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An ongoing challenge in neuromorphic computing is to devise general and

computationally efficient models of inference and learning which are compatible with the

spatial and temporal constraints of the brain. One increasingly popular and successful

approach is to take inspiration from inference and learning algorithms used in deep

neural networks. However, the workhorse of deep learning, the gradient descent Gradient

Back Propagation (BP) rule, often relies on the immediate availability of network-wide

information stored with high-precision memory during learning, and precise operations

that are difficult to realize in neuromorphic hardware. Remarkably, recent work showed

that exact backpropagated gradients are not essential for learning deep representations.

Building on these results, we demonstrate an event-driven random BP (eRBP) rule that

uses an error-modulated synaptic plasticity for learning deep representations. Using

a two-compartment Leaky Integrate & Fire (I&F) neuron, the rule requires only one

addition and two comparisons for each synaptic weight, making it very suitable for

implementation in digital or mixed-signal neuromorphic hardware. Our results show

that using eRBP, deep representations are rapidly learned, achieving classification

accuracies on permutation invariant datasets comparable to those obtained in artificial

neural network simulations on GPUs, while being robust to neural and synaptic state

quantizations during learning.

Keywords: spiking neural networks, backpropagation algorithm, feedback alignment, embedded cognition,

stochastic processes

1. INTRODUCTION

Biological neurons and synapses can provide the blueprint for inference and learningmachines that
are potentially 1,000-fold more energy efficient than mainstream computers. However, the breadth
of application and scale of present-day neuromorphic hardware remains limited, mainly by a lack
of general and efficient inference and learning algorithms compliant with the spatial and temporal
constraints of the brain.

Thanks to their general-purpose, modular, and fault-tolerant nature, deep neural networks and
machine learning has become a popular and effective means for executing a broad set of practical
vision, audition and control tasks in neuromorphic hardware (Esser et al., 2016; Lee et al., 2016;
Neftci E. et al., 2016). One outstanding question is whether the learning phase in deep neural
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networks can be efficiently carried out in neuromorphic
hardware as well. Performing such learning on-the-fly is
appealing in less controlled environments where no prior,
representative dataset exists, and can confer more fine-grained
context awareness to behaving cognitive agents. However, the
workhorse of deep learning, the gradient descent BP rule,
commonly relies on the immediate availability of network-
wide information stored with high-precision memory. In digital
computers, the access to this information funnels through
the von Neumann bottleneck, which dictates the fundamental
limits of the computing substrate. Distributing computations
along multiple cores in GPUs is an effective solution to
mitigate this problem, but even there the scalability of gradient
backpropagation in neural networks can sometimes be limited by
its data and memory-intensive operations (Seide et al., 2014; Zhu
et al., 2016), and more so in the case of fully connected networks
(Seide et al., 2014).

The implementation of Gradient Back Propagation (hereafter
BP for short) on a neural substrate is even more challenging
(Grossberg, 1987; Baldi et al., 2016; Lee et al., 2016) because
it requires (1) using synaptic weights that are identical with
forward passes (symmetric weights requirements, also known as
the weight transport problem), (2) carrying out the operations
involved in BP including multiplications with derivatives and
activation functions, (3) propagating error signals with high,
floating-point precision, (4) alternating between forward and
backward passes, (5) changing the sign of synaptic weights, and
(6) availability of targets (labels). While some recent work in
neural networks shows that error signals can be propagated using
low precision (sometimes down to 1 bit; Courbariaux and Bengio,
2016; Rastegari et al., 2016), the essence of these challenges is that
BP often requires precise linear and non-linear transformations
and information that is not local to the computational building
blocks in a neural substrate, meaning that special communication
channels must be provisioned (Baldi and Sadowski, 2015).
Whether a given operation is local or not depends on the physical
implementation that carries out the computations. For example,
while symmetric weights in neural networks are compatible
with von Neumann architectures (and even desirable since
weights in both directions are shared), the same is not true in a
distributed system such as the brain: elementary computing units
do not have bidirectional connections with the same weight in
each direction. Since neuromorphic implementations generally
assume dynamics closely related to the those in the brain,
requirements (1–4) above also hinder efficient implementations
of BP in neuromorphic hardware.

Although, previous work (Lee et al., 2016; Lillicrap et al.,
2016; O’Connor and Welling, 2016) overcomes some of the
fundamental difficulties of gradient BP listed above in spiking
networks, here we tackle all of the key difficulties using event-
driven random BP (eRBP), a synaptic plasticity rule for deep
spiking neural networks achieving classification accuracies that
are similar to those obtained in artificial neural networks,
potentially running on a fraction of the energy budget with
dedicated neuromorphic hardware.

eRBP builds on the recent advances in approximate forms
of the gradient BP rule (Lee et al., 2014; Liao et al., 2015;

Baldi et al., 2016; Lillicrap et al., 2016) for training spiking
neurons of the type used in neuromorphic hardware to perform
supervised learning. These approximations solve the non-
locality problem by replacing weights in the backpropagation
phase with random ones, leading to remarkably little loss in
classification performance on benchmark tasks (Baldi et al.,
2016; Lillicrap et al., 2016) (requirement 1 above). Although,
a general theoretical understanding of random BP (RBP) is
still a subject of intense research, extended simulations and
analyses of linear networks show that, during learning, the
network adjusts its feed-forward weights such that they align
with the (random) feedback weights, which is arguably equally
good in communicating gradients. eRBP is an asynchronous
(event-driven) adaptation of random BP that can be tightly
embedded with the dynamics of dual compartment I&F neurons
that costs one addition and two comparisons per synaptic
weight update. Extended experimentations show that the spiking
nature of neuromorphic hardware and the lack of general linear
and non-linear computations at the neuron does not prevent
accurate learning on classification tasks (requirement 2, 3), and
operates continuously and asynchronously without alternation
of forward or backward passes (requirement 4). Additional
experimental evidence shows that eRBP is robust to fixed width
representations of the synaptic weights, making it suitable for
dedicated neuromorphic hardware.

The focus of eRBP is to achieve real-time, online learning at
higher power efficiency compared to deep learning on standard
hardware, rather than achieving the highest accuracy on a
given task. The success of eRBP on these measures lays out
the foundations of neuromorphic deep learning machines, and
paves the way for learning with streaming spike-event data
in neuromorphic platforms at proficiencies close to those of
artificial neural networks.

This article is organized as follows: key theoretical and
simulation results are provided in the results sections, followed
by a general discussion and conclusion. Technical details of eRBP
and its implementation are provided as the final section.

2. RESULTS

2.1. Event-Driven Random
Backpropagation
The central contribution of this article is event-driven RBP
(eRBP), a presynaptic spike-driven plasticity rule modulated by
top-down errors and gated by the state of the postsynaptic
neuron. The idea behind this additional modulation factor is
motivated by supervised gradient descent learning in artificial
neural networks and biologically plausible models of three-factor
plasticity rules (Urbanczik and Senn, 2014), which were argued to
subserve supervised, unsupervised and reinforcement learning,
an idea that was also reported in Lillicrap et al. (2016).

In gradient descent using a squared error cost function, weight
updates for a neuron in layer l are computed as:

1wij(t) = yj(t)φ
′





∑

j

wij(t)yj(t)



Ti(t) (1)
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where yj is the presynaptic activity and φ is the activation
function of the neuron. In standard BP, the term Ti is computed
using the backpropagated errors (see Section 5), while in the
RBP rule used here, it is computed using a direct random linear
combination of the errors,

Ti(t) =
∑

k

ek(t)gik

where ek is the error of output neuron k, and gik are the fixed
random feedback weights to the hidden layer neuron i. In the
methods, we show that eRBP is a spatially and temporally local
rule that implements random backpropagation in an event-
driven fashion. The eRBP dynamics for synapse j of neuron i can
be summarized as follows:

1wij(t) = Ti(t)2(Ii(t))S
pre
j (t) (2)

where S
pre
j (t) represents the spike train of presynaptic neuron j,

and2 is the derivative of the spiking neuron’s activation function
evaluated at the total synaptic input Ii. While the weight updates
depend on the error at the output, which is non-local, this
information needs only to be transmitted on a neuron-to-neuron
basis (rather than each synapse, which would be prohibitive).
This error gradient signal is then maintained at an auxiliary state
of the neuron, whose average value encodes Ti, thus making
the error gradient available to its synapses during learning. For
the final output (prediction) layer, Ti is proportional to the
classification error (ei) of the considered neuron, similarly to
the standard delta rule. For hidden layers, the Ti is proportional
to the error projected randomly to the hidden neurons, i.e., to
Ti
∼=

∑

k ekgik as in Equation (1). We found that a boxcar
function in place of 2 provides very good results, while being
more amenable to hardware implementation compared to the
alternative of computing the exact derivative of the activation
function.

2(Ii) ∼=

{

1 if bmin < Ii < bmax

0 otherwise
.

This choice is motivated by the fact that the activation
function of I&F neurons with absolute refractory period can be
approximated by a linear threshold unit (also known as rectified
linear unit) with saturation whose derivative is exactly the boxcar
function. In this case, the eRBP synaptic weight update consists
of additions and comparisons only, and can be captured using the
following operations for neuron i:

function eRBP
for k ∈ {presynaptic spike indices Spre} do

if bmin < Ii < bmax then wik ← wik + Ti,
end if

end for

end function

where Spre is the list of presynaptic neuron indices that have
spiked, Ti is the linear combination of the error vector. In the
spiking network, Ti is proportional to the state of an auxiliary
compartment that integrates spikes from the error neurons.

The above pseudocode states that, in eRBP, a weight update is
performed only when a presynaptic neuron fires. The eRBP rule is
demonstrated in two different stochastic network configurations:
one where noise is additive, another where noise is multiplicative,
where all plastic synapses can fail to generate a post-synaptic
potential with a fixed probability (blank-out probability, see ξ (t)
in Equation 18).

Provided the second compartment dynamics, no
multiplications are necessary for an eRBP update. This second
compartment can be disabled after learning without affecting
the inference dynamics. This rule is reminiscent of membrane
voltage-based rules, where spike-driven plasticity is induced only
when membrane voltage is inside an eligibility window (Brader
et al., 2007; Chicca et al., 2013).

The realization of eRBP on neuromorphic hardware requires
an auxiliary learning variable for integrating and storing top-
down error signals during learning, which can be substantiated
by a dendritic compartment. Provided this variable, each synaptic
weight update incurs only two comparison operations and one
addition. Additions and comparisons can be implemented very
naturally in neuromorphic VLSI circuits (Liu et al., 2002), and
costs in the order of tens of femtojoules in digital circuits (45 nm
processes; Horowitz, 2014). In practice, synapses outnumber
neurons by a factor of 100 or more, hence the cost of a second
compartment dynamics will be small in general compared to the
cost of the synaptic update. As a concrete example we use leaky,
two compartment, current-based Integrate-and-Fire neurons
with additive and multiplicative noise and linear synapses (see
Section 5). The gating term2, implemented as two comparisons,
operates on the total synaptic input. This choice is guided by the
gradient descent rule, which dictates that the derivative should
be evaluated on the total input (Section 5). The linearity of the
synaptic dynamics allows to use a single dynamical variable for all
synapses, such that the value of this dynamical variable is exactly
equal to the total synaptic input Ii, and thus readily available at
the neuron and the synapses.

2.2. Spiking Networks Equipped with eRBP
Learn with High Accuracy
We demonstrate eRBP in networks consisting of one and two
hidden layers trained on permutation invariant MNIST and
EMNIST (Table 1, Figures 1, 2), although eRBP can in theory
generalize to other datasets, tasks and network architectures
as well. Rather than optimizing for absolute classification
performance, we compare to equivalent artificial (non-spiking)
neural networks trained with RBP and standard BP, with free
parameters fine-tuned to achieve the highest accuracy on the
considered classification tasks (Table 1).

When equipped with stochastic connections (multiplicative
noise) that randomly blank out presynaptic spikes, the network
performed better overall (labeled eRBP×). In 2-hidden layer
network configurations eRBP× achieved performances on par
with those achieved with RBP in artificial networks. Test error
with additive noise (eRBP+) had a tendency to increase after
epoch 15, which is likely due to overfitting. This did not
occur with eRBP× and is consistent with the regularizing
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TABLE 1 | Classification error on the permutation invariant MNIST task (test set) obtained by averaging test errors of the last 5 epochs (for MNIST) and last epoch for

EMNIST.

Network Classification error

Dataset eRBP+ (%) eRBP× (%) RBP (100) (%) RBP (1) (%) BP (100) (%) BP (1) (%)

PI MNIST 784-100-10 3.77 (3.23) 2.89 (2.81) 2.74 (2.64) 3.19 (2.98) 2.25 (2.19) 2.44 (2.39)

PI MNIST 784-200-10 3.53 (2.98) 2.78 (2.53) 2.13 (2.04) 2.37 (2.33) 1.85 (1.78) 1.94 (1.88)

PI MNIST 784-500-10 2.86 (2.57) 2.34 (2.23) 2.00 (1.96) 2.09 (2.06) 1.63 (1.60) 1.88 (1.80)

PI MNIST 784-200-200-10 2.96 (2.85) 2.29 (2.22) 2.50 (2.45) 2.26 (2.25) 1.80 (1.78) 1.82 (1.74)

PI MNIST 784-500-500-10 2.36 (2.28) 2.02 (1.96) 2.24 (2.0) 2.34 (2.31) 1.90 (1.86) 1.69 (1.56)

PI EMNIST 784-200-200-10 26.76 (25.26) 21.83 (21.4) 22.3 (20.18) 32.37 (26.48) 18.42 (16.06) 18.23 (17.72)

Numbers in parentheses indicates the value of nbatch. Peak accuracies were reported for GPU based simulations. Value between parentheses indicate the highest measured test

accuracies.

effect of stochasticity in neural networks (Hinton et al., 2012;
Baldi and Sadowski, 2013; Wan et al., 2013). We trained the
spiking neural network on a more difficult task consisting of
digits and letters (EMNIST) (Cohen et al., 2017), collectively
accounting up to 47 classes. The spiking networks consisting
of 400 hidden neurons equipped with multiplicative noise and
eRBP achieved errors similar to those obtained using the online
ELM-based classifier consisting of 10,000 hidden neurons used
in (Cohen et al., 2017). The relative gaps is accuracy between
eRBP and BP are in the same range as in the case with
MNIST.

The reasons why the eRBP× performs better than the eRBP+
configuration cannot only be attributed to its regularizing effect:
As learning progresses, a significant portion of the neurons
tend to fire near their maximum rate and synchronize their
spiking activity across layers as a result of large synaptic weights
(and thus presynaptic inputs). Synchronized spike activity is
not well captured by firing rate models, which is assumed by
eRBP (see Section 5). Additive noise has a relatively small effect
when the magnitude of the presynaptic input is large. However,
multiplicative blank-out noise improves learning by introducing
irregularity in the presynaptic spike-trains evenwhen presynaptic
neurons fire regularly. This type of “always-on” stochasticity also
was argued to approximate Bayesian inference with Gaussian
processes (Gal and Ghahramani, 2015). In summary, the eRBP×
yields higher accuracy at a small overhead in random variable
generation, and is thus the configuration of choice compared
to eRBP+. Results for eRBP+ are provided for comparison or
as a reference for existing neuromorphic hardware that do not
support multiplicative noise. For comparison purposes, we show
training with nbatch = 1, whose end performance is often slightly
better and learning nearly as quickly as eRBP. Since it is very
inefficient to train with nbatch = 1 on GPUs and practically
impossible to scale to larger problems, we will base discussion on
the standard nbatch = 100 unless otherwise stated.

Overall, the learned classification accuracy with eRBP× is
close to that obtained with offline training of neural networks
(e.g., GPUs, nbatch = 100) using RBP. Thus, the gap between
eRBP and BP can be largely attributed to the approximate
RBP gradient. On the other hand, eRBP is a simple, local
synaptic plasticity rule that is entirely event-based. This is in

contrast to recent work in training spiking neural networks
using standard gradient backpropagation (Lee et al., 2016), where
errors are transmitted as real values across the backpropagated
chain path. At least two advantages accrue from eRBP: (1)
its implementation can be largely achieved using existing
asynchronous neuromorphic technologies (Vogelstein et al.,
2002; Chicca et al., 2013; Park et al., 2014), (2) no error
is transmitted and no weights are updated if the error is
below the firing threshold of the error neurons. The event-
based implementation of eRBP thus enables an end-to-end
asynchronous, event-based implementation of deep learning in
neuromorphic hardware.

2.2.1. eRBP Learning Dynamics
Transitions between two data samples of different class (digit)
are marked by bursts of activity in the error neurons (Figure 1).
To overcome this problem, weight updates were disabled the
first 50ms after the new digit onset. Figure 3 shows that about
20 ms are necessary for the error neurons to reach their stable
activity after the onset of the input in a three-layer network—
a duration that we refer to as “loop duration.” The vertical line
in Figure 3 marks the chosen 50ms, which is a conservative
estimate of the loop duration. The speed of eRBP learning is
thus limited by the loop duration, which depends on the time
constants of the synapses and neurons, as well as the number of
layers in the network. This implies that in deep networks, the
weight updates must be disabled for durations that scale with
the number of layers. We note that this problem, also referred
to as “update locking” is also faced in standard implementations,
which can be solved by pipelining the forward and backward
passes (Gadea et al., 2000) or by estimating error gradients before
they are computed using the output layer (Jaderberg et al., 2016;
Czarnecki et al., 2017). The latter method is compatible with
eRBP in principle as the authors demonstrated it using feedback
alignment, and can provide a natural solution to this problem.

In future work involving practical applications on
autonomous systems, it will be beneficial to interleave learning
and inference stages without explicitly controlling the learning
rate. One way to achieve this is to introduce a negative bias in
the error neurons by means of a constant negative input and
an equal positive bias in the label neurons such that the error
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FIGURE 1 | Network Architecture for Event-driven Random Backpropagation (eRBP) and example spiking activity after training a 784-200-200-10 network for 60

epochs. The network consists of feed-forward layers (H1, ..., HN ) for prediction and feedback layers for supervised training with labels (targets) L. Full arrows indicate

synaptic connections, thick full arrows indicate plastic synapses, and dashed arrows indicate synaptic plasticity modulation. In this example, digits 7, 2, 1, 0, 4 were

presented in sequence to the network. The digit pixel values are transformed to spike trains (layer D) using a Spike Response Model (Equation 21). Neurons in the

network indicated by black circles were implemented as two-compartment I&F neurons (Equations 18 and 20). The error is the difference between labels (L) and

predictions (P), and is implemented using a pair of neurons coding for positive error (blue) and negative error (red), following Equation (17). Each hidden neuron

receives inputs from a random combination of the pair of error neurons to implement random BP. Output neurons receive inputs from the pair of error neurons in a

one-to-one fashion. At the moment of data sample (digit) transitions, bursts of activity (about 3 spikes) in the error neurons occur. To prevent the perturbation of the

weights during these transitions, no weight updates were undertaken immediately after changing data sample.

FIGURE 2 | MNIST Classification error on fully connected artificial neural networks (BP and RBP) and on spiking neural networks (eRBP). Curves for eRBP were

obtained by averaging across 5 simulations with different seeds.
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FIGURE 3 | Firing rate of data layer and error layer upon stimulus onset,

averaged across 1,000 trials and all neurons in the layer. The large firing rate

at the onset is caused by synchronized neural activity. The vertical line in the

bottom figure depicts the 50ms after which learning is enabled after each digit

presentation. This duration is selected as a conservative measure to present

transitory dynamics in the network to corrupt the error feedback. Shaded area

is one standard deviation across all 1,000 trials.

neuron can be only be active when an input label is provided1.
The same solution can overcome the perturbations caused by
bursts of error activity during digit transitions (see red and blue
spikes in Figure 1).

The presence of these bursts of error activity suggest that eRBP
could learn spatiotemporal sequences as well. However, learning
useful latent representations of the sequences requires solving
a temporal credit assignment problem at the hidden layer—a
problem that is commonly solved with gradient BP-through-
time in artificial neural networks (Rumelhart et al., 1988)—which
could be tackled using synaptic eligibility dynamics based on
ideas of reinforcement learning (Sutton and Barto, 1998) or
synthetic gradients (Jaderberg et al., 2016; Czarnecki et al., 2017).

2.3. Classification with Single Spikes Is
Highly Accurate and Efficient
The response of the 784-200-10 network after stimulus onset
is about one synaptic time constant. Using the first spike after
2τs = 8ms from the stimulus onset for classification leads to
about 4% error (Figure 4), and improves steadily as the number
output layer spikes increase.

In this example, classification using the first spike incurred
about 100 k synaptic operations (averaged over 10,000 test
samples), most of which occur between the data and the
hidden layer (784 neurons and 200 neurons, respectively). In
existing dedicated neuromorphic hardware (Merolla et al., 2014;
Park et al., 2014; Qiao et al., 2015), the energetic cost of a
synaptic operation is about 20pJ. On such hardware, single spike
classification in eRBP trained networks can potentially result in

1Such logical “and” operation on top of a graded signal was previously used for

conditional signal propagation in neuromorphic VLSI spiking neural networks

(Neftci et al., 2013).

FIGURE 4 | Classification error in the 784-200-10 eRBP+ network as a

function of the number of spikes in the prediction layer, and total number of

synaptic operations incurred up to each output spike. To obtain this data, the

network was first stimulated with random patterns, and the spikes in the

output layer were counted after τsyn = 4ms.

about 2µJ energy per classification. This figure is comparable to
the state-of-the-art in digital neuromorphic hardware (∼= 2µJ
at this accuracy; Esser et al., 2015) and potentially 1,000x more
efficient than current GPU technology (> mJ). We note that no
sparsity criterion was enforced in this network. We expect that
sparsity implemented explicitly using weight regularization or
implicitly using Dropout or DropConnect techniques (Baldi and
Sadowski, 2013) can further reduce this energy, by virtue of the
lower activity in the hidden layer.

The low latency response with high accuracy may seem at
odds with the inherent firing rate code underlying the network
computations (see Section 5). However, a code based on the
time of the first-spike is consistent with a firing rate code,
since a neuron with a high firing rate is expected to fire first
(Gerstner and Kistler, 2002). In addition, the onset of the
stimulus provokes a burst of synchronized activity, which further
favors the rapid onset of the prediction response. These results
suggest that despite the underlying firing rate code, eRBP can take
advantage of the spiking dynamics, with classification accuracies
comparable to spiking networks trained exclusively for single-
spike classification (Mostafa, 2016).

2.4. Spiking Networks Equipped with eRBP
Learn Rapidly and Efficiently
In the spiking simulations, weight updates are updated during
the presentation of each digit. This is in strong contrast to
batch gradient descent, where weight updates are computed
across the entire dataset, or more commonly, across random
minibatches of the dataset. We observe that the spiking neural
network requires fewer iterations of the dataset to reach the
peak classification performance compared to the artificial neural
network trained with batch gradient descent (Figure 2, nbatch =
100). Batch or minibatch learning improves learning speed
in conventional hardware thanks to vectorization libraries or
efficient parallelization with GPUs’ SIMD architecture, and leads
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to smoother convergence. However, this approach results in
nbatch times fewer weight updates per epoch compared to online
gradient descent. In contrast, the spiking neural network is
updated multiple times during each sample presentation, and
accounts in large part for the faster convergence of learning:
Running GPU-based simulations using nbatch = 1 resulted in a
similar speed of convergence with the spiking neural networks,
and in some cases improved the final accuracy, most likely due
to the added stochasticity. Other spiking networks trained online
using stochastic gradient descent, i.e., updates after each image
presentation, achieved comparable speedup (Lee et al., 2016;
O’Connor and Welling, 2016).

These results are not entirely surprising since seminal
work in stochastic gradient descent established that with
suitable conditions on the learning rate, the solution to a
learning problem obtained with stochastic gradient descent is
asymptotically as good as the solution obtained with batch
gradient descent (Le Cun and Bottou, 2004) for a given number of
samples. Furthermore, for equal computational resources, online
gradient descent can process more data samples (Le Cun and
Bottou, 2004), while requiring less memory for implementation.
Thus, for an equal number of compute operations per unit time,
online gradient descent converges faster than batch learning.
Learning with nbatch = 1 in GPUs is much slower because
fewer operations are vectorized across data samples. We observe
more than 50x performance hit by switch to nbatch = 1 in the
GPU-based experiments presented in Table 1.

It is fortunate that synaptic plasticity is inherently “online” in
the machine learning sense, given that potential applications of
neuromorphic hardware often involve real-time streaming data.

2.4.1. Efficiency in Learning: Achieving SynOp-MAC

Parity
The online, event-based learning in eRBP combined with
the reduced number of required dataset iterations suggests
that learning on neuromorphic hardware can be particularly
efficient. Furthermore, in neuromorphic hardware, only active
connections in the network incur a SynOp. To demonstrate the
efficiency of the learning, we report the number of multiply-
accumulate (MAC) operations required for reaching a given
accuracy compared to the number of synaptic operations
(SynOps) in the spiking network for the MNIST learning task
(784-200-200-10 network, Figure 5). For computing the number
of MACs in the GPU based simulation, we used minibatch
learning since online learning (sample by sample) is highly
inefficient on GPUs. We find that both networks require roughly
the same number of operations to reach the same accuracy
during learning. This SynOp–MAC parity was also reported
in synaptic sampling machines (Neftci E. O. et al., 2016).
There, it was argued that SynOp-MAC parity is very promising
for hardware implementations because a SynOp in dedicated
hardware potentially consumes much less power than a MAC in
a general purpose digital processor.

The spiking neural networks learn quickly initially (epoch 1
at 94%), but subsequent improvements become slower compared
to the artificial neural network. The reasons for this slowdown
are likely due to (1) random backpropagation/direct feedback

FIGURE 5 | Spiking Neural Networks equipped with eRBP with stochastic

synapses (multiplicative noise) achieve SynOp-MAC parity at the MNIST task.

The number of multiply-accumulate (MAC) operations required for reaching a

given accuracy is compared to the number of synaptic operations (SynOps) in

the spiking network for the MNIST learning task (784-200-200-10 network).

Both networks requires roughly the same number of operations to reach the

same accuracy during learning. Only MACs incurred in the matrix

multiplications are taken into account (other necessary operations e.g.,

additions, logistic function calls, and weight updates were not taken into

account here, and would further favor the spiking network).

alignment, (2) spikes emanating from error-coding neurons
becoming very sparse toward the end of the training, which
prevent fine adjustments of the weight. We speculate that a
scheduled or network accuracy-based adjustment of the error
neuron sensitivity is likely to mitigate the latter cause. Such
modifications, along with more sophisticated learning rules
involving momentum and learning rate decay are left for future
work.

2.5. eRBP Can Learn with Low Precision,
Fixed Point Representations
The effectiveness of stochastic gradient descent degrades when
the precision of the synaptic weights using a fixed point
representation is smaller than 16 bits (Courbariaux et al., 2014).
This is because quantization determines the smallest learning
rate and bounds the range of the synaptic weights, thereby
preventing averaging the variability across dataset iterations.
The tight integration of memory with computing circuits as
pursued in neuromorphic chip design is challenging due to
space constraints and memory leakage, thereby constraining the
memory that can be attributed to each synaptic weight. For this
reason, full precision computer simulations of spiking networks
may be unrepresentative of performance that can be attained in
dedicated neuromorphic designs due to quantization of neural
states, parameters, and synaptic weights.

Extended simulations suggest that the random BP
performance at 10 bits precision is indistinguishable from
unquantized weights (Baldi et al., 2016), but whether this is the
case for online learning has yet been tested. Here, we hypothesize
that 8 bit synaptic weight is a good trade-off between the ability
to learn with high accuracy and the cost of implementation in
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future hardware. To demonstrate robustness to such constraints,
we test eRBP with randomized rounding (Muller and Indiveri,
2015) and stochastic synapses on the PI MNIST task, where the
values that the synaptic weights could take were limited to 256
equally spaced values in [−0.5, 0.5]. Figure 6 shows training
with randomized rounding 784-200-200-10 network trained on
MNIST compared to no rounding (64 bits). The loss of accuracy
using the randomized rounding technique in this configuration
is at an acceptable 1%. Histograms show that synaptic weight
values tend to converge on a distribution with ranges that depend
on the layer. Furthermore, the histogram for the first layer (Wvh)
shows that randomized rounding tends to further diffuse the
weights across the specified range compared to the case without
rounding, and increase the tendency for the weights to aggregate
at the boundaries. These two effects can in principle be mitigated
using weight or batch normalization techniques (Ioffe and
Szegedy, 2015; Salimans and Kingma, 2016), where weight
distributions were observed to change less during learning. (Lee
et al., 2016) have explored such weight normalization through
local inhibition mechanisms that effectively change the firing
threshold of the neurons, thus the effective synaptic weights.

3. DISCUSSION

The gradient descent BP rule is a powerful algorithm that
is ubiquitous in deep learning, but when implemented in a
neuromorphic substrate, it relies on the immediate availability of
network-wide information stored with high-precision memory.
More specifically, (Baldi et al., 2016) and (Lee et al., 2016)
list several reasons why the following requirements of gradient
BP make them biologically implausible. The essence of these
difficulties is that gradient BP is non-local in space and in
time when implemented on a neural substrate, and requires
precise linear and non-linear computations. The feedback
alignment work demonstrated that symmetric weights were not
necessary for communicating error signals across layers (Lillicrap
et al., 2016). Here we demonstrated a learning rule inspired
by feedback alignment, and membrane voltage-gated plasticity
rules, and three-factor synaptic plasticity rules proposed in
the computational neuroscience literature. With an adequate
network architecture, we find that the spike-based computations
and the lack of general linear and non-linear computations
and alternating forward and backward steps does not prevent
accurate learning. Although, previous work overcome some of
the non-locality problems of gradient BP (Lee et al., 2016;
Lillicrap et al., 2016; O’Connor and Welling, 2016), eRBP
overcomes all of the key difficulties using a simple rule that incurs
one addition and two comparisons per synaptic weight update.

Taken together, our results suggest that general-purpose deep
learning using streaming spike-event data in neuromorphic
platforms at artificial neural network proficiencies is realizable.

Our experiments target neuromorphic implementations of
spiking neural networks with embedded plasticity. Membrane-
voltage based learning rules implemented in mixed-signal
neuromorphic hardware (Qiao et al., 2015; Huayaney et al.,
2016) are compatible with eRBP provided that synaptic weight

updates can be modulated by an external signal on a neuron-
to-neuron basis. Following this route, and combined with the
recent advances in neuromorphic engineering and emerging
nanotechnologies, eRBP can become key to ultra low-power
processing in space and power constrained platforms.

3.1. Why Neuromorphic Learning
Machines?
Spiking neural networks, especially those based on the I&F
neuron types severely restrict computations during learning and
inference. With the wide availability of graphical processing
units and future dedicated machine learning accelerators, the
neuromorphic spike-based approach to learning machines is
often heavily criticized as being misguided. While this may
be true for some hardware designs and on metrics based
on absolute accuracy at most standardized benchmark tasks,
neuromorphic hardware dedicated for embedded learning
can have distinctive advantages thanks to: (1) asynchronous,
event-based communication, which considerably reduces the
communication between distributed processes, (2) natural
exploitation of “rate” codes and “spike” codes where single
spikes are meaningful, leading to fast and thus power-efficient
and gradual responses (Figure 4, see also O’Connor and
Welling, 2016), (3) on-line learning, which can naturally support
continual (life-long) learning. In addition, the premise of
neuromorphic engineering, i.e., that electronic and biological
share similar constraints on communication, power, and
reliability (Mead, 1990), also extends to the algorithmic domain.
That is, accommodating machine learning algorithms within the
constraints of ultra-low power hardware for adaptive behavior
(i.e., embedded learning) is likely to result in solutions for
communication, computations and reliability that are in close
resemblance with the brain. The convergence between the two
approaches (neuromorphic vs. artificial) will not only improve
the design of neuromorphic learning machines, but can also
widen the breadth of knowledge transfer between computational
neuroscience and deep learning.

Many examples that led to the unprecedented success in
machine learning have substantial overlap with equivalent neural
mechanisms, such as normalization (Ioffe and Szegedy, 2015;
Ren et al., 2016), attention, short-term memory for learning
complex tasks (Graves et al., 2014), and memory consolidation
through fast replays for reinforcement learning (Mnih et al., 2015;
Kumaran et al., 2016). One example relevant to the presented
work is the Binarized Neural Network (BNN) (Courbariaux
and Bengio, 2016). The BNN is trained such that weights
and activities are −1 or 1, which considerably reduces the
energetic footprint of inference, because multiplications are
not necessary and the memory requirements for inference
are much smaller. The discrete, quantized dynamics of I&F
neurons shares many similarities with the BNN, such as
binary activations (spikes), low-precision variables, and straight-
through gradient estimators. Our neurally inspired approach
has important and potentially advantageous differences with
regard to binarized networks: network activity is sparse and data-
driven (asynchronous), random variables for stochasticity are
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FIGURE 6 | (Left) MNIST Classification error using a fully connected 784-200-200-10 network with quantized synaptic weights and rounded using the randomized

rounding (Muller and Indiveri, 2015). (Right) Histogram of synaptic weights of the quantized network after training.

generated only when neurons spike, errors are backpropagated
only for misclassified examples, and learning is ongoing leading
to accurate, early, single-spike classification.

3.2. Relation to Prior Work in Random
Backpropagation
Our learning rule builds on the feedback alignment learning rule
demonstrating that random feedback can deliver useful teaching
signals by aligning the feed-forward weights with the feed-back
weights (Lillicrap et al., 2016). The authors also demonstrated
a spiking neural network implementing feedback alignment,
demonstrating that feedback alignment is able to implicitly
adapt to random feedback when the forward and backward
pathways both operate continuously. However, their learning
rule is not event-based as in eRBP, but operates in a continuous-
time fashion that is not directly compatible with spike-driven
plasticity, and a direct neuromorphic implementation thereof
would be inadequate due to the high bandwidth communication
required between neurons. Furthermore, their model is a spike
response model that does not emulate the physical dynamics
of spiking neurons such as I&F neurons. Another difference
between eRBP and the network presented in Lillicrap et al.
(2016) is that eRBP contains only one error-coding layer, whereas
feedback alignment contains one error-coding layer per hidden
layer. Such direct feedback alignment was recently proposed in
Nø kland (2016) and Baldi et al. (2016), and theoretical analyses
demonstrate that gradients computed in this fashion are within
90 degrees of the backpropagated gradient. Baldi et al. (2016)
studied feedback alignment in the framework of local learning
and the learning channel, and derived several other flavors of
random BP such as adaptive, sparse, and indirect RBP, along with
their combinations. In related work, Lee et al. (2014) showed
how feedback weights can be learned to improve the classification
accuracy by training the feedback weights to learn the inverse
of the feedforward mapping. After initial submission of this
article, Samadi et al. (2017) demonstrated a related learning rule
using integrate and fire neurons. The application focus of our

work is different from that of Samadi et al. (2017), and the
learning algorithm has important differences: Samadi et al. (2017)
uses trigonometric functions and updates at every timestep.
In contrast, our work demonstrates learning in an end-to-end
spike-driven fashion and realizable using only additions and
comparisons. Also, we demonstrated a stochastic version of eRBP,
which lead to significantly better accuracies onMNIST (2.02% vs.
2.95% for 1,000 hidden neurons total).

3.3. Relation to Prior Work in Spiking Deep
Neural Networks
Several approaches successfully realized the mapping of pre-
trained artificial neural networks onto spiking neural networks
using a firing rate code (O’Connor et al., 2013; Cao et al., 2014;
Neftci et al., 2014; Das et al., 2015; Diehl et al., 2015; Hunsberger
and Eliasmith, 2015; Marti et al., 2015; Esser et al., 2016;
O’Connor and Welling, 2016) Such mapping techniques have
the advantage that they can leverage the capabilities of existing
machine learning frameworks such as Caffe (Jia et al., 2014) or
Theano (Goodfellow et al., 2013) for brain-inspired computers.
More recently, (Mostafa, 2016) used a temporal coding scheme
where information is encoded in spike times instead of spike rates
and the dynamics are cast in a differentiable form. As a result,
the network can be trained using standard gradient descent to
achieve very accurate, sparse and power-efficient classification.
Although eRBP achieves comparable results, their approach
naturally leads to sparse activity in the hidden layer which can
be more advantageous in large and deep networks.

An intermediate approach is to learn online with standard
BP using spike-based quantization of network states (O’Connor
and Welling, 2016) and the instantaneous firing rate of the
neurons (Lee et al., 2016). O’Connor andWelling (2016) eschews
neural dynamics and instead operates directly on event-based
(spiking) quantizations of vectors. Using this representation,
common neural network operations including online gradient
BP are mapped on to basic addition, comparison, and indexing
operations applied to streams of signed spikes. As in eRBP, their
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learning rule achieves better results when weight updates are
made in an event-based fashion, as this allows the network to
update its parameters many times during the processing of a
single data sample. Lee et al. (2016) propose amethod for training
spiking neural networks via a formulation of the instantaneous
firing rate of the neuron obtained by low-pass filtering the
spikes. There, quantities that can be related to the postsynaptic
potential (rather than mean rates) are used to compute the
derivative of the activity of the neuron, which can provide a useful
gradient for backpropagation. Esser et al. (2016) use multiple
spiking convolutional networks trained offline to achieve near
state-of-the-art classification in standard benchmark tasks. Their
approach maps onto the all-digital spiking neural network
architecture using trinary weights. For the above approaches,
the eRBP learning rule presented here can be used as a drop-
in replacement and can reduce the computational footprint of
learning by simplifying the backpropagated chain path and by
operating directly with locally available variables i.e., membrane
potentials and spikes.

3.4. Relation to Prior Work in Spike-Driven
Plasticity Rules
STDP has been shown to be very powerful in a number of
different models and tasks related to machine learning (Thorpe
et al., 2001; Nessler et al., 2013; Neftci et al., 2014). Although,
the implementation of acausal updates (triggered by presynaptic
firing) is typically straightforward in cases where presynaptic
lookup tables are used, the implementation of causal updates
(triggered by postsynaptic firing) can be challenging due to
the requirement of storing a reverse look-up table. Several
approximations of STDP exist to solve this problem (Galluppi
et al., 2014; Pedroni et al., 2016), but require dedicated circuits.

Thus, there is considerable benefit in hardware
implementations of synaptic plasticity rules that forego the
causal updates. Such rules, which we referred to as spike-driven
plasticity, can be consistent with STDP (Brader et al., 2007;
Clopath et al., 2010; Qiao et al., 2015; Sheik et al., 2016a),
especially when using dynamical variables that are representative
of the pre- and postsynaptic firing rates (such as calcium or
average membrane voltage).

A common feature among spike-driven learning rules is
a modulation or gating with a variable that reflects the
average firing rate of the neuron, for example through calcium
concentration (Graupner and Brunel, 2012; Huayaney et al.,
2016) or the membrane potential (Clopath et al., 2010; Sheik
et al., 2016a) or both Brader et al. (2007). Sheik et al.
(2016a) recently proposed a membrane-gated rule inspired by
calcium and voltage-based rules with homeostasis for learning
unsupervised spike pattern detection. Their rule statistically
emulates pairwise STDP using presynaptic spike timing only
and using additions and multiplications. Except for homeostasis,
eRBP follows similar dynamics but potentiation and depression
magnitudes are dynamic and determined by externalmodulation,
and comparisons are made on total synaptic currents.

The two compartment neuron model used in this work is
motivated by conductance-based dynamics in Urbanczik and

Senn (2014) and previous neuromorphic realizations of two
compartment mixed signal spiking neurons Park et al. (2014).
Although, the spiking network used in this work is current-based
rather than conductance-based, eRBP shares strong similarities
to the three-factor learning rule employed in Urbanczik and Senn
(2014). The latter is composed of three factors: an approximation
of the prediction error, the derivative of the membrane potential
with respect to the synaptic weight, and a positive weighting
function that stabilizes learning in certain scenarios. The first
factor corresponds to the error modulation, while the second
and third factors roughly correspond to the presynaptic activity
and the derivative of the activation function. The differences
between eRBP and (Urbanczik and Senn, 2014) (besides from
the random BP which was considered in Lillicrap et al., 2016)
stems mainly from two facts: (1) the firing rate description used
here for simplicity and for easier comparisons between artificial
neural networks and spiking neural networks and (2) eRBP is
fully event-based in the sense that weights are updated only when
the presynaptic neurons spike.

4. CONCLUSIONS AND FUTURE
DIRECTIONS

This article demonstrates a local, event-based synaptic plasticity
rule for deep, feed-forward neural networks achieving
classification accuracies on par with those obtained using
equivalent machine learning algorithms. The learning rule
combines two features: (1) Algorithmic simplicity: one addition
and two comparisons per synaptic update provided one auxiliary
state per neuron and (2) Locality: all the information for the
weight update is available at each neuron and the synapse. The
combination of these two features enables synaptic plasticity
dynamics for neuromorphic deep learning machines.

Our results lay out a key component for the building blocks of
spike-based deep learning using neural and synaptic operations
largely demonstrated in existing neuromorphic technology
(Chicca et al., 2013; Park et al., 2014; Merolla et al., 2014).
Together with the near SynOp-MAC parity observed in the
learning experiments compared to GPUs (Figure 5), we can
reasonably expect real-time deep learning machines that operate
on at least 100x to 1,000x smaller energy budget compared to
current GPU technologies.

One limitation eRBP is related to the “loop duration,” i.e.,
the duration necessary from the input onset to a stable response
in the error neurons. This duration scales with the number of
layers, raising the question whether eRBP can generalize for
very deep networks without impractical delays. Future work
currently in investigation is to augment eRBP using recently
proposed synthetic gradients (Jaderberg et al., 2016; Czarnecki
et al., 2017), whereby gradients are estimated before the output
neurons respond. This technique has been successfully tested
with feedback alignment and direct feedback alignment, and thus
has high chances of success using eRBP.

It can be reasonably expected that the deep learning
community will uncover many variants of random BP, including
in recurrent neural networks for sequence learning and memory
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augmented neural networks. In tandemwith these developments,
we envision that such RBP techniques will enable the embedded
learning of pattern recognition, attention, working memory,
and action selection mechanisms which promise transformative
hardware architectures for embedded computing.

This work has focused on unstructured, feed-forward
neural networks and a single benchmark task across multiple
implementations for ease of comparison. Limitations in deep
learning algorithms are often invisible on “toy” datasets like
MNIST (Liao et al., 2015). Existing literature suggests that that
random BP could also work for unsupervised learning (e.g.,
using autoencoders, Lee et al., 2014) in deeper and convolutional
networks, as well as more difficult datasets such as CIFAR10.
RLandom BP was demonstrated to be effective in a variety of
tasks and network structures (Liao et al., 2015; Baldi et al., 2016),
including convolutional neural networks (Baldi et al., 2016). In
principle, we do not see major roadblocks in applying eRBP to
spike-based convolutional neural networks, provided that the
neuromorphic architecture can support weight sharing at the
level of the feature.

5. METHODS

5.1. Derivation of Event-Driven Random
Backpropagation
In artificial neural networks, the mean-squared cost function for
one data sample in a single layer neural network is:

L =
1

2

∑

i

e2i ,

ei = (yi − li),

(3)

where ei is the error of prediction neuron i, yi = φ
(

∑

j wijxj

)

is

the activity of the prediction neuron i with activation function
φ, x is the data sample and li is the label associated with the
data sample. The task of learning is to minimize this cost over
the entire dataset. The gradient descent rule in artificial neural
networks is often used to this end by modifying the network
parameters w in the direction opposite to the gradient:

wij[t + 1] = wij[t]− η
∂

∂wij
L,

where
∂

∂wij
L = φ′





∑

j

wijxj



 eixj,

(4)

and where η is a small learning rate. In deep networks, i.e.,
networks containing one or more hidden layers, the weights of
the hidden layer neurons are modified by backpropagating the
errors from the prediction layer using the chain rule:

∂

∂wl
ij

L = δlijy
l−1
j ,

where δlij = φ′
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∑
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ijy

l−1
j





∑

k

δl+1
ik

wl+1
ik

,

(5)

where the δ for the topmost layer is ei, as in Equation (4)
and y at the bottommost layer is the data x. This update
rule is the well-known gradient back propagation algorithm
ubiquitously used in deep learning (Rumelhart et al., 1988).
Learning is typically carried out in forward passes (evaluation of
the neural network activities) and backward passes (evaluation
of δs). The computation of δ requires knowledge of the forward
weights, thus gradient BP relies on the immediate availability
of a symmetric transpose of the network for computing the
backpropagated errors δlij. Often the access to this information

funnels through a von Neumann bottleneck, which dictates the
fundamental limits of the computing substrate.

In the random BP rule considered here, the BP term δ is
replaced with:

δlRBP = φ′





∑

j

wl
ijy

l−1
j





∑

k

ekg
l
ik (6)

where gl
ik
are fixed random numbers. This backpropagated term

does not depend on layer l + 1, and thus does not have the
recursive structure as in standard BP (Equation 5) or feedback
alignment (Lillicrap et al., 2016). This form was previously
referred to as direct feedback alignment (Nø kland, 2016) or
skipped RBP (Baldi et al., 2016) and was shown to perform
equally well on a broad spectrum of tasks compared to non-
skipped RBP. A detailed justification of random BP is out of the
scope of this article, and interested readers are referred to (Baldi
et al., 2016; Lillicrap et al., 2016; Nø kland, 2016).

In the context of models of biological spiking neurons, RBP
is appealing because it circumvents the problem of calculating
the backpropagated errors and does not require bidirectional
synapses or symmetric weights. RBP works remarkably well in
a wide variety of classification and regression problems, using
supervised and unsupervised learning in feed-forward networks,
with a small penalty in accuracy.

The above BP rules are commonly used in artificial neural
networks, where neuron outputs are represented as single scalar
variables. To derive an equivalent spike-based rule, we start by
matching this scalar value is the neuron’s instantaneous firing
rate. The cost function and its derivative for one data sample is
then:

Lsp =
1

2

∑

i

(νPi (t)− νLi (t))
2

∂

∂wij
Lsp =

∑

i

ei(t)
∂

∂wij
νPi (t)

(7)

where ei(t) is the error of prediction unit i and νP, νL are the firing
rates of prediction and label neurons, respectively.

Random BP (Equation 6) is straightforward to implement in
artificial neural network simulations. However, spiking neurons
and synapses, especially with the dynamics that can be afforded in
low-power neuromorphic implementations typically do not have
arbitrary mathematical operations at their disposal. For example,
evaluating the derivative φ can be difficult depending on the form
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of φ and multiplications between the multiple factors involved in
RBP can become very costly given that they must be performed
at every synapse for every presynaptic event.

In the following, we derive an event-driven version of RBP
that uses only two comparisons and one addition for each
presynaptic spike to perform the weight update. The derivation
proceeds as follows: (1) Derive the firing rate ν, i.e, the
equivalent of φ in the spiking neural network, (2) Compute its
derivative ∂

∂wij
νi(t), (3) Introduce modulation with a random

linear combination of the classification error to the hidden
neurons, (4) Devise a plasticity rule that increments the weight
with the product of the latter two factors times the presynaptic
activity.

Activation Function of Spiking Neurons with

Background Poisson Noise and Its Derivative
The dynamics of spiking neural circuits driven by Poisson spike
trains is often studied in the diffusion approximation (Wang,
1999; Brunel and Hakim, 1999; Fusi and Mattia, 1999; Brunel,
2000; Renart et al., 2003; Tuckwell, 2005; Deco et al., 2008). In this
approximation, the firing rates of individual neurons are replaced
by a common time-dependent population activity variable with
the same mean and two-point correlation function as the
original variables, corresponding here to a Gaussian process.
The approximation is true when the following assumptions are
verified: (1) the charge delivered by each spike to the postsynaptic
neuron is small compared to the charge necessary to generate
an action potential, (2) the number of inputs to each neuron
is large, (3) the spike times are uncorrelated. In the diffusion
approximation, only the first two moments of the synaptic
current are retained. The currents to the neuron, I(t), can then
be decomposed as:

I(t) = µ+ σω(t), (8)

where µ = 〈I(t)〉 =
∑

j wjνj and σ 2 = w2
bg

νbg , where νbg is the

firing rate of the background activity, and ω(t) is the white noise
process. We restrict neuron dynamics to the case of synaptic
time constants that are much larger than the membrane time
constant, i.e., τm≪ τsyn, such that we can neglect the fluctuations
caused by synaptic activity from other neurons in the network
i.e., σ is constant. Although, the above dynamics are not true
in general, in a neuromorphic approach, the parameters can be
chosen accordingly during configuration or at design.

In this case, the neuron’s membrane potential dynamics is
an Ornstein-Uhlenbeck (OU) process (Gardiner, 2012). The
stationary distribution of the freely evolving membrane potential
(no firing threshold) is a Gaussian distribution:

Vnt ∼ N(
µ

gL
,

σ 2

2g2Lτm
). (9)

where gL is the leak conductance and τm is the membrane
time constant. Although, this distribution is generally not
representative of the membrane potential of the I&F neuron
due to the firing threshold (Gerstner and Kistler, 2002), the
considered case τm ≪ τsyn yields approximately a truncated

Gaussian distribution, where neurons with Vnt > 0 fire at their
maximum rate of 1

τrefr
. This approximation is less exact for very

large µ due to the resetting, but the resulting form highlights
the essence of eRBP while maintaining mathematical tractability.
Furthermore, using a first-passage time approach, Petrovici et al.
(2013) computed corrections that account for small synaptic
time constants and the effect of the firing threshold on this
distribution.

The firing rate of neuron i is approximately equal to the
inverse of the refractory period, νi = τ−1

refr
with probability

P(Vnt,i(t + 1) ≥ 0|s(t)) and zero otherwise. The probability is
equal to one minus the cumulative distribution function of Vnt,i:

P(Vnt,i(t + 1) ≥ 0|s(t)) =
1

2

(

1+ erf

(

µi(t)

σOU
√
2

))

,

where “erf” stands for the error function. The firing rate of
neuron i becomes:

νi =
1

τrefr

1

2



1+ erf
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

√
τm

σ

∑

j

wijνj







 . (10)

For gradient descent, we require the derivative of the neuron’s
activation function with respect to the weight w. By definition
of the cumulative distribution, this is the Gaussian function in
Equation (9) times the presynaptic activity:

∂

∂wij
νi ∝

1

σOU
√
2π

exp(−
µi(t)

2

2σ 2
OU

)νj(t). (11)

As in previous work (Neftci et al., 2014), we replace νj(t) in the
above equations with the presynaptic spike train sj(t) (modeled as
a sum of delta Dirac functions) to obtain an asynchronous, event-
driven update, where the derivative is evaluated only when the
presynaptic neuron spikes. This approach is justified by the fact
that the learning rate is typically small, such that the event-driven
updates are averaged at the synaptic weight variable (Gerstner
and Kistler, 2002). Thus the derivative becomes:

∂

∂wij
νi ∝

{

exp(−µi(t)
2

2σ 2
OU

) if pre-synaptic neuron j spiked

0 otherwise
.

(12)

In the considered spiking neuron dynamics, the Gaussian
function is not directly available. Although, a sampling scheme
based on the membrane potential to approximate the derivative
is possible, here we follow a simpler solution: Backed by
extensive simulations, and inspired by previously proposed
learning rules based on membrane potential gated learning rules
(Brader et al., 2007; Clopath et al., 2010; Sheik et al., 2016a),
we find that replacing the Gaussian function with a boxcar
function 2 operating on the total synaptic input, I(t), with
boundaries bmin and bmax yields results that are as good as using
the exact derivative. With appropriate boundaries, 2(I(t)) can
be interpreted as a piecewise constant approximation of the

Frontiers in Neuroscience | www.frontiersin.org 12 June 2017 | Volume 11 | Article 324

http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Neuroscience/archive


Neftci et al. Neuromorphic Deep Learning Machines

Gaussian function2 since I(t) is proportional to its argument
∑

j wijνj, and has the advantage that an explicit multiplication

with the modulation is unnecessary in the random BP rule
(explained below).

∂

∂wij
νi ∝











1 if pre-synaptic neuron j spiked and bmin < Ii(t)

< bmax

0 otherwise

(13)

The resulting derivative function is similar in spirit to straight-
through estimators used in machine learning (Courbariaux and
Bengio, 2016).

Derivation of Event-Driven Random Backpropagation
For simplicity, the error ei(t) is computed using a pair of spiking
neurons with a rectified linear activation function. One neuron
computes the positive values of ei(t), while the other neuron
computes the negative values of ei(t) such that:

νE+i (t) ∝ νPi (t)− νLi (t),

νE−i (t) ∝ −νPi (t)+ νLi (t).
(14)

Each pair of error neurons synapse with a leaky dendritic
compartment U of the hidden and prediction neurons using
equal synaptic weights with opposite sign, generating a dendritic
potential proportional to (νE+i (t) − νE−i (t)) ∼= ei. Several other
schemes for communicating the errors are possible. For example
an earlier version of eRBP used a positively biased error neuron
per class (rather than a positive negative pair as above) such
that the neuron operated (mostly) in the linear regime. This
solution led to similar results but was computationally more
expensive due to error neurons being strongly active even when
the classification was correct. Population codes of heterogeneous
neurons as in Salinas and Abbott (1994) and Eliasmith and
Anderson (2004) may provide even more flexible dynamics for
conveying errors. The weight update for the last layer becomes:

1wij ∝











−ei(t) if pre-synaptic neuron j of layer h

spiked and bmin < Ii<bmax

0 otherwise

. (15)

The weight update for the hidden layers is similar, except that a
random linear combination of the error is used instead of ei:

1wC
ij ∝











−
∑

k gike
E
k
(t) if pre-synaptic neuron j of

layer d, h spiked and bmin < Ii < bmax

0 otherwise

. (16)

All weight initializations are scaled with the number of rows

and the number of columns as gik ∼ U(
√

6
NE+NH

) (Glorot and

Bengio, 2010), where NE is the number of error neurons and NH

is the number of hidden neurons.
In the following, we detail the spiking neuron dynamics that

can efficiently implement eRBP.

2or equivalently, for the purpose of the derivative evaluation, the activation

function is approximated as a rectified linear with hard saturation at τ−1
refr

, also

called “hard tanh” in the machine learning community.

5.2. Spiking Neural Network and Plasticity
Dynamics
The network used for eRBP consists of one or two feed-forward
layers (Figure 1) withNd “data” neurons,Nh hidden neurons and
Np prediction neurons. The top layer, labeled P, is the prediction.
The feedback from the error population is fed back directly to the
hidden layers’ neurons. The network is composed of three types
of neurons:
(1) Error-coding neurons are non-leaky integrate and fire
neurons following the linear dynamics:

C
d

dt
VE+
i = wL+(sPi (t)− sLi (t))

if VE+ > VE
T then VE+ ← VE+ − VE

T ,

(17)

where sPi (t) and sLi (t) are spike trains from prediction neurons
and labels (teaching signal). In addition, the membrane potential
is lower bounded toVE

T to prevent negative activity to accumulate
across trials. Each error neuron has one counterpart neuron
with weights of opposite sign, i.e., wL− = −wL+ to encode
the negative errors. The firing rate of the error-coding neurons
is proportional to a linear rectification of the inputs. For
simplicity, the label spike train is regular with firing rate
equal to τ−1

refr
. When the prediction neurons classify correctly,

(sPi (t) − sLi (t))
∼= 0, such that the error neurons remain

silent.
(2)Hidden neurons follow current-based I&F dynamics:

C
d

dt

(

Vh
i

Uh
i

)

= −
(

gVV
h
i

gUU
h
i

)

+
(

Ihi + σwωh
i (t)

∑NL

k=1 g
E+
ik

sE+
k

(t)− gE−
ik

sE−
k

(t)

)

τsyn
d

dt
Ihi = −I

h
i +

Nd
∑

k=1
wd
iks

d
k(t)ξ (t)+

Nh
∑

j=1
wh
ijs

h
j (t)ξ (t)

if Vh
i (t) > VT then Vh

i ← 0 during refractory period τrefr .

(18)

where sd
k
(t) and shj (t) are the spike trains of the data neurons

and the hidden neurons, respectively, Ih are current-based
synapse dynamics, σwωh

i (t) a Poisson process of rate 1 kHz
and amplitude σw, and ξ is a stochastic Bernouilli process
with probability (1 − p) (indices i, j are omitted for clarity).
The Poisson process simulates background Poisson activity
and contributes additively to the membrane potential, whereas
the Bernouilli process contributes multiplicatively by randomly
“blanking-out” the proportion p of the input spikes. In this
work, we consider feed-forward networks, i.e., the weight matrix
wh is restricted to be upper diagonal. Each neuron is equipped
with a separate “dendritic” compartment Uh

i following similar
subthreshold dynamics as the membrane potential and where
sE(t) is the spike train of the error-coding neurons and gEij
is a fixed random matrix. The dendritic compartment is not
directly coupled to the “somatic” membrane potential Vh

i , but
indirectly through the learning dynamics. For every hidden
neuron i,

∑

j w
E
ij = 0, ensuring that the spontaneous firing

rate of the error-coding neurons does not bias the learning. The
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synaptic weight dynamics follow a dendrite-modulated and gated
rule:

d

dt
wh
ij = ηUh

i 2(Ihi )s
h
j (t). (19)

where 2 is a boxcar function with boundaries bmin and bmax and
η is the learning rate.

(3) Prediction neurons, synapses and synaptic weight updates
follow the same dynamics as the hidden neurons except for the
dendritic compartment, and one-to-one connection with pairs of
error-neurons associated to the same class:

C
d

dt

(

VP
i

UP
i

)

= −
(

gVV
P
i

gUU
P
i

)

+
(

IPi + σwωP
i (t)

wEsE+i (t)− wEsE−i (t)

)

. (20)

The spike trains at the data layer were generated using a
stochastic neuron with instantaneous firing rate [exponential
hazard function (Gerstner and Kistler, 2002) with absolute
refractory period]:

νd(d, t − t′) =

{

0 if t − t′ < τrefr

τ−1
refr

exp(βd + γ ) t − t′ ≥ τrefr
, (21)

where d is the intensity of the pixel (scaled from 0 to 1), and t′ is
the time of the last spike. Figure 7 illustrates the neural dynamics
in a prediction neuron, in a network trained with 500 training
samples (1/100 of an epoch).

5.2.1. Stochastic, Blank-Out Synapses
In practice, we find that neurons tend to strongly synchronize
in late stages of the training. The analysis provided above
does not accurately describe synchronized dynamics, since
one of the assumptions for the diffusion approximation is
that spike times are uncorrelated. Multiplicative stochasticity
was previously shown to be beneficial for regularization and
decorrelation of spike trains, while being easy to implement
in neuromorphic hardware (Neftci E. et al., 2016). Following
the ideas of synaptic sampling (Neftci E. et al., 2016),
we find that replacing the background Poisson noise with
multiplicative, blank-out noise (Vogelstein et al., 2002) at the
plastic synapses slightly improves the results and mitigates
the energetic footprint of the stochasticity (Sheik et al.,
2016b).

5.3. Experimental Setup and Software
Simulations
We trained fully connected feed-forward networks on two
datasets, the standard MNIST hand-written digits (LeCun et al.,
1998) and EMNIST hand-written digits and letters (Cohen
et al., 2017). The EMNIST dataset is a variant of the full
NIST database and consists of digits, uppercase and lowercase
handwritten letters. We used the balanced dataset which contains
a balanced subset of 47 classes (10 digits and 37 letters),
where classes were chosen to avoid classification errors resulting
purely from misclassification between uppercase and lower-case
letters. Namely, classes for letters c, i–m, o, p, s, u–z were
merged with their uppercase counterparts. The MNIST dataset

FIGURE 7 | Neural states and synaptic weight of the prediction neuron after

500 training examples. (Top) Somatic membrane potential dynamics of

prediction neuron 0, where output spikes are superimposed as gray vertical

bars. (Middle-top) Dendritic membrane potential, where blue and red bars

indicate negative error neuron 0 spikes and positive error neuron 0 spikes,

respectively. In the time range (500,750), the digit 0 is presented to the

network. (Middle-bottom) Total synaptic current of prediction neuron 0,

where superimposed vertical bars are presynaptic spikes of hidden neuron 32.

The green shaded area (bmin, bmax ) corresponds to the plasticity-enabled

region, i.e., the approximate derivative function 2(Ip(t)). (Bottom) Synaptic

weight between hidden neuron 32 and prediction neuron 0.

was separated in three groups, training, validation, and testing
(50,000, 10,000, 10,000 samples, respectively) and the EMNIST
dataset was separated in two groups, training and testing
(112,800, 18,800 for EMNIST). We did not use a validation set
for EMNIST as we applied the same hyperparameters obtained
from MNIST (except for Nl). Spiking simulations were run
for five different seeds (in one hidden layer networks) and
only one seed for two-layer networks. Test error results were
obtained averaging test errors across the last 5 epochs (for
MNIST and EMNIST). For computational reasons, the image
pixel intensities in MNIST and EMNIST were converted into
spikes by driving an SRM neuron with parameters matched
to those of the network I&F neurons. The intensities driving
the SRM were scaled and shifted. Label neuron intensities
were scaled such that the associated SRM neurons responded
regularly, and image neuron intensities were scaled and shifted
in such a way that neurons with zero intensity did not spike
on visual inspection. Except for label neurons and provided
that the first layer neurons were sufficiently active, we did
not observe any substantial effects of the scaling on the
learning.

To keep the durations of the spiking simulations tractable,
learning was run for 60 epochs (MNIST) or 30 epochs (EMNIST),
compared to 1,000 epochs in the GPU. This is not a major
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TABLE 2 | Parameters used for the continuous-time spiking neural network simulation implementing eRBP.

Nd Number of data neurons All networks 784

Nh Number of hidden neurons All networks 100,200,400,1000

Nl Number of label neurons All networks 10

NE+ Number of positive error neurons All networks 10

NE− Number of negative error neurons All networks 10

Np Number of prediction neurons All networks 10

σ Poisson noise weight eRBP+ 50 · 10−3 nA
eRBP× 0 · 10−3 nA

p Blank-out probability eRBP+ 1.0

eRBP× 0.45

τrefr Refractory period Prediction and hidden neurons 3.9ms

Data neurons 4.0ms

τsyn Synaptic Time Constant All synapses 4ms

gV Leak conductance state V Prediction and hidden neurons 1 nS

gU Leak conductance state U Prediction and hidden neurons 5 nS

C Membrane capacitance All neurons 1 pF

VT Firing threshold Prediction and Hidden neurons 100mV

VE
T

Error neurons 100mV

Ntrain Number of training samples used All figures 50000

Ntest Number of training samples used Table 1 eRBP+, eRBP× 10000

Table 2 eRBP+, eRBP× 1000

Table 2 RBP, BP 10000

Ttrain Training sample duration All models 100mV

Ttest Testing sample duration Table 1, Figure 4 500ms

Table 2 250ms

wh,wd ,wp, g Initial weight matrix RBP, BP U(
√

6
#rows+#cols )nA

eRBP+ U(
√

6
#rows+#cols )nA

eRBP× U(
√

7
#rows+#cols )nA

wE eRBP+, eRBP× 90 · 10−3nA
wL+ eRBP+, eRBP× 90 · 10−3nA
wL− eRBP+, eRBP× −90 · 10−3nA
bmin,bmax eRBP+, eRBP× −1.15, 1.15 nA

2nd hidden layer eRBP+, eRBP× -25, 25 nA

Figure 6 eRBP+, eRBP× −0.6, 0.6 nA
β Data neuron input scale eRBP+, eRBP× 0.5

γ Data neuron input threshold eRBP+, eRBP× −0.215
η Learning Rate eRBP+ 6 · 10−4nS

eRBP× 10 · 10−4nS
RBP, BP 0.4/nbatch

nbatch Minibatch size RBP(100), BP(100) 100

RBP(1), BP(1) 1

limitation since errors appear to converge earlier in the spiking
neural network. During a training epoch, each of the training
digits were presented in during 250ms. We tested eRBP
using two configurations: one with additive noise (σw > 0,
p = 0, labeled eRBP+), and one with multiplicative noise
implemented as blank-out noise on the connections (blank-out
probability p = 0.45 and σw = 0, labeled eRBP×). For the
spiking implementation, the reported results were obtained using
(hyper)parameters obtained from a coarse grid search and a
manual search. The parameter search swept the learning rate η,
blank-out probability p, the learning gating values bmin and bmax,

and the magnitude of the random and initialization weights.
Parameters for BP were identical to those used in Lee et al. (2014)
and the learning rate of the (GPU-based) RBP simulations was
manually adjusted to achieve peak accuracy on the 784-200-10
network.

All learning rates were kept fixed during the simulation.
Other I&F neuron related parameters were carried over from
previous work (Neftci E. O. et al., 2016) and not specifically
tuned for eRBP. To prevent the network from learning (spurious)
transitions between digits, the synaptic weights did not update in
the first 50ms window of each digit presentation.
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We tested eRBP training on a spiking neural network based
on the Auryn simulator (Zenke and Gerstner, 2014). Results are
compared against GPU implementations of RBP and standard BP
performed in Theano (Bergstra et al., 2010) using an equivalent,
non-spiking neural network. Parameters used in the Auryn and
Theano simulations are provided in Table 2. Besides layered
connectivity, all networks were unstructured i.e., no convolutions
or poolings).
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