary
amyloid (Masters et al., 1985a), but has since received little
attention.

In summary, Raman spectroscopic evidence for Cu2+-His
coordination within senile plaque extracts is highly suggestive
of direct Cu2+-Aβ binding, although further evidence for the
purity of the isolated senile plaque cores and the origin of
metal ions is warranted. Cell culture models suggest that co-
administration of copper ions enhances toxicity of exogenous,
synthetic Aβ1−40/42, yet it remains inconclusive whether this
results from direct copper-Aβ1−x binding and/or whether the
conditions employed are representative of those at a synapse.
The Aβ4−x isoform produced by endoproteolytic processing of
Aβ1−x presents the possibility for a 3,000-fold higher affinity
Cu2+ binding as compared with Aβ1−x and in amanner that does
not produce ROS.

IS THERE MISLOCALIZED COPPER IN THE

AD BRAIN?

The meta-analysis conducted by Schrag et al. (2011) identified
a citation bias in the reporting of metal levels in the brain in
AD. Despite the large heterogeneity in the published data, they
noted that “this bias was particularly prominent among narrative
review articles” and further identified problems with a number

of studies. In particular, they noted the report by Markesbery
and co-workers (Lovell et al., 1998) was discordant with other
studies yet “is the most cited paper on the subject of copper in
AD and appears to be the source for numerous articles reporting
that copper levels are (several fold) increased in AD” (Schrag
et al., 2011). It was also discordant with Markesbery and co-
workers’ earlier study that reported a significant decrease in
copper in AD hippocampus and amygdala (Deibel et al., 1996).
Upon exclusion of all studies with methodological shortcomings,
the meta-analysis of Schrag et al. (2011) indicated that there
was no change in neocortical iron and a significant decrease in
neocortical copper in AD as compared with age-matched control
tissue.

Since the influential publication of Lovell et al. (1998),
contrasting conclusions have been drawn regarding the
relationship between copper and AD. Singh et al. (2013)
demonstrated a relationship between increased copper levels in
brain capillaries and reduced Aβ clearance across the blood–
brain barrier (BBB) in normal mice. An X-ray fluorescence
(XRF) microscopy study of tissue from two neuropathologically
confirmed cases of AD reported “hot-spots” with colocalization
of copper and zinc with regions of thioflavin-reactive amyloid
(Miller et al., 2006). James et al. (2012) “found no difference
in the Cu content of AD samples relative to healthy tissues,”
but instead “an increase in the labile pool” of copper within
the AD cortex, which they attributed to “a global distortion
of brain Cu metabolism in AD, distinct from the formation
of insoluble Cu–Aβ” Increased labile copper outside the CNS
has also been reported (Squitti et al., 2014a) with increased
concentrations of labile (non-ceruoplasmin) Cu2+ in serum as
a predictor of transitioning from mild cognitive impairment
to AD (Squitti, 2014). Rembach et al. (2013) concluded that
the previously reported decrease in neocortical copper in AD
(Schrag et al., 2011) could be attributed to a reduction in content
harbored within soluble extractable tissue from AD frontal
cortex.

Animal models have not provided any clear evidence for
copper imbalance. The copper in plaques of AD transgenic mice,
quantified by XRF microscopy, appears consistent with that of
the surrounding neuropil after accounting for local tissue density
(James et al., 2017). Leskovjan et al. (2009) argued that failure to
observe increased levels of Cu in plaques within APP transgenic
mouse models of AD is due to inadequate time for plaques
to “sink” this metal within their shorter lifespan and that this
is consistent with the absence of neurodegeneration in those
models (Bourassa and Miller, 2012). While there appears to be
a relationship between copper and APP, the variability between
transgenic animal models expressing human APP likely makes
them unsuitable for elucidating the association (White et al.,
1999; Maynard et al., 2002; Bayer and Multhaup, 2005; Wang
et al., 2012; Singh et al., 2013) and similar limitations may also
apply to copper and Aβ.

While Szabo et al. (2015) measured no difference in copper
levels in the frontal cortex of control and AD subjects, the
authors did not rule out the possibility of differences in its
cellular localization and chemical speciation. In a similar vein,
Bush and coworkers have asserted that “metals both accumulate
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in microscopic proteinopathies, and can be deficient in cells or
cellular compartments. Therefore, bulk measurement of metal
content in brain tissue samples reveal only the “tip of the iceberg,”
with most of the important changes occurring on a microscopic
and biochemical level” (Barnham and Bush, 2014). They further
argue that “Zn and Cu are sequestered into plaques, whereas
intraneurally these metals are depleted” (Ayton et al., 2013).

The evidence to support an intracellular depletion of
copper and zinc in AD remains unclear, although the genesis
for this idea appears to have emanated from (i) studies
demonstrating that APP overexpression causes copper efflux
and intracellular depletion (Treiber et al., 2004; Bayer and
Multhaup, 2005), and (ii) the large reported ionophore
action the 8-hydroxyquinoline (8HQ)-based compounds 5-
chloro-7-iodo-8-hydroxyquinoline (CQ; Treiber et al., 2004;
White et al., 2006; Crouch et al., 2009), and 5,7-dichloro-2-
[(dimethylamino)methyl]-8-hydroxyquinoline (PBT2), (Adlard
et al., 2008, 2011; Crouch et al., 2009, 2011), resulting in dramatic
increases in intracellular copper and zinc. In yeast models,
an approximate 100-fold increase in intracellular copper levels
was reported in response to combined CQ/Cu2+ treatment,
as compared with a ∼10-fold increase following exogenous
addition of Cu2+ alone (Treiber et al., 2004). These observations
were recapitulated in other cell models (CHO and N2a cells
expressing APP), again with a 100-fold increase in intracellular
copper concentration as compared with basal levels when 10
µMCu2+/CQ was added to culture media, and 10-fold increases
in zinc and iron in response to exogenous application of their
respective CQ complexes (White et al., 2006).

Given the magnitude of the reported ionophore effect, one
might expect a 100-fold increase in intracellular copper levels
to place significant stress on cultured cells, especially since
other significant cellular events such as neuronal differentiation
result in only a 2- to 3-fold increase in copper (no change in
iron, manganese, zinc; Ogra et al., 2016). In studies of CQ,
the authors concluded there was “no evidence of increased cell
death after 6 h of exposure to CQ and metals” (White et al.,
2006), although no dose response curve monitoring functional
changes (e.g., cell metabolism, caspase activation, direct measures
of ROS production) was presented in order to substantiate
this. Subsequent studies using the SH-SY5Y neuroblastoma cell
line again demonstrated dramatic metal influx in response to
treatment with CQ (Crouch et al., 2009, 2011) and also PBT2
(Crouch et al., 2011), an effect that also resulted in greater
phosphorylated GSK-3β (pGSK3β). No dose response curves
were provided in either of these studies to determine whether
the applied concentrations of the 8HQs were toxic. Moreover,
there is no reason to assume that basal intracellular metal levels
in these cell lines represent a phenotype of copper depletion,
since metal levels were reported only as a percentage increase
relative to untreated cells (White et al., 2006; Crouch et al.,
2009, 2011). An increase in pGSK3β following treatment with
this compound may therefore be part of an apoptotic signaling
cascade rather than promoting cell survival (Jacobs et al., 2012).
Indeed, studies using a homologous terdentate 8HQ resulted in a
significant increase in pGSK 3β only at cytotoxic concentrations
(Haigh et al., 2016). In this regard, it is noteworthy that Adlard

et al. (2011) did perform a dose response and used 100-fold
lower PBT2 concentrations, in which case no signaling cascade
involving GSK3 phosphorylation was reported.

In summary, there remains a pervasive belief that copper
levels are many-fold higher in AD. Some authors have
replaced this picture with one incorporating an increase of
extracellular/intracellular copper ratio, although this appears to
be motivated by reports of ionophore action of certain chelators,
coupled with an underlying presumption that they are effective
treatments for AD.

IS THERAPEUTIC CHELATION

EFFICACIOUS?

A large number of metal chelators have been proposed as
therapeutics for AD (e.g., Telpoukhovskaia and Orvig, 2013;
Robert et al., 2015), while only a handful have been clinically
trialed. The most widely promoted therapeutic chelators for AD
therapy are CQ (PBT1) and PBT2, both of which are based
upon old chemistry with diverse applications (Gholz and Arons,
1964; Stevenson and Freiser, 1967; Rajagopalan et al., 2001;
Ding et al., 2005). Terdendate ligands (L) such as PBT2 can
bind in a 1:1 (CuL) and a distorted 5-coordinate 1:2 (CuL2)
form (Kenche et al., 2013), although the predominant Cu2+-
bound form of this class of terdentate 8HQ in a biological
context is predicted to be a ternary (mixed-ligand)metal complex
involving His side chains of proteins and peptides (Kenche
et al., 2013). While CuL and CuL2 are not capable of generating
hydroxyl radicals in the presence of the biological reductant
such as ascorbate, the dominant ternary metal complexes can
produce as many hydroxyl radicals as Cu(Aβ1−x) in vitro
(Mital et al., 2016) and ROS production can be observed
following addition of such 8HQs to neural stem cell cultures
(Haigh et al., 2016). These observations contrast with the
founding principle of therapeutic chelation (Barnham and Bush,
2014).

To distinguish bulk chelation therapy, generally associated
with systemic removal of heavy metal toxins from the
body, therapeutic chelators have been re-branded as “metal-
protein attenuating compounds (MPACs),” “ionophores,” and
“metallochaperones.” The use of “MPAC” was popular due to
the belief that CQ and PBT2 disaggregated Aβ plaques loaded
with Cu2+ and Zn2+ (Cherny et al., 1999; Lannfelt et al., 2008).
When large cellular metal uptake was reported in vitro, the term
“ionophore” was applied (Treiber et al., 2004; White et al., 2006;
Adlard et al., 2008, 2011), while the term “metallochaperone”
now tends to be used most often even though the fate of
the ligand remains unknown. It is possible 8HQs behave as
carrier ionophores within the hydrophobic lipid environment
of various cellular membranes, that copper is not released at
all from 8HQ ligands once localized to a lipid bilayer, and that
8HQs interfere with native metal binding sites of key regulatory
enzymes (Martirosyan et al., 2006; King et al., 2011; Kawamura
et al., 2014) due to ternary complex formation.

Studies in mouse models of AD claimed some promise of
therapeutic benefit using 8HQ therapeutic chelators (Cherny
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et al., 2001; Adlard et al., 2008, 2011). Similar to more
conventional therapies targeting Aβ, however, the results of
therapeutic chelation have been equally disappointing when
translated to human clinical trials. As noted by Relkin following
the publication of the results from the first phase IIa trial of PBT2
(Relkin, 2008): “The success or failure of PBT2 is predicated on
the validity of two controversial hypotheses of AD pathogenesis.
The first is the amyloid hypothesis... [and the] second, and
arguably more controversial hypothesis, relates to the role of
metal ions in AD. Because many factors affect the accumulation
of Aβ, whether the attenuation of the interactions of metal ions
with Aβ will be sufficient to alter the course of AD is uncertain.”
Previous trials of therapeutic chelation using D-penicillamine
provided no evidence of altering clinical progression and was
terminated early due to adverse events, leading some to question
the scientific rationale for pursuing therapeutic chelation with
8HQs (Squitti et al., 2002). Indeed, independent assessments
of the human clinical trials using 8HQs repeatedly concluded
between 2006 through to 2014 that there “is no evidence that
MPACs (PBT1 or PBT2) are of benefit in Alzheimer’s dementia”
(Jenagaratnam and McShane, 2006; Sampson et al., 2008, 2012,
2014).

Despite the above cautions, the conjecture that 8HQs were
effective in treating AD has been farmore prevalent. For example,
a post-hoc analysis of the 2008 phase IIa trial stated in its title
that “PBT2 Rapidly Improves Cognition in Alzheimer’s Disease
(Faux et al., 2010),” although it appears this claim pertains to
earlier transgenic animal studies rather than the clinical trial in
question. In 2013, it was claimed that “clinical trials targeting
metal interactions with Aβ have all shown benefit for patients”
(Ayton et al., 2013), and even after the release of findings from a
repeat phase II trial in April 2014,2 some researchers were slow
to abandon the mantra that CQ and PBT2 have had “positive
clinical outcomes” (Barnham and Bush, 2014) and “significant
positive effects on cognition” (Ryan et al., 2015). This most recent
trial did not meet its primary endpoint (a reduction of amyloid
burden as compared with placebo), echoing previous warnings
about “plaques not being the optimal marker of therapeutic
success” (Gouras and Beal, 2001). Notwithstanding, all secondary
endpoints other than safety and tolerability were also missed (no
change in cognition, neuronal function, brain volume or patient
function). Tetradentate 8HQs with very high Cu2+ affinity have
been proposed as alternatives to bi- and terdendtate 8HQs. In
non-transgenic mice subjected to intracranial injection of human
Aβ, both CQ and a tetradentate 8HQ (apparent Kd = 1.26 ×

10−18 M for Cu2+ at pH 7.4) were shown to reverse a loss of
contextual fear conditioning which was reasoned to result from
the probable extraction of Cu2+ from the injected Aβ and its
“return to the normal circulation of copper ions” (Ceccom et al.,
2012). Tetradentate 8HQs have not progressed to clinical trials.

In summary, there has been a bias toward reporting outcomes
of clinical trials of therapeutic copper chelators as positive and
beneficial for patients, which drives the continued screening of

2www.alzforum.org/news/research-news/pbt2-takes-dive-phase-2-alzheimers-trial

(1 April 2014).

new chelators in spite of well-defined targets for metal acquisition
and release in AD.

CONCLUDING REMARKS

Therapeutic chelation in its original formulation aimed to
deliver a ligand to the CNS in order to prevent copper-induced
misfolding and ROS production by Aβ1−x, thereby reducing
amyloid deposition and oxidative stress within the AD brain.
The concept that metal ion binding to Aβ is responsible for
potentiating its toxicity has led to hundreds of in vitro studies
devoted to investigating the nature of this binding interaction, the
mechanism of ROS production and the effects on Aβ aggregation.
These studies continue unabated, despite convincing in vivo
evidence for a direct copper-Aβ interaction or other specific
targets for therapeutic chelators, which have so far failed to
modify disease outcomes.

The variability in experimental data and their interpretation
pertaining to copper speciation and localization has transformed
what began as a well-defined objective of inhibiting metal-
Aβ interactions into an ill-defined target for therapeutic
intervention. A global distortion of copper metabolism in
the form of a reduction in copper binding affinity (greater
lability) will affect all copper-binding proteins. Hence, it
is not clear how the general movement of metal ions,
for example from extracellular to intracellular location, will
address the underlying cause of the proposed imbalance.
Recent first principles calculations taking into account the
stochastic nature of copper-Aβ interactions, transient metal
release and reuptake, and the finite volume of a typical
synapse, also predict that if soluble Aβ oligomers are indeed
toxic and Cu2+-inducible, then “a partial Cu(II) depletion [by
therapeutic chelation] might actually accelerate rather than
eliminate the neurotoxic Aβ dimer formation” (Goch and Bal,
2017).

If reports about enrichment of amyloid plaques with Cu2+ can
be substantiated, then the very high Cu2+ affinity of the abundant
Aβ4−x isoform may provide a logical interpretation for such
enrichment, since it has 3,000-fold higher affinity than Aβ1−x

isoforms. One could argue hippocampal Aβ4−42 contributes to
AD due to the possibility this isoform can accumulate Cu2+,
although Cu(Aβ4−42) does not appear capable of generating
ROS. It is now established that endopeptidases such as NEP
and IDE can hydrolyse the Glu3-Phe4 bond to generate Aβ4−x

and there is a clear inverse correlation between in vivo NEP
activity/levels and AD. In general agreement with an amyloid
cascade hypothesis, a decline or impairment of Aβ-clearance
mechanisms in age or AD may result in accumulation of Aβ1−42,
leaving only the far N-terminus accessible for cleavage yielding
detectable post-mortem levels of Aβ4−42 and increased levels
of this peptide in AD hippocampus. Alternatively, if Aβ4−42 or
shorter, soluble and transient Aβ4−x proteolytic fragments have a
functional role in copper homeostasis, any Cu2+ imbalance that
might exist in AD or during aging could be associated with a
downstream loss of function rather than a gain of toxic function.
From this perspective, immunization strategies targeting both
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Aβ1–x, and especially its N-truncated isoform (Bayer andWirths,
2014; Antonios et al., 2015), may perturb such putative function.
Considering the relative affinities of Aβ4−x vs. Aβ1−x and that
APP was proposed to be a Cu chaperone/transporter despite a
modest affinity (apparent Kd ∼ 10 nM at pH 7) copper binding
domain (Barnham et al., 2003b; Treiber et al., 2004; Kong et al.,
2008), a comparable role for Aβ4−x is not unreasonable. While
in vivo relevance remains speculative, the irony with respect to
the metals hypothesis is that the brain might administer its own
therapeutic chelator in the course of the normal catabolism of
Aβ1−x, and thus restoration of endoproteolytic processing could
also restore copper homeostasis.
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