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Evolution and development are interdependent, particularly with regard to the

construction of the nervous system and its position as the machine that produces

behavior. On the one hand, the processes directing development and plasticity of

the brain provide avenues through which natural selection can sculpt neural cell fate

and connectivity, and on the other hand, they are themselves subject to selection

pressure. For example, mutations that produce heritable perturbations in neuronal birth

and death rates, transcription factor expression, or availability of axon guidance factors

within sensory pathways can markedly affect the development of form and thus the

function of stimulus decoding circuitry. This evolvability of flexible circuits makes them

more adaptable to environmental variation. Although there is general agreement on this

point, whether the sensitivity of circuits to environmental influence and the mechanisms

underlying development and plasticity of sensory pathways are similar across species

from different ecological niches has received almost no attention. Neural circuits are

generally more sensitive to environmental influences during an early critical period, but

not all niches afford the same access to stimuli in early life. Furthermore, depending

on predictability of the habitat and ecological niche, sensory coding circuits might

be more susceptible to sensory experience in some species than in others. Despite

decades of work on understanding the mechanisms underlying critical period plasticity,

the importance of ecological niche in visual pathway development has received little

attention. Here, I will explore the relationship between critical period plasticity and

ecological niche in mammalian sensory pathways.

Keywords: sensory deprivation, cross-modal plasticity, topographic maps, synaptic plasticity, inhibitory plasticity

“... evolution is the control of development by ecology.” -Leigh van Valen

DEVELOPMENT BOTH FACILITATES AND CONSTRAINS
ADAPTATION

Early events in nervous system development are very similar across species because they provide a
basic framework upon which more species-specific events are built at later time points. Mutations
that affect early events are likely to be deleterious or even lethal, and thus they place severe
constraints on potentially adaptive variation. If they are not deleterious, early changes could
produce profound alterations in structure and function, affecting any circuitry that is dependent on
that early framework. Mutations that occur later in nervous system development would have less of
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an effect, but because of the interconnected nature of neurons,
even small changes in one member of a network will affect
all members of the network. This is a potentially dangerous
situation, and thus evolution has come up with work-
arounds that can preserve neural network function despite the
unavoidable missteps that can occur in brain building. Many
of those work-arounds involve built-in flexibility that allows
networks to adapt to variation within a lifetime as well as across
evolutionary time, thus facilitating adaptation.

TARGET SPECIFICITY

One of the most critical steps in building neural circuits is for
axons to locate and make synapses within the proper target.
At one extreme, each axon could have its target choices pre-
specified. This was the premise behind Sperry’s chemoaffinity
hypothesis. When he cut the optic nerve and rotated the eye
of a frog, the axons within the optic nerve regenerated and
made synapses with their original target sites in the optic tectum,
leading to frogs that made 180◦ errors in locating visual stimuli.
These results suggested to Sperry that there is a chemical address
system in which axons and targets have matching labels that they
use to find each other in a proverbial haystack.

Sperry’s findings suggested that evolution had provided a strict
one to one wiring diagram for the brain. What Sperry didn’t
realize is that frogs can eventually make corrections in their
retinotectal wiring, correcting their visual localization ability.
Similarly, Xenopus tadpoles, which have binocular vision as
a result of the intrahemispheric connections of the nucleus
isthmi, can realign those connections after eye rotation (Udin
and Keating, 1981; Udin, 2012, for review). In an extreme
example, a third eye primordium transplanted onto a tadpole’s
head can successfully compete with the existing eyes for target
space in the optic tectum. The extra eye drives the formation
of eye-specific termination regions that resemble the ocular
dominance stripes seen normally in binocular visual cortex of
carnivores and primates (LeVay et al., 1978, 1980; Law and

FIGURE 1 | Specification of primary sensory areas in cerebral cortex occurs gradually, starting with establishment of positional identity and polarity gradients that lead

to regionalization, followed by formation of strict boundaries between cortical areas and the thalamocortical projections that bring in sensory information. Within each

area, modules for special processing are distributed in a pattern that is characteristic for each area (Modified from Pallas et al., 2006, used with permission).

Constantine-Paton, 1981). In contrast to Sperry’s more rigid
chemoaffinity hypothesis, these findings illustrate the power
of visual experience to guide not only normal connectivity
patterns between eye and brain, but to compensate for unique
circumstances in a way that optimizes function.

When initially considered the corrections to retinotectal maps
in frogs seem quite remarkable. However, the wiring of input
and target neurons is normally shaped by experience to some
extent. The “fire together, wire together” and “use it or lose it”
principles of Hebbian learning (Hebb, 1949) can account for
experience-dependent changes in the strength and maintenance
of synaptic connections. NMDA receptors allow activity levels
to be translated into synaptic strength (Constantine-Paton and
Cline, 1998). Even before eye opening, spontaneous activity that
resembles visually driven activity occurs at several points within
the visual pathway (Meister et al., 1991; Weliky and Katz, 1999;
Chiu and Weliky, 2001) and can guide normal circuit wiring
to a considerable extent. This is important when considering
that the point at which birth and eye opening occur with
respect to gestation varies across species. Thus, in more altricial,
nocturnal, and fossorial species, spontaneous activity may be
a more important factor than in precocial, diurnal, cursorial
species in shaping connectivity relative to vision.

CROSS-MODAL PLASTICITY

Another illustration of the extent to which axons can be flexible
in their target choice comes from studies of cross-modal plasticity
in sensory cortex. Cerebral cortex develops in a stepwise fashion
(Figure 1), beginning from an undifferentiated, laminated sheet
with common features throughout. Regional information is
established under the control of various transcription factors and
morphogens, some of which are arranged in opposing gradients
(Puelles and Rubenstein, 2003; Ypsilanti and Rubenstein, 2016).
How precise boundaries form between adjacent cortical areas
is not well-understood. The formation of area-specific modules,
such as cytochrome oxidase blobs and ocular dominance
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FIGURE 2 | Cartoon depicting the normal projections in the auditory and visual pathways (top) and the surgical procedure that leads to cross-modal plasticity in

ferrets (bottom). As a result of the procedure, the retina invades the auditory thalamus, which in turn conveys visual activity to the auditory cortex.

columns in primary visual cortex (V1) (LeVay et al., 1978; Trusk
et al., 1989), binaural bands in primary auditory cortex (A1)
(Middlebrooks et al., 1980), and whisker barrels in primary
somatosensory cortex (S1) (Woolsey and Van der Loos, 1970),
occurs under the partial direction of neural activity. Studies
of cross-modal plasticity investigate the extent to which these
area-specific features are flexible.

In hamsters, mice, and ferrets, neonatal damage to the sensory
midbrain, which reduces retinal target space and deafferents
some sensory thalamic regions, can induce retinal axons to
invade non-visual targets, including the auditory thalamus and
the somatosensory thalamus (Schneider, 1973; Frost, 1982; Sur
et al., 1988; Ellsworth et al., 2005). In ferrets, midbrain damage
results in a partial takeover of auditory thalamus and auditory
cortex by visually driven activity (Figure 2). The circuitry within
auditory cortex is altered in response, such that auditory cortical
responses to light stimuli resemble those in visual cortex,
including the presence of a two-dimensional map of visual
space (Sur et al., 1988; Roe et al., 1990, 1992; Pallas and Mao,
2012, for review). Callosal and local connectivity patterns were
altered and reorganized in a way that suggested a splitting of
the auditory cortical area into segregated auditory and visual
subareas (Gao and Pallas, 1999; Pallas et al., 1999). To the
contrary, we discovered that although auditory responses remain,
tuning to sound frequency is broader, the tonotopic map is
virtually absent (Figure 3), and sound-responsive neurons have

FIGURE 3 | Tonotopic maps in normal ferrets are oriented such that high

frequencies are represented medially and low frequencies laterally (left). In

auditory cortex of ferrets in which retinal axons have invaded auditory

thalamus, visually-responsive, sound-responsive, and bisensory neurons are

intermixed (right). The tonotopic map in these ferrets is absent, with no

significant difference in the spatial center of distribution (colored circles) of

high, medium, or low-frequency tuned neurons (error bars indicate ± standard

error. Modified from Mao and Pallas, 2012, used with permission).

higher thresholds in cross-modal auditory cortex, perhaps due to
changes in organization of inhibitory interneurons (Mao et al.,
2011b; Mao and Pallas, 2012, 2013). In addition, multisensory
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neurons that respond to either sound or light stimulation are
created at the expense of sound-only neurons. The number of
visual-only neurons increases with the extent of the early damage.
These results show that, although the cerebral cortex is quite
flexible in its ability to accommodate various types of inputs,
there is a limit to the ability to do two things at once, at least in
primary auditory cortex. The difficultymay be one of topography.
In multisensory cortical regions that do successfully represent
two modalities, they share a common topographic basis—such
as location of an auditory or visual stimulus in space (Wallace
et al., 1992, 2006). In primary auditory cortex, there is no map of
stimulus location; rather it contains a map of sound frequency.
The two dimensional map of visual space created in cross-modal
primary auditory cortex (Roe et al., 1990) may interfere with
the one-dimensional map of frequency, and thus with a major
organizing principle of A1, leading to the degradation of tuning
that we observed.

Cross-modal plasticity may seem an extreme response to
loss of input or target space only obtained through special
experimental circumstances. This is far from being true; cross-
modal plasticity in the form of sensory substitution occurs
both evolutionarily and clinically. Animals with evolutionarily
reduced visual input, such as blind cave fish (Hinaux et al., 2016)
or blind mole rats (Heil et al., 1991; Bronchti et al., 2002) exhibit
a takeover of the underutilized visual regions by other senses. On
a developmental time scale, in deaf or blind animals including
humans, the intact sense takes over territory that would normally
belong to the deprived or damaged sense. This produces what can
seem like supernatural ability in the intact sense (Rauschecker
et al., 1992; Rauschecker and Korte, 1993; Bavelier and Neville,
2002; Lomber et al., 2010; Butler et al., 2017; Glick and Sharma,
2017; Kral et al., 2017; Schormans et al., 2017). The ability of
sensory cortex to reconfigure its organization and connectivity
according to unforeseen circumstances would predispose it to
adapt to evolutionary change (Pallas, 2007; Kral and Pallas, 2011;
Pallas and Mao, 2012, for review).

POPULATION MATCHING AND CELL
DEATH

Another way in which developmental mechanisms can
predispose circuits to accommodate new afferents, allow
innervation of new target space, and compensate for changes
in either population is through flexible population matching
mechanisms. Many more neurons are generated in early
development than survive until adulthood, and survival
of afferents can be affected by availability of target space
(Hamburger and Levi-Montalcini, 1949; Hollyday and
Hamburger, 1976). The reverse is also true; target neurons
are dependent upon innervation for survival (Pallas et al.,
1988; Buss et al., 2006). Furthermore, the interconnectedness
of brain pathways means that a change in number of neurons
in one region will affect all members of the pathway like a
stack of dominoes. The evolutionary benefit is that a mutation
that increases or decreases the number of neurons at one
locus of a pathway will be accommodated through changes in

neuron survival or alterations in branching at every level of the
pathway.

The more connectivity options that a neuron has, the less it
will be affected by a decrease in target size (Finlay and Pallas,
1989, for review). For example, retinal axons have many potential
targets, and if one is lost, the axons will increase their projections
to alternate targets, even to other modalities (Figure 2). On the
other hand, some brain regions receive input from or send inputs
to only a single other region. One example is the lateral geniculate
nucleus (LGN), which requires primary visual cortex (V1) in
order to survive. Ablation of V1 leads to massive cell death
in LGN (Raabe et al., 1986; Woo et al., 1992), but ablation of
large portions of thalamus has little impact on cerebral cortex
(Miller et al., 1991) due to the many alternate synaptic partners
for cortical neurons. From an evolutionary perspective, singly
targeted afferent populations seem risky. One might speculate
that the cost is lower than the benefit of having a dedicated
communication channel between sensory thalamus and primary
sensory cortices.

POPULATION MATCHING IN
TOPOGRAPHIC MAPS

Whether a decrease in target size affects function has been
addressed in studies of topographic map compression. In adult
frogs and fish, ablation of the caudal half of the optic tectum
results in a compression of the regenerating retinal axons onto
the remaining half (Udin, 1977; Schmidt, 1983). Although, the
optic nerve in adult mammals does not regenerate without heroic
efforts (Bei et al., 2016; Lim et al., 2016), it can regenerate
in neonatal hamsters (Finlay et al., 1979) and mice (Pallas, in
preparation). Map compression in neonatal hamsters occurs
without substantial increases in retinal cell death (Wikler et al.,
1986), such that a 50% lesion of the superior colliculus (SC) leads
to a doubling of the input/target ratio. Remarkably, this occurs
without a concomitant increase in SC neuron receptive field
size (Pallas and Finlay, 1989). The preservation of receptive field
size is achieved by a reduction in retinal axon arbor complexity
and by a selective redirection of some retinal axons to alternate
target regions (Pallas and Finlay, 1991; Xiong et al., 1994). This
result implies that the SC neurons have a way to recognize
how much visual space is represented by the retinal ganglion
cells competing for target space. Thus, despite having twice as
many retinal afferents available to them, SC neurons select only
those that represent the same amount of visual space as in
normal, non-compressed maps. We tested the hypothesis that,
although the compression itself is activity-independent, NMDA
receptors on the SC neurons could provide a filter for the
degree of receptive field overlap of the competing retinal inputs.
Chronic blockade of NMDA receptors in SC during post-natal
development prevented the normal refinement of receptive fields,
as seen in other species (Debski et al., 1990; Schmidt et al., 2000).
It also blocked the compensation process for map compression,
leading to receptive fields within the compressed maps that were
even larger than in normal juveniles (Huang and Pallas, 2001),
supporting the hypothesis.
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The changes in axon arbor complexity might be expected to
degrade stimulus tuning. As in the “bug detector” neurons in
frog optic tectum (Lettvin et al., 1959), neurons in superficial
SC of rodents are tuned to stimulus size and velocity, preferring
small, slowly moving objects (Razak and Pallas, 2005, 2006). In
animals that have undergone map compression, stimulus size
tuning, and stimulus velocity tuning of the population of SC
neurons are normal (Pallas and Finlay, 1989). NMDA receptor
blockade had no effect on size or velocity tuning (Huang and
Pallas, 2001; Razak et al., 2003). Instead, an increase in the
strength and spatial extent of lateral inhibition in compressed
maps apparently compensates for the excess retinal inputs in
a way that preserves stimulus tuning properties (Razak and
Pallas, 2007; Razak et al., 2010). That receptive field properties
remain stable even for massive changes in afferent/target ratios
makes a powerful argument that developmental mechanisms can
predispose the brain to accommodate evolutionary changes in
neuron population numbers.

Given that gradients of the repulsive guidance factors ephrin-
A2 and -A5 in the SC and their EphA receptors in the retina
are responsible for setting up the topographic map in normal
SC (Feldheim et al., 2000, 2004; Cang et al., 2005), we reasoned
that they might also be responsible for map compression. Our
correlative gene expression study supported this hypothesis; SC
size after neonatal lesion correlates not only with the steepness of
the retino-SC map, but also with the steepness of the ephrin-A2
and eprhin-A5 gradients (Tadesse et al., 2013). Preliminary data
with ephrinA knockout mice (kindly donated by David Feldheim
and Renping Zhou) are consistent with the hypothesis that
ephrinAs are necessary for the retino-SC maps to compress (Mao
et al., 2011a, and in preparation; Figure 4). Whether the early

FIGURE 4 | Cartoon illustrating the mapping of nasal to temporal visual field

locations 1–6 onto the anterior to posterior axis of SC in normal animals (top),

in animals with compression of the entire visual field onto the smaller SC after

neonatal ablation of caudal SC (middle), and in ephrin knockout animals that

failed to compress their retino-SC projections (bottom).

damage to SC that triggers the map compression is first triggering
the redistribution of ephrin-As or vice versa is unknown, and is
currently under study. At any rate, regulation of guidance cue
distribution by the size of the brain region would be another
developmental process that could accommodate evolutionary
change in an adaptive way.

RECEPTIVE FIELDS ARE THE CURRENCY
THAT SENSORY NEURONS USE TO
REPRESENT THE STIMULUS SPACE

The “classical” receptive field (RF) derives from the
spatiotemporal sum of visually responsive excitatory and
inhibitory inputs (Allman et al., 1985). RF size is an important
contributor to visual acuity; neurons with large RFs are better at
motion decoding and worse at decoding spatial fine structure
than neurons with small RFs (Livingstone and Hubel, 1988;
Blakemore, 1990; Levitt et al., 2001). RFs are large at birth,
and undergo a postnatal refinement process to reach adult
size. It has been assumed, based largely on studies of ocular
dominance (OD) in primary visual cortex (V1) of cats and
monkeys (Hensch et al., 1998; Espinosa and Stryker, 2012), that
visual pathway development requires early visual experience
during a critical period for maturation but not for maintenance
of refined circuitry. Evidence from experiments in both SC
(Carrasco et al., 2011; Balmer and Pallas, 2015b) and V1 (e.g.,
Huang et al., 1999; Fagiolini and Hensch, 2000; van Versendaal
et al., 2012) suggests a signaling pathway that involves TrkB
receptors. Visual experience activates NMDA receptors, which
allow calcium entry into the neuron and activation of CaMKII.
This signaling pathway promotes BDNF transcription, leading
to TrkB-mediated alterations in GABAergic inhibition (Hong
et al., 2008; Lin et al., 2008; Bloodgood et al., 2013; Park and
Poo, 2013; Spiegel et al., 2014). This in turn promotes increased
inhibition from fast-spiking, GABAergic “basket” type neurons.
Mature basket cells and their proteoglycan-rich perineuronal
nets (PNNs) enwrap the somata of glutamatergic pyramidal
neurons, resulting in reduced plasticity and thus closure of
the critical period for ocular dominance plasticity (Bavelier
et al., 2010; Beurdeley et al., 2012). Most mammals do not have
ocular dominance columns, however, and neither pyramidal nor
basket neurons are found outside of the telencephalon (Jones
and Hendry, 1984; Peters and Jones, 1984), suggesting that the
proposed mechanism may not be generalizable across different
brain regions, species, or types of plasticity. An alternative
mechanism places maturation of PSD-95-dependent, “silent”
synapse maturation as the necessary and sufficient step in
critical period plasticity (Huang et al., 2015). PSD-95 anchors
glutamate receptors at the postsynaptic density, promoting
stability of excitatory glutamatergic synapses in neocortex and
hippocampus (Liao et al., 2001; Lüscher and Malenka, 2012).

USE-DEPENDENT PLASTICITY

Excitatory and inhibitory synaptic connections can be made
stronger with use and weaker with disuse (Hebb, 1949; Stent,
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1973; Quinlan et al., 1999; Philpot et al., 2001; Castillo et al.,
2011; Sanes and Kotak, 2011; Trachtenberg, 2015). The threshold
for induction of plasticity increases with age (Kirkwood et al.,
1995). As a result, use-dependent excitatory and inhibitory
plasticity provides flexibility early in life, and stability later.
Sensory experience has a powerful influence on the development
and plasticity of neural circuits (Munz et al., 2014). Shaping
connectivity under the direction of sensory inputs ensures that
circuits are tuned to the environment on both developmental
and evolutionary time scales. Thus, environmental changes can
be incorporated in circuits in an ecologically adaptive way by
existing developmental processes.

Not all activity generated in sensory pathways comes from
the outside world. Neurons also fire spontaneous action
potentials. Spontaneous activity can be highly organized, to
the extent that it mimics sensory inputs. Before eye opening,
waves of nicotinic acetylcholine-based and then glutamate-based
spontaneous activity wash over the retina (Wong et al., 1993;
Feller, 2002; Arroyo and Feller, 2016). Due to the retinotopic
organization of the visual pathway, these waves will activate
neighboring neurons that represent adjacent regions of the visual
field. When the eyes open, spontaneous activity declines and is
replaced by visually driven activity. Birth and eye opening are
uncoupled (Clancy et al., 2001, 2007), however, and exposure to
visual experience varies with niche, so some species may rely on
visual drive for shaping their visual pathways more than other
species.

Whether driven by light or by waves of spontaneous activity,
coincident excitation of neighboring neurons that converge
on a common target neuron increases the likelihood that
the target neuron will fire an action potential. If there are
NMDA receptors on the target neuron, there is also a greater
likelihood that calcium entry will activate CaMKII and the
signaling pathway that leads to insertion of AMPA receptors
in the postsynaptic membrane, stabilizing the connections and
increasing the synaptic strength (Cline and Constantine-Paton,
1989; Constantine-Paton and Cline, 1998). As a result, even
without open eyes, the visual pathway is refined based on the
neurons that exhibit the highest degree of cooperative activity
(McLaughlin et al., 2003). The question then arises about the
relative importance of spontaneous vs. sensory-driven activity in
development of sensory pathways.

CRITICAL PERIODS

Critical periods allow developing visual circuits to be modified
permanently by the environment while providing stable circuitry
later in life. Although, spontaneous activity plays an important
early role (Kirkby et al., 2013), the dominant view, based largely
on studies of ocular dominance plasticity in carnivore and
primate visual cortex, contends that visual experience within an
early critical period is necessary for maturation and that beyond
this period, plasticity is minimal (Espinosa and Stryker, 2012).
Our results in hamster SC challenge this view derived from
ocular dominance plasticity studies. We find that developmental
refinement of visual receptive field (RF) size in both SC and

V1 occurs without visual experience (Figures 5A1,2,5B12−14), but
that continued dark rearing results in a loss of RF refinement
in adulthood (>P60 days) (Figures 5A3,5B15; Carrasco et al.,
2005; Balmer and Pallas, 2015a). A brief, late juvenile exposure to
light stabilizes receptive field size permanently (Figures 5A6−10,
5B16), but visual experience after postnatal day (P) 60 has no
effect (Figure 5A4,5,11; Carrasco and Pallas, 2006; Balmer and
Pallas, 2015a). Interestingly, V1 requires a longer period of late
juvenile light exposure to stabilize small RFs than SC (compare
Figure 5A10 and Figure 5B16,17). These unexpected results refute
the hypothesis that subcortical and cortical regions differ in
their dependence on vision, and raise the interesting possibility
that the current paradigm, derived from classic lab animal
models, does not generalize across species, areas, and/or response
properties. Other evidence supports this possibility. For example,
adult visual cortex is more plastic in mice than cats (Sawtell
et al., 2003; Espinosa and Stryker, 2012; Hübener and Bonhoeffer,
2014), and there are species differences in the susceptibility of
orientation tuning to early experience. Inhibition is important in
gating cortical plasticity in general (Artola and Singer, 1987). It
has been proposed that activation of synaptic inhibition in the
developing visual cortex is responsible for opening the critical
period for ocular dominance plasticity (Hensch et al., 1998; Iwai
et al., 2003). Closing it is thought to result from a maturation of

FIGURE 5 | Summary of previous data on timing of RF refinement and

sensitivity to visual deprivation. Refinement occurs normally in the dark but late

postnatal visual experience is required to maintain adult RFs in both (A) SC

and (B) V1. White and black bars indicate timing of light and dark rearing,

respectively. Gray circles indicate adult RF size (Modified from Balmer and

Pallas, 2015a, used with permission).
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GABAergic synapses (Huang et al., 1999; Jiang et al., 2005) that is
driven by excitatory inputs (Kuhlman et al., 2013; Gu et al., 2016).
Alternatively, there is some evidence for a more critical role of
silent synapse maturation in critical period timing (Huang et al.,
2015).

THE ROLE OF VISION IN BEHAVIOR
DIFFERS AMONG SPECIES

The segregation of parallel visual pathways into dorsal “What”
and ventral “Where” streams is conserved across primates,
carnivores, and rodents (Waleszczyk et al., 2004; Van den Bergh
et al., 2010; Wang et al., 2012), but there is tremendous variation
across species in the role of vision in survival and behavior
(Wilson and Reeder, 2005; Myers et al., 2014; Veilleux and
Kirk, 2014). Optics, photoreceptor density, and receptive field
size/overlap provide anatomical and physiological limits on
acuity (Parker and Hawken, 1985; Troilo et al., 1996; Kaskan
et al., 2005; Bleckert et al., 2014). Clearly, species that are more
active at night will have limited access to visual information
compared to diurnal species. Considerable evidence exists for
a linkage between visual acuity and diel activity pattern, with
diurnal species having larger eyes/retinae, higher numbers of
photoreceptors, and higher visual acuity (Wikler and Rakic,
1996; Veilleux and Kirk, 2014). Species with rapid locomotion,
especially predators that rely on sight for prey detection and
capture, have larger eyes and higher acuity (Hall et al., 2012).
RF size is an important component of pattern vision and
object localization, which are arguably more important to
survival of prey species than binocular segregation, especially in
animals such as rodents that do not have extensive binocular
vision (Antonini et al., 1999). Animals with more complex
visual behavior, larger visual cortices, and frontally-placed eyes
are more likely to have multiple visual representation in
cerebral cortex as well as organized submodality representations,
such as orientation pinwheels, color blobs, motion tuning
modules, ocular dominance columns, etc. (Livingstone and
Hubel, 1988; Krubitzer, 2007b; Campi and Krubitzer, 2010;
Kaas, 2012; Pallas and Mao, 2012). The collective evidence thus
points to strong selective pressure for high-resolution vision
in some species, as evidenced in a profound way by these
cortical specializations. It is important to examine the role of
ecological niche on inter-specific variations in the role of visual
experience in receptive field refinement and spatial frequency
threshold.

VARIATIONS ON A COMMON THEME?

Visual behavior and the extent to which animals use visual
cues in their behavioral repertoires vary considerably across
phyla. Yet most of our knowledge about the functioning of
visual pathways comes from species that were selected for
their tractability as experimental subjects or for convenience.
Early studies of retinal circuitry were initially performed in
a wide variety of species, for example salamanders (Werblin
and Dowling, 1969), frogs (Barlow, 1953; Lettvin et al., 1959),

rabbits (Barlow and Levick, 1965), fish (Witkovsky and Dowling,
1969), and horseshoe crabs (Ratliff and Hartline, 1959) in
addition to cats (Kuffler, 1953; Enroth-Cugell and Robson,
1966). David Hubel and Torsten Wiesel used cats and macaque
monkeys in their pioneering investigations of developing and
adult retinogeniculocortical pathways. These species were chosen
with the assumption that what was discovered would be relevant
to visual pathway function in infant and adult humans. Since
then, there has been an almost wholesale shift toward mice as
a model organism for studies of visual system development and
plasticity, primarily for the ease of using genetic tools. This
has occurred without a full consideration of the behavioral and
physiological ecology of mice and possible implications for their
visual system organization. Ecological niche is likely to have an
important effect on not only the structure and function of the
visual pathway in adults, but also on the role of vision in its
development. For example, nocturnal, fossorial mammals like
mice may depend less on visual experience for visual pathway
development than diurnal, cursorial species like primates. This
is an important consideration for choosing a model organism for
studies of visual system development and plasticity. Furthermore,
now that it is becoming easier to manipulate gene expression
in a variety of species, mice may lose one reason for their
popularity.

EVIDENCE THAT THE ROLE OF SENSORY
EXPERIENCE IN DEVELOPMENT OF
VISUAL RECEPTIVE FIELD PROPERTIES
DIFFERS BETWEEN SPECIES AND
BETWEEN DIFFERENT RECEPTIVE FIELD
PROPERTIES

The concept of a critical period is firmly embedded in the
literature, yet is used in different ways by different investigators.
Most use the term to mean an early period of development
during which the brain can be modified by the environment,
with the implication that after the critical period closes,
modification is no longer possible. Some prefer the term
“sensitive period” to indicate those developmental events that
have a decreased sensitivity to external influence with age,
but which can still exhibit some level of experience-dependent
modification; that is they are more sensitive to extrinsic influence
during a certain time period. Language learning is a good
example. It is increasingly becoming apparent, however, that
one species critical period is another species sensitive period,
making it important to carefully consider which term is used
and for what circumstances. As mentioned above, mice can
exhibit ocular dominance plasticity as adults, but cats cannot.
Does this mean that cats have a critical period but mice
have a sensitive period for ocular dominance plasticity? Or
that we do not yet know how to demonstrate plasticity in
adult cats? The evidence that exercise (Kaneko and Stryker,
2014; Kaneko et al., 2017) and environmental enrichment
(Greifzu et al., 2014, 2016) can influence plasticity supports this
idea.
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The timing of the critical period for ocular dominance
plasticity is such that it opens soon after the eyes open and vision
becomes possible (Berardi et al., 2000). After it closes, visual
acuity does not improve substantially, but whether the potential
for ocular dominance plasticity makes increased acuity possible
seems unlikely, given that acuity increases in both binocular
and non-binocular regions of the visual field. The brain and
body size and the evolutionary history of a species is a good
predictor of the time course of its brain development (Clancy
et al., 2001; Workman et al., 2013), including the time course
of its critical/sensitive periods (Berardi et al., 2000). If the same
mechanism underlies the opening and closing of these periods
across species, then all elements of that mechanism, such as
BDNF and its receptor (Huang et al., 1999 and in preparation;
Mudd et al., in press), must be in place and operational for
different periods of time in different species. In cases, where there
are differently timed critical periods for different events within a
species, this would also be expected.

Examples of species or regional differences in the relationship
between visual experience and development of visual circuitry
abound. In mouse retinal ganglion cells, spatiotemporal response
properties, and contrast detection thresholds do not require
vision for their development, but ON and OFF responses do (Ko
et al., 2013; Akimov and Rentería, 2014). Direction selectivity in
V1 requires visual experience for even rudimentary development
in ferret V1 (Li et al., 2006). It can be modified by experience
in cats (Berman and Daw, 1977; Leventhal and Hirsch, 1980) and
rats (Fagiolini et al., 1994) but not inmice (Rochefort et al., 2011).
Mice, but not rats or cats, exhibit ocular dominance plasticity in
adulthood, perhaps because of a different mechanism, or perhaps
because in larger animals, adult axons have greater distances
to bridge to make new connections (Laing et al., 2015). Dark-
rearing has only a modest effect on perceptual (Prusky and
Douglas, 2003) and physiological (Kang et al., 2013) acuity in
mice, but severely reduces spatial resolution of the X-cell form
vision pathway in rat (Fagiolini et al., 1994) and cat visual cortex
(Timney et al., 1978; Derrington and Hawken, 1981). Spatial
frequency selectivity increases independently of visual experience
for up to 3 weeks post-natally in cats, but requires visual
experience to improve further (Derrington and Fuchs, 1981;
Derrington, 1984). Sensitivity to binocular disparity, a measure
of depth perception, increases from birth but does not develop
during binocular eyelid suture in cats (Pettigrew, 1974). These
various pieces of evidence suggest that species differences in the
effects of visual deprivation on development of RF properties do
exist, and that even within a species, some RF properties require
visual experience and some do not. However, there has been little
if any attempt to relate these differences to behavioral ecology
or to provide a comprehensive investigation. Thus, comparative
studies are essential.

VISUAL PATHWAY ORGANIZATION
DIFFERS BETWEEN SPECIES

Reflecting differences in visual behavior, species also differ
markedly in the number and size of visual regions in the brain,

and particularly visual cortical areas (Krubitzer, 2007a; Larsen
and Krubitzer, 2008; Campi and Krubitzer, 2010). In general,
the number and relative size of areas increases across time in
mammalian orders, from rodents to carnivores to primates, for
example, but within the very large and diverse Order Rodentia,
the area devoted to visual cortex correlates with the importance
of vision to behavior (Campi and Krubitzer, 2010). Retinal
structure and function also varies (Huberman and Niell, 2011).
Most rodents have Y/W-ganglion cell-dominated retinae and
emphasize the retinocollicular “where” pathway over the X-
dominated, retinogeniculocortical “what” pathway that is more
dominant in carnivores and primates (Sherman and Spear, 1982;
Livingstone and Hubel, 1987; Henderson et al., 1988; Waleszczyk
et al., 2004; Li et al., 2015). This difference in specialization of
the retinofugal cells is reflected throughout the visual pathway,
in the organization of the retina in terms of differences in
density and cellular composition from center to periphery, in the
presence or absence of eye- and function-specific modules, and
in the number of specialized visual cortical areas. Evolution of a
nocturnal habit may have required visual adaptations with broad
implications (Smale et al., 2003; Ankel-Simons and Rasmussen,
2008). These differences allow categorization into different
groups, with rodents likely having different needs for malleability
vs. stability of their visual pathways than carnivores or primates.
Our current understanding of critical period regulation thus may
not fit a variety of species across visual pathway levels. Thus,
more attention needs to be paid to the goal of developing an
integrated view of visual system development and evolution in
mammals.

SUMMARY

Generation of comparative data is needed to guide choice of
animal models for visual development studies. Identification
of interspecies variations will challenge the generalizability
of mechanistic principles derived from previous studies of
visual development, with the potential to revise current
thinking. Determining the mechanisms leading to species
differences will provide an answer to the fundamentally important
question of how response properties evolved to match sensory
ecology.
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