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The estimation of the grip force and the 3D push-pull force (push and pull force in the three

dimension space) from the electromyogram (EMG) signal is of great importance in the

dexterous control of the EMG prosthetic hand. In this paper, an action force estimation

method which is based on the eight channels of the surface EMG (sEMG) and the

Generalized Regression Neural Network (GRNN) is proposed to meet the requirements of

the force control of the intelligent EMG prosthetic hand. Firstly, the experimental platform,

the acquisition of the sEMG, the feature extraction of the sEMG and the construction of

GRNN are described. Then, the multi-channels of the sEMG when the hand is moving

are captured by the EMG sensors attached on eight different positions of the arm skin

surface. Meanwhile, a grip force sensor and a three dimension force sensor are adopted

to measure the output force of the human’s hand. The characteristic matrix of the

sEMG and the force signals are used to construct the GRNN. The mean absolute value

and the root mean square of the estimation errors, the correlation coefficients between

the actual force and the estimated force are employed to assess the accuracy of the

estimation. Analysis of variance (ANOVA) is also employed to test the difference of the

force estimation. The experiments are implemented to verify the effectiveness of the

proposed estimation method and the results show that the output force of the human’s

hand can be correctly estimated by using sEMG and GRNN method.

Keywords: grip force, 3D push-pull force, force estimation, EMG, GRNN

INTRODUCTION

Prosthetic hand is a kind of human-machine interface. The upper limb amputees can recover some
hand function with the help of the prosthetic hand. In recent years, many kinds of prosthetic
hands have been investigated to meet the requirements of the amputees (Davidson, 2002; Zaini
and Ahmad, 2011; Maat et al., 2017). Among these hands, the prosthetic hand based on the
EMG has received lots of attention due to its simple operation and that it is in accordance with
the operation habits of the natural hand. Figure 1 shows a typical block diagram of the EMG
prosthetic hand. Firstly, the EMG signals are captured from the amputee’s remaining arm by the
EMG sensors on the skin surface. Then, the motion recognition unit outputs the user’s motion
intention based on analysis of the captured EMG signals. In the motion recognition unit, the
features extracted from EMG signals are used to identify the user’s motion intention. The controller
sends the control commands to the prosthetic hand according to the user’s motion intention which
has been recognized in the motion recognition unit. In such manner, the prosthetic hand can be
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FIGURE 1 | A typical control mode of the EMG prosthetic hand.

controlled by the amputee’s EMG signals. The motion
recognition unit plays an important role in this control
mode. Whether the prosthetic hand movement is in line with
the user’s intention is directly decided by the motion recognition
unit. As a matter of fact, many scholars have made a lot of
investigations in this area (Zhang et al., 2013; Xie et al., 2015;
Hofmann et al., 2016; Segil et al., 2016).

The hand movement is described by type, speed, force, and
amplitude of the action, and etc. And all these are important
in the control of the prosthetic hand, especially type and force.
Therefore, the main tasks of the motion recognition are type
classification and force estimation of the action.

In the process of type classification of the action, plenty of
research work has been done in the past decades (Li et al., 2010;
Hioki and Kawasaki, 2012; Ngeo et al., 2013; He et al., 2015;
Pan et al., 2015). Nishikawa et al. used two channels of the
EMG signals and the real-time learning method to discriminate
a maximum 10 forearm motions including 4 wrist motions and
6 hand motions (Nishikawa et al., 1999). Ten different features
extracted from four channels of the EMG signals are used to
classify the eight hand motions in Al Omari et al. (2014). And the
authors reported that an accuracy of 94% was achieved by using
LDA (Linear Discriminant Analysis) based on the combination
of wavelength, Willson amplitude, and root mean square. Wu
proposed an EMG self-learning recognition method to reduce
the effects of the individual difference on the EMG motion
recognition (Wu et al., 2015). Ju and Liu used multiple sensors
to analyze the human hand motions and reported that there
exist significant relationships between the muscle signals and the
finger trajectories as well as between the muscle signals and the
contact force (Ju and Liu, 2014). To improve the performance
of the EMG prosthetic hand, some scholars attempted to obtain
the continuous motor variables such as the limb positions and
force of the action. Ngeo used amulti-output convolved Gaussian
Process to estimate the finger joint kinematics from the EMG
signals (Ngeo et al., 2014).

The other part of the hand movement intention, force of
hand movement (grip force, push force, pull force, etc.), is also
important in the control of the prosthetic hand, especially in
dexterous manipulation. There are mainly two kinds of force
of the action output from the human hand. One is the grip
force and the other is the push force and pull force in three
dimensional space (we call it 3D force). In the process of grip
force estimation, the most common method is detecting the
strength of the muscle contraction from the EMG signals and

then mapping the measured strength to the expecting grip force.
During the bilateral grasping task, Kamavuako et al. investigated
the use of the EMG features in order to estimate the grip force
on the ipsilateral and contralateral hand (Kamavuako et al.,
2012). And the author also reported that one channel of EMG
signals measured from the flexor digitorum profundus can be
used to represent the grip force within the entire range of force
(Kamavuako et al., 2013). Castellini et al. used five channels of
the EMG signals and the SVM (Support Vector Machine) to
achieve the grip force estimation and their estimation error is
<7% (Castellini et al., 2009). In 3D force estimation, Nielsen
et al. used the artificial neural network to estimate the isometric
force in multiple degrees of freedom from the wrist (Nielsen
et al., 2011). Hashemi et al. researched the EMG based on force
estimation in dynamic contractions by using the parallel cascade
identification modeling (Hashemi et al., 2012, 2015).

Although, force estimation of the action is also important in
the control of the prosthetic hand, the amount of the research
work in this area is apparently less than the work in type
classification of the action. Actually, not only the grip force but
also the 3D force plays an important role in the control of the
dexterous prosthetic hand. For the prosthetic hand with movable
wrist, the 3D push/pull force is important in the process of
moving objects. The estimate of 3D push/pull force can be used
to control the rotation of the wrist.

In this paper, we present a force estimation method for
the purpose of estimating the force of hand movement
comprehensively. Firstly, we set up the experimental platform
which is used to capture the EMG signals and force of the action.
The eight channels of the EMG signals are captured from the
eight different positions on the arm skin surface. The grip force
and the 3D force are captured by a grip force sensor and a
three dimensional force sensor, respectively. Secondly, the time
domain feature extraction method is employed to extract the
features from the captured EMG signals. Then, the generalized
regression neural network (GRNN) is employed to estimate force
of the action which includes the grip force and the 3D force,
by using the extracted EMG features and the captured force
of action. At last, experiments are implemented to verify the
effectiveness of the proposed force estimation method of the
action.

The rest of the paper is organized as follows. Section
“Experimental Platform” introduces the experimental platform
in detail. The detailed process of force estimation of the action
is described in Section “Force Estimation of Hand Movement.”
The experiments are implemented in Section “Experiment and
Result,” and the Conclusions are in Section “Conclusion.”

EXPERIMENTAL PLATFORM

An experiment platform as shown in Figure 2 is set up in this
section. The experimental platform consists of several EMG
sensors, a three dimensional force sensor, a data collector, a
computer, and the application software.

The EMG sensors and the 3D force sensor are respectively
used to capture the surface EMG signals generated on the arm
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FIGURE 2 | The experimental platform.

FIGURE 3 | The EMG sensor and disposable electrode.

skin surface and the force signals output by the hand while the
hand is moving and grasping. The EMG signals and the force
signals are digitalized in the data collector. The data collector has
a USB interface via which the data can be transmitted between
the data collector and computer.

EMG Sensor
The EMG signal is a kind of weak signal. To meet the
requirements of EMG signal measurement, we design a surface
EMG sensor shown in Figure 3. The sensor’s pass-band is 10–
500 Hz and the voltage gain is about 1,000. The disposable
moisture Ag/AgCl electrodes are used in the sensor. There are
two snap-fasteners in the EMG sensor. The distance between
these two snap-fasteners is 2 cm. And the snap-fastener ismade of
conductive metal. There is also a snap-fastener in the disposable
electrode. The snap-fastener in the disposable electrode should
be buckled into the snap-fastener in the EMG sensor.

There is a conditioning circuit in the EMG sensor. The
structure diagram of the conditioning circuit is shown in
Figure 4. The voltage gains of the two amplifiers, A1 and A2,
are set as 15 and 40, respectively. The high-pass filter (cut-off
frequency: 10Hz) is used to remove the direct current component
from the signal. The low-pass filter (cut-off frequency: 500 Hz) is
used to eliminate the high-frequency noises. The voltage gains
of these two filters are all about 1.3. The notch filter is used to

0V

1.5V

differential amplifier High-pass filter amplifier

Level rise circuit Notch filter Low-pass filter

Input

Output

A1 A2

FIGURE 4 | The structure diagram of the conditioning circuit.

FIGURE 5 | A typical EMG signal and its power spectrum.

reduce the 50 Hz power-line interference. Since the input range
of the data collector is from 0 to 3 V, we design the level-rising
circuit to make the voltage of the signals >0 V. Figure 5 shows a
typical signal measured by the EMG sensor.

Grip Force Sensor
Figure 6 shows the grip force sensor and its manipulation sketch.
The grip force sensor mainly contains a grasping mechanism
(GM), an elastic beam, a signal conditioning circuit, and a sensor
shell. There is a connecting rod between the elastic beam and
the grasping mechanism. The elastic beam is fixed in the sensor
shell. Grasping the GM with force will lead to the deformation
of the elastic beam. There are two strain gauges, sg1 and sg2,
attached on the surface of the elastic beam. These two strain
gauges are used to measure the deformation of the elastic beam.
According to the knowledge of the mechanics of the material, we
know that there exists a relationship between the deformation
of the beam and the force applied to the beam. Therefore, we
can measure the grip force by detecting the deformation of the
strain gauges. The widely used measurement circuit, Wheatstone
bridge, is employed to measure the deformation of the strain
gauges. And the output signals of the Wheatstone bridge are
amplified by a differential amplifier.

The calibration is necessary for the reason that the relationship
between the force applied to the elastic beam and the deformation
of the beam is non-linear and there are some other factors which
may influence the measurement accuracy. After the calibration
experiment, the accuracy of the designed grip force sensor
is 0.1N.
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FIGURE 6 | The grip force sensor and its manipulation sketch.

FIGURE 7 | The force signals measured by the 3D force sensor.

3D Force Sensor
A three dimension (3D) force sensor (measurement range:
−30N ∼30 N, accuracy: 2%FS), which is designed by the Robot
Sensor and Control Lab in Southeast University, is introduced to
measure the force signal (Ma and Song, 2012; Ma et al., 2013).
Figure 7 shows the signals measured by the 3D force sensor
while the force is applied to the sensor optionally. The value >0
indicates that the direction of the force is in forward direction,
and the value <0 indicates that the direction of force is in reverse
direction.

As shown in Figure 8, the 3D force sensor is fixed on a vertical
placed flat. And a cylindrical handle is installed at the end of the
sensor. Holding the handle, human hand can apply force to the
sensor in different directions.

Data Collector
Analogy signals captured by the sensors can be digitalized by the
data collector. The designed data collector can realize analogy

FIGURE 8 | The 3D force sensor and its manipulation sketch.

signal sampling in 16 channels simultaneously. The AD (analogy
to digital) converters in the data collector are 10 bit. The sampling
rate of the data collector can be set from 200 to 2000 Hz per
channel. The voltage range of the input signals is from 0 to 3 V.
The data collector has a USB interface through which data can be
exchanged between the data collector and computer.

Application Software
The application software running on the computer is used to
display the EMG signal waves and force signal waves in real time.
And the data of these signals can be recorded when needed. In
addition, the application software has the function of changing
the data sampling rate bymeans of sending commands to the data
collector.

FORCE ESTIMATION OF HAND
MOVEMENT

The relation between force and EMG signal is varied
with many factors, such as force value, speed, path,
etc. (Orizio et al., 2010; Kamavuako and Rosenvang,
2012). In order to study the relationship between the
EMG signals and the force signals output by the hand
and to estimate the force based on the EMG signal,
we designed the signal processing diagram as shown in
Figure 9.
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FIGURE 9 | The diagram of the force estimation.

Since the EMG signal is a kind of complex non-linear signal
and the handmovement is completed by the cooperation ofmany
muscles, it is difficult to describe the relationship between the
EMG signals and the force output by the hand by using the linear
model.

Under the assumption that there is a non-linear function, φ,
which can describe the relationship between the EMG signals and
the force output by the hand, the force output by the hand can be
estimated by measuring the EMG signals on the arm skin surface.

F = φ(X) (1)

where, φ is the non-linear function, X are the EMG signals
measured from the arm skin surface, F is the force output by the
hand.

In this paper, the GRNN is employed to describe the non-
linear relationship between the EMG signals and the force for its
good non-linear mapping capability and high degree of parallel
processing information capacity.

EMG Signal Acquisition and Feature
Extraction
In this paper, eight different positions on the arm skin surface are
selected to acquire the EMG signals. The distribution of the EMG
sensors and the serial number of the EMG sensors are shown in
Figure 10 and Table 1.

EMG signal captured by the data collector is a time series
signal which can describe the characteristics of the hand
movement after necessary preprocessing and feature extraction.

The feature extraction method of EMG signals is usually
the time domain method, frequency domain method, and
time-frequency domain method. The time domain method
has the advantages of less computation comparing with the
other two methods. The usual time domain feature extraction
methods are mean absolute value (MAV), variance (VAR), zeros
crossings (ZC), andWillison Amplitude (WA).Table 2 shows the
mathematical equation of each introduced feature. All features
are extracted by using Matlab.

Figure 11 shows a typical EMG signal and its time domain
feature.

FIGURE 10 | The distribution of the EMG sensors.

TABLE 1 | The distribution location and the serial number of the EMG sensors.

EMG sensor no. Measuring site

1 Lateral brachial wrist flexo

2 Brachioradialis

3 Extensor digitorum

4 Extensor carpi ulnaris muscle

5 Biceps

6 Triceps

7 Deltoid

8 Shoulder capsulorrhaphy

The Generalized Regression Neural
Network
The GRNN was proposed by Donald F. Specht in 1991. It is
a kind of RBF (Radial Basis Function) neural network. It has
the advantage of non-linear mapping, great robustness, and a
high degree of parallel processing information capacity. The
performance and the learning speed of the GRNN are better than
the general neural network (Altiparmak et al., 2009).

The GRNN has a network structure of 4 layers as shown in
Figure 12. These four layers are input layer, pattern layer, sum
layer, and output layer, respectively (Altiparmak et al., 2009).

X = [x1, x2,...,xm]
T is the input vector of the GRNN, and

Y = [y1, y2,...,yl]
T is the output of the GRNN. The number of

the neuron in pattern layer is as the same as the number of the
training samples. Each neuron in pattern layer corresponds to a
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TABLE 2 | The EMG features in time domain and mathematical equation.

Feature Mathematical equation

MAV MAVi =
1
N

i
∑

j= i−N+ 1
|xj |

VAR VARi =
1
N

i
∑

j= i−N+ 1
x2
j

ZC ZCi =
i

∑

j= i−N+1
sgn(xjxj−1)

sgn(x) =







1, x > 0

0, x ≤ 0

WA WAi =
i

∑

j= i−N+ 2
f (xi − xi− 1)

f (x) =







1, |x| > threadhold

0, others

Where, xj is the jth sample data, N is the length of the sliding window.

FIGURE 11 | A typical EMG signal and its time domain features.

training sample data. The transfer function of the ith neuron in
pattern layer is:

Pi = exp[
(X − Xi)

T(X − Xi)

2σ 2
], i = 1, 2, ..., n (2)

where, X is the input of the GRNN, Xi is the learning sample
corresponding to ith neuron, σ is the smoothing parameter.

The neuron in sum layer can be divided into two classes. One
class corresponds to Equation (3), and the number is only one.
The other class corresponds to Equation (4).

SD =

n
∑

i= 1

Pi (3)

SNj =

n
∑

i= 1

yijPi, j = 1, 2, ..., L (4)

where, yij is jth element in Yi, Yi is the ith output sample. L is the
dimension of the output vector.

FIGURE 12 | The structure of the GRNN.

The output of the GRNN is defined as:

yi =
SNi

SD
i = 1, 2, ..., L (5)

To improve the performance of the GRNN in our study, the
samples should be distributed as uniformly as possible within a
certain range.

Force Estimation of Hand Movement
In this paper, the GRNN is employed to study the relationship
between the EMG signals and the force output by the hand. As
shown in Figure 9, the force estimation can be divided into two
steps. One is offline training of the GRNN, and the other is the
online force estimation. In the prosthetic hand based on EMG,
the GRNN is offline trained by collecting the EMG signals and the
force signals. The trained GRNN is used to estimate force of the
action in real time. It is that mapping the extracted EMG features
into the force of hand movement by using the trained GRNN.

The software in the computer records the eight channels of
the EMG signals (X), the grip force signals (Fg), and the 3D force
signals (F3D) in real time.

X =











X1

X2

...
Xn











=











x11 x12 · · · x1m
x21 x22 · · · x2m
...

...
...

...
xn1 xn2 · · · xnm











(6)

F3D =





Fx
Fy
Fz



 =





fx1 fx2 · · · fxm
fy1 fy2 · · · fym
fz1 fz2 · · · fzm



 (7)

Fg =
[

fg1 fg2 · · · fgm
]

(8)

where, X1 ∼ X8 are the eight channels of the EMG signals
captured by the eight EMG sensors, respectively, xij is the jth
sample data captured by the ith EMG sensor. Fx, Fy, and Fz are
the force signal in x, y, and z direction measured by the 3D force
sensor, respectively; fxi, fyi, fzi are the ith sample data in x, y, and
z direction, respectively; fgi is the ith sample data captured by the
grip force sensor andm is the number of the sampling.

Time domain feature extraction methods described in Table 2

are used in the processing of the EMG signals. And we can get the
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feature matrixes: XFMAV , XFVAR, XFZC, and XFWA.

XFMAV =











X1MAV

X2MAV

...
X8MAV











XFVAR =











X1VAR

X2VAR

...
X8VAR











(9)

XFZC =











X1ZC

X2ZC

...
X8ZC











XFWA =











X1WA

X2WA

...
X8WA











(10)

Combining the feature matrixes and the force signals, we can get
a new matrix Sam.

Sam =

[

XF
F

]

(11)

where, XF is one of the XFMAV , XFVAR, XFZC, and XFWA. F is one
of the F3D and Fg .

In the offline training step of the GRNN, the k-fold cross
validation is introduced to evaluate the performance of the
GRNN.

(1) The Sam is split into k equal-size groups of sizem/k.
(2) One of the groups is used as validation group in order to test

the performance of the GRNN; the rest k–1 groups are used
in training process.

(3) The cross validation process is repeated k times
with different selected groups with the mean
accuracy.

In the k-fold cross validation method, k is set to two in the paper.
The mean absolute value of the estimation error

(MAVE), the root mean square (RMS) of the estimation
error and the correlation coefficient (ρ) between F
and F̃ are introduced to evaluate the accuracy of the
estimation results. Take the force in direction x for an
example:

MAVEx =

N
∑

i= 1
abs (f̃xi − fxi)

N
(12)

RMSx =

√

√

√

√

√

N
∑

i= 1
(f̃xi − fxi)

2

N − 1
(13)

ρ
f̃x ,fx

=
cov(f̃x, fx)

σ
f̃x
σfx

=
E[(f̃x − µ

f̃x
)(fx − µfx )]

σ
f̃x
σfx

(14)

where, f̃xi is the estimate of force in direction x; fxi is the force in
direction x measured by the 3D force sensor; N is the length of
the data.

A greaterMAVE indicates that the estimation result is poorer.
A greater RMS indicates that the estimation result has a larger
fluctuation. And a greater ρ indicates that the estimated result has
a higher similarity with the force measured by the force sensor.

In grip force estimation experiments, One-way ANOVA is
conducted to compare the performance of different features
In One-way ANOVA, the factor is EMG feature (MVA,
VAR, ZC, WA). In 3D force estimation experiments, Two-
way ANOVA is conducted. The factors of the Two-way
ANOVA are force direction (x, y, z) and EMG feature
(MVA, VAR, ZC, WA). Tukey comparison is performed when
significance is detected. The significance level for all tests is set
at 0.05.

EXPERIMENT AND RESULT

To verify the effectiveness of the proposed method in this paper,
the experiment was implemented.

Six right hand-dominant healthy subjects without any
neuromuscular disorders (4 males, 2 females, and aged between
21 and 28) were chosen as the participants the experiment.
And the participants were informed consent prior to study
participation.

Before the experiment, the locations of the EMG sensors
on the arm skin surface were cleaned by medical alcohol.
Then, the electrodes were buckled into the EMG sensors and
the EMG sensors were attached on the arm skin surface.
The locations of the EMG sensors are shown in Table 1 and
Figure 10.

During the experiments, the EMG signals and force signals of
the action were displayed as waveforms in the computer screen
and recorded by the software. The data sampling rate of the data
collector was set as 1 kHz per-channel.

FIGURE 13 | The EMG signals and the corresponding grip force.
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In the experiments, the data captured from
different individuals are used to train the GRNN,
respectively.

The Grip Force Estimation Experiment
Firstly, the grip force estimation experiment is implemented.
During the grip force estimation experiment, the subjects are
asked to grasp the grip force sensor several times with different
grip force. During the grasping, the subjects should not move
their arms. The duration of the grasping is about 1–2 s. The
maximum grip force is <30N.

In the experiment, four channels of the EMG signals were
selected to estimate the grip force. Figure 13 shows the EMG
signals and the grip force while the subject 1 was grasping
the grip sensor three times continuously with different grip
force.

Four kinds of EMG time domain features which were
extracted from the same raw EMG signals were used to train
the GRNN, respectively. And the trained GRNNs were used to
estimate the grip force, respectively.

The experiment results of the subject 1 are shown in
Figure 14. It shows that the results of the WAV and VAR are
better than the results of ZC and WA. When the grip force
increases from 0 to 8N, the results of all features show a good
estimation effect. When the grip force is larger than 10N, the
estimation accuracy of ZC andWAdecreases, especially when the
force is larger than 15N. In the results of ZC, the fluctuation may
appear in the estimation results when the grip force is larger than
15N. And when the grip force is larger than 15N, the estimation
accuracy is decline sharply in the result of ZC. When the grip
force is larger than 20N, the estimation accuracy is also decline in
the result of WA. In general, the estimate of force by using these
four features and the actual force have the similar trend.

The results of all six subjects are shown inTable 3. The average
values of the six subjects’ results are calculated and shown in
Table 4 and Figure 15. The variation range of the all subjects’
results is also shown in the form of vertical red line, as shown
in Figure 15. It shows that the result of MVA is better than the
other features’. The result of ZC has a larger fluctuation than that
of the other three features.

A B

C D

FIGURE 14 | The experiment results of the grip force estimation. (A) Feature = MAV. (B) Feature = VAR. (C) Feature = ZC. (D) Feature = WA.
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TABLE 3 | The results of the grip force estimation experiments.

Grip force

MAVE (N) RMS (N) ρ (%)

Subject 1 MAV 0.69 0.89 99.46

VAR 1.12 1.36 98.75

ZC 1.87 2.85 94.72

WA 1.06 1.61 98.27

Subject 2 MAV 0.55 0.73 99.62

VAR 1.07 1.36 98.64

ZC 1.70 2.76 94.79

WA 0.84 1.27 98.85

Subject 3 MAV 0.63 0.79 99.58

VAR 1.03 1.28 98.91

ZC 1.82 2.82 94.89

WA 1.06 1.53 98.42

Subject 4 MAV 0.63 0.82 99.38

VAR 1.10 1.41 98.20

ZC 1.43 2.49 94.64

WA 0.77 1.28 98.56

Subject 5 MAV 0.62 0.77 99.56

VAR 1.12 1.40 98.51

ZC 1.83 3.03 93.13

WA 0.97 1.53 98.29

Subject 6 MAV 0.54 0.79 99.56

VAR 0.85 1.24 98.89

ZC 1.44 2.63 95.08

WA 0.84 1.44 98.53

TABLE 4 | The average results of the grip force estimation experiments across all

the subjects.

Grip force

MAVE (N) RMS (N) ρ (%)

MAV 0.61 0.80 99.53

VAR 1.05 1.34 98.65

ZC 1.68 2.76 94.54

WA 0.92 1.44 98.49

The results of One-way ANOVA and Tukey HSD are shown in
Tables 5–8. Results in Table 5 indicate that there are significant
differences (p < 0.05) among four features. The results of the
Tukey HSD show that there are significant differences between
each two features except VAR and WA. Four features can be
divided into three subsets.

The above results indicate that the result of the WAV
is better than the other three features’ results by all three
evaluation index. The result of the VAR and the result of
the WA are similar. Among all the results, the ZC get the

FIGURE 15 | The statistical results of the grip force estimation experiments.

TABLE 5 | The results of the One-way ANOVA.

Sum of

squares

df Mean

square

F Sig.

MAVE Between groups 3.646 3 1.215 70.554 0.000

Within groups 0.345 20 0.017

Total 3.990 23

RMS Between groups 12.519 3 4.173 268.170 0.000

Within groups 0.311 20 0.016

Total 12.831 23

ρ Between groups 88.753 3 29.584 188.823 0.000

Within groups 3.134 20 0.157

Total 91.886 23

TABLE 6 | The results of the Tukey HSD for MAVE.

MAVE

Feature N Subset for alpha = 0.05

1 2 3

MAV 6 0.6100

WA 6 0.9233

VAR 6 1.0483

ZC 6 1.6817

Sig. 1.000 0.375 1.000
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worst one. The results also show that all of these four features
can realize the estimation of the grip force in an acceptable
performance.

The 3D Force Estimation Experiment
The 3D force is the representative of the force output by the
human hand in three-dimensional space, which can be measured

TABLE 7 | The results of the Tukey HSD for RMS.

RMS

Feature N Subset for alpha = 0.05

1 2 3

MAV 6 0.7983

VAR 6 1.3417

WA 6 1.4433

ZC 6 2.7633

Sig. 1.000 0.507 1.000

by 3D force sensor. During the 3D force estimation experiment,
the subjects were asked to grasp the handle which was set at the
end of the 3D force sensor, and to apply force to the handle in x,
y, and z direction. The duration of the subjects applying force to
each direction is about 1 s. The maximum force is <20N.

In this experiment, eight channels of the EMG signals were
selected to estimate the grip force. Figure 16 shows the EMG

TABLE 8 | The results of the Tukey HSD for ρ.

ρ

Feature N Subset for alpha = 0.05

1 2 3

ZC 6 94.5417

WA 6 98.4867

VAR 6 98.6500

MAV 6 99.5267

Sig. 1.000 0.890 1.000

FIGURE 16 | The EMG signals and force signals output by the hand.
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A B

C D

FIGURE 17 | The experimental results of the 3D force estimation. (A) Feature = WAV. (B) Feature = VAR. (C) Feature = ZC. (D) Feature = WA.

FIGURE 18 | The statistical results of the 3D force estimation experiments.
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TABLE 9 | The results of the 3D force estimation experiments.

Fx Fy Fz

MAVE (N) RMS (N) ρ (%) MAVE (N) RMS (N) ρ (%) MAVE (N) RMS (N) ρ (%)

Subject 1 MAV 0.42 0.70 99.13 0.44 0.78 99.05 0.22 0.32 96.47

VAR 0.53 0.98 98.31 0.49 0.89 98.81 0.24 0.36 95.74

ZC 1.78 3.15 86.56 1.98 3.19 86.34 0.45 0.71 85.51

WA 0.48 0.76 99.02 0.50 1.02 98.45 0.18 0.26 97.68

Subject 2 MAV 0.38 0.68 98.44 0.46 0.78 99.06 0.34 0.50 98.65

VAR 0.45 0.83 97.75 0.52 0.87 98.86 0.37 0.58 98.24

ZC 1.18 2.03 86.65 1.66 2.75 89.59 0.61 1.07 95.70

WA 0.43 0.74 98.24 0.51 1.02 98.44 0.28 0.44 99.03

Subject 3 MAV 0.28 0.48 96.33 0.47 0.83 98.95 0.60 1.04 97.01

VAR 0.39 0.79 90.22 0.56 0.88 98.82 1.11 1.85 90.34

ZC 0.42 1.08 79.14 1.02 1.86 95.28 0.69 1.11 97.54

WA 0.30 0.54 95.56 0.45 0.82 98.99 0.64 1.22 95.80

Subject 4 MAV 0.22 0.29 99.55 0.33 0.64 98.55 0.64 1.11 96.48

VAR 0.31 0.42 99.05 0.43 0.77 97.96 1.12 1.92 89.43

ZC 0.51 0.93 96.26 1.09 2.07 86.10 0.77 1.18 96.97

WA 0.26 0.41 99.15 0.34 0.71 98.24 0.66 1.31 94.98

Subject 5 MAV 0.28 0.44 99.63 0.21 0.48 96.05 0.54 0.98 97.13

VAR 0.42 0.76 98.90 0.27 0.52 95.37 1.04 1.82 90.42

ZC 0.69 1.16 98.29 0.54 1.32 64.15 0.80 1.32 95.73

WA 0.36 0.64 99.19 0.24 0.65 92.87 0.56 1.12 96.28

Subject 6 MAV 0.41 0.79 98.87 0.26 0.48 99.26 0.50 0.89 97.63

VAR 0.57 1.17 97.54 0.36 0.74 98.23 0.91 1.65 92.44

ZC 1.29 2.21 94.03 1.35 2.44 80.13 0.82 1.35 95.51

WA 0.53 0.95 98.39 0.35 0.76 98.16 0.50 0.98 97.06

TABLE 10 | The average results of the 3D force estimation experiments across all the subjects.

Fx Fy Fz

MAVE (N) RMS (N) ρ (%) MAVE (N) RMS (N) ρ (%) MAVE (N) RMS (N) ρ (%)

MAV 0.33 0.56 98.66 0.36 0.67 98.49 0.47 0.81 97.23

VAR 0.45 0.83 96.96 0.44 0.78 98.01 0.80 1.36 92.77

ZC 0.98 1.76 90.16 1.27 2.27 83.60 0.69 1.12 94.49

WA 0.39 0.67 98.26 0.40 0.83 97.53 0.47 0.89 96.81

TABLE 11 | The results of the Two-way ANOVA for MAVE.

Source Type III Sum

of squares

df Mean square F Sig.

Corrected model 4.099 5 0.820 9.471 0.000

Intercept 24.863 1 24.863 287.250 0.000

Force direction 0.093 2 0.047 0.538 0.586

EMG_Feature 4.006 3 1.335 15.426 0.000

Error 5.713 66 0.087

Total 34.675 72

Corrected total 9.811 71

TABLE 12 | The results of the Two-way ANOVA for RMS.

Source Type III sum

of squares

df Mean square F Sig.

Corrected model 12.135 5 2.427 9.820 0.000

Intercept 78.730 1 78.730 318.566 0.000

Force direction 0.392 2 0.196 0.794 0.456

EMG_Feature 11.743 3 3.914 15.838 0.000

Error 16.311 66 0.247

Total 107.177 72

Corrected total 28.446 71
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signals and the 3D force while subject 1 applied force to the 3D
force sensor.

The same as the grip force estimation experiment, four
kinds of EMG time domain features which were extracted from
the same raw EMG signals were used to train the GRNN,
respectively. And the trained GRNNs were used to estimate the
3D force, respectively.

The experimental results of the subject 1 are shown in
Figure 17. In Figure 17, the red line represents the actual force
and the blue line represents the estimated force. The result of
WAV has the best performance among the results of all these
four features. And the result of ZC is the worst. When applying
force to z-direction, which means pushing the 3D force sensor,
the estimation results are poor by using the features of VAR and
ZC. On the whole, the 3D force estimation results are acceptable.

The results from all six subjects are shown in Tables 9, 10.
The average values and the variation range of the six subjects’
results are shown in Figure 18 indicated by bar graph and
vertical red line, respectively. It shows that the result of MVA
is better than the other features’. The result of ZC has a larger
fluctuation than that of the other three features. In the z-
direction, the result of VAR also has a lager fluctuation. And in
the z-direction, the result of VAR is worst by all three evaluation
index.

The results of Two-way ANOVA and Tukey HSD are
shown in Tables 11–13. The results of the Tukey HSD are
shown in Tables 13–16. The results of Two-way ANOVA
indicate that there are significant differences (p < 0.05) among
four features. For all three evaluation index, the effects of
force direction are not significant (p > 0.456). The results
of Tukey HSD show that the effects of MAV, VAR, and

TABLE 13 | The results of the Two-way ANOVA for ρ.

Source Type III sum

of squares

df Mean square F Sig.

Corrected model 893.973 5 178.795 7.522 0.000

Intercept 653,163.541 1 653,163.541 27,478.191 0.000

Force direction 31.084 2 15.542 0.654 0.523

EMG_Feature 862.888 3 287.629 12.100 0.000

Error 1568.837 66 23.770

Total 655,626.351 72

Corrected total 2462.809 71

TABLE 14 | The results of the Tukey HSD for MAVE.

EMG_Feature N Subset

1 2

MAV 18 0.3889

WA 18 0.4206

VAR 18 0.5606

ZC 18 0.9806

Sig. 0.306 1.000

WA are similar. Four features can be divided into two
subsets.

The above results indicate that all of these four features can
achieve the estimation of the 3D force successfully. The result
of MAV is best. But compare with VAR and WA, there is no
significant difference. The result of ZC is worst.

CONCLUSION

In order to meet the requirements of the dexterous control
of the prosthetic hand, the paper proposes a force estimation
method of hand movement based on the sEMG and GRNN.
The estimated force of hand movement includes the grip
force and the 3D force. An experimental platform is set up
to measure the multi-channels of the sEMG signals, the grip
force and the 3D push-pull force. Based on this platform,
the sEMG on the arm skin surface and force of the action
output by the hand can be measured synchronously. The widely
used time domain feature extraction methods are employed
to pre-process the sEMG signals. Then the extracted EMG
features are mapped to force of the hand movement by using
GRNN.

The experiments are implemented to verify the effectiveness
of the proposed force estimation method of hand movement.
And the results show that the proposed method can realize
the force estimation of hand movement with an acceptable
performance under the condition that grip force is <30N and
the 3D push-pull force is <20N. In grip force estimation,
the result of MVA is best. In 3D force estimation, the
result of MAV is also best, but compare with VAR and
WA, there is no significant difference. The performance
of ZC is worst both in grip estimation and 3D force
estimation.

TABLE 15 | The results of the Tukey HSD for RMS.

EMG_Feature N Subset

1 2

MAV 18 0.6783

WA 18 0.7972

VAR 18 0.9889

ZC 18 1.7183

Sig. 0.249 1.000

TABLE 16 | The results of the Tukey HSD for ρ.

EMG_Feature N Subset

1 2

ZC 18 89.4156

VAR 18 95.9128

WA 18 97.5294

MAV 18 98.1244

Sig. 1.000 0.528

Frontiers in Neuroscience | www.frontiersin.org 13 June 2017 | Volume 11 | Article 343

http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Neuroscience/archive


Wu et al. Force Estimation of Hand Movement

For the future work, we will research the estimation
of the parameters of the kinematics and dynamics based
on the sEMG for the purpose of further improving the
performance of the dexterous manipulation of the EMG
prostheses.
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